• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Accuracy Split-Step Finite Difference Method for Schr¨odinger-KdV Equations?

    2018-11-24 07:39:52FengLiao廖鋒andLuMingZhang張魯明
    Communications in Theoretical Physics 2018年10期

    Feng Liao(廖鋒) and Lu-Ming Zhang(張魯明)

    1School of Mathematics and Statistics,Changshu Institute of Technology,Changshu 215500,China

    2College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    AbstractIn this article,two split-step finite difference methods for Schr¨odinger-KdV equations are formulated and investigated.The main features of our methods are based on:(i)The applications of split-step technique for Schr¨odingerlike equation in time.(ii)The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii)Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently.Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.

    Key words:split-step method,Schr¨odinger-KdV equations,finite difference method,fast Fourier transform

    1 Introduction

    The nonlinear Schr¨odinger-KdV equations[1?2]

    can be used to model the nonlinear dynamics behavior of one-dimensional Langmuir and ion-asoustic waves in a system of coordinates moving at the ion-acoustic speed.Here ? is a positive constant,u is complex function describing electric field of Langmuir oscillations while v is real function describing low-frequency density perturbation.

    Many works have been concentrated on the numerical studies of this problem.Bai and Zhang[3]formulated a finite element method(FEM)to study Schr¨odinger-KdV equations. Later,Bai[4]developed a split-step quadratic B-spline finite element method(SSQBS-FEM)for Schr¨odinger-KdV equations.Appert and Vaclavik[5]solved the Schr¨odinger-KdV equations using a finite difference method(FDM).Golbabai a Safdari-Vaighani[6]employed a meshless technique based on radial basis function(RBF)collocation method.Zhang et al.did some works concerning Schr¨odinger-KdV equations using average vector field(AVF)method and multi-symplectic Fourier pseudospectral(MSFP)method.[7?8]Some other numerical methods for Schr¨odinger-KdV equations,such as variational iteration method,decomposition method and homotopy perturbation method,readers are reffered to Refs.[9–11]and reference therein.

    The main purpose of this paper is to construct high accuracy split-step finite difference(SSFD)method for Schr¨odinger-KdV equations.Split-step(or time-splitting)method has evolved as a valuable technique for the numerical approximation of partial differential equations(PDE).Wang[12]presented a time-splitting finite difference(TSFD)method for various versions of nonlinear Schr¨odinger equation.To improve the accuracy of TSFD,Dehghan and Taleei[13]constructed a compact time-splitting finite difference scheme,which was proved to be unconditionally stable and preserve some invariant properties.Wang and Zhang[14]proposed an efficient split-step compact finite difference method for the cubicquintic complex Ginzburg-Landau equations both in one dimension and in multi-dimensions.However,all of these methods require to solve tridiagonal linear algebraic equations in implementation,and the computational cost will be increased along with the increment of the spatial accuracy.

    Recently,Wang et al. constructed a time-splitting compact finite difference method for Gross-Pitaevskii equation,which is realized by discrete fast discrete Sine transform,and there is no need to solve linear algebraic equations.[15]Subsequently,Wang[16]considered sixthorder compact time-splitting finite difference method for nonlocal Gross-Pitaevskii equation,the method is of spectral-like accuracy in space,and conserves the total mass and energy of the system in the discretized level.It should be noted that the methods in Refs.[15–16]are notfit for solving the PDE with odd-order partial derivatives.In this paper,we formulate a high accuracy and fast solver for Schr¨odinger-KdV equations based on discrete Fourier transform,which is of sixth or eighth-order accuracy in space and can be realized by FFT efficiently.

    The layout of the paper is as follows:In Sec.2,we formulate a sixth-order split-step finite difference(SSFD-6)method.Then we establish an eighth-order split-stepfinite difference(SSFD-8)method in Sec.3.Numerical investigations of our numerical methods are conducted in Sec.4,and some conclusions are drawn in Sec.5.

    2 Sixth-Order Split-Step Finite Difference Method

    In this paper,we consider the general forms of Schr¨odinger-KdV equations

    with the initial value and periodic-boundary conditions of

    where ? =[xL,xR],γ,ξ,α,ω are known constants,u(0)(x)and v(0)(x)are periodic functions with the period xR?xL.It is easy to verify that problem(2)–(5)preserves the total mass

    and the total energy

    2.1 Sixth-Order Difference Approximation Formula

    Choose a mesh size h:=(xR?xL)/J with J an even positive integer,time step τ,and denote grid points with coordinates(xj,tn):=(xL+jh,nτ)for j=0,1,...,J?1 and n≥0.Define

    For any general periodic function u(x)on ? and a vector u ∈ YJ,let PJ:L2(?)→ XJbe the standard L2-projection operator onto XJ,IJ:C(?) → XJand IJ:YJ→XJbe the trigonometric operator,i.e.

    with

    Obviously,PJand IJare identical operators over XJ.

    For any u,v∈YJ,the inner product and norm are defined as follows:

    Suppose that g(x)is an xR?xLperiodic function,then for the approximation of the first-order derivative gx(x),we have the following formula,i.e.

    where gj=g(xj),=gx(xj)and a,α,β are undetermined parameters,which depend on the accuracy-order constraints.Base on Taylor’s expansion,we have

    The linear equations(9)is unique solvable,i.e.a=1/3,α=7/9,β=1/36.Then we obtain the sixth-order difference approximation for the first-order partial derivative

    Next,we approximate the third-order derivative fxxx(x)via the following formula,i.e.

    It follows from Taylor’s expansion,we obtain

    which is unique solvable,i.e. a=4/9,b=1/126,α= ?40/21,β=20/21.Thus,the sixth-order difference approximation for the third-order partial derivative is given as follows

    Finally,we approximate the second-order derivative fxx(x)as follows

    From Taylor’s expansion,we have

    which is unique solvable and a=2/11,α=12/11,β=3/44.Then the sixth-order difference approximation for the second-order partial derivative is given as follows

    2.2 Split-Step Finite Difference Method

    The discrete Fourier transform for{gj}and its inverse are provided as follows,i.e.

    Similarly,wa can define discrete Fourier transform for,,andand their inverse.

    From Eqs.(10)and(17),we have

    which gives

    Similarly,from Eqs.(13),(16),and(17),we obtain

    In the rest of this section,we formulate a splitstep finite difference(SSFD)method for problem(2)–(5).Firstly,we discrete KdV-like equation(3)in temporal direction as follows

    for j=0,1,...,J?1.Acting the discrete Fourier transform on Eq.(22)and considering the orthogonality of the Fourier basis functions,we obtain

    for l=?J/2,?J/2+1,...,J/2?1,where,,andrepresent the discrete Fourier transform of,,and,respectively.From Eqs.(19),(20)and(23),we obtain

    for n≥ 1 and l= ?J/2,?J/2+1,...,J/2?1,whereandexpress the discrete Fourier transform ofand,respectively.

    Secondly,we utilize split-step method to discrete Schr¨odinger-like equation(2)in time,we obtain

    Directly from the nonlinear subproblem in Eq.(25),we have

    Integrating Eq.(26)from tnto tn+1,and then approximating the integral on[tn,tn+1]via trapezoidal rule,we obtain

    For the linear subproblem in Eq.(25),we discretize it in time as follows

    Followed by discrete Fourier transform and Eq.(21),we have

    From Eqs.(27)and(29),the sequential subproblems(25)can be solved as follows:

    From above discussion,Eqs.(24)and(30)–(32)comprise the details of sixth-order split-step finite difference(SSFD-6)method. However,SSFD-6 is a three-level scheme,which requires a two-level scheme to calculate u1and v1.In this article,we compute u1and v1via the following two-level nonlinear implicit scheme,i.e.

    Above all,the details of SSFD-6 are provided as follows:

    DO

    END WHILE

    WHILE n

    DO

    END WHILE

    Theorem 1 The discretizations Eqs.(30)–(32)for Sch¨odinger-like equation posses the following property:

    where Qn= ∥un∥2.

    Proof Noticing the Parserval’s identity

    thus from Eq.(31),we have

    Directly from Eqs.(30)and(32),we have

    From Eqs.(37)and(38),we can see that the conclusion of this theorem holds. ?

    Remark 1 Theorem 1 implies that SSFD-6 method preserves the total mass in discrete level.We do not expect that SSFD-6 conserves the total energy,but the energy can be discretized as

    Theorem 1 also demonstrates that the complex component unis convergent in the sense of L2-norm.Similar to the methods which have been done in Ref.[17],we can obtain the L2-error estimates of un,i.e.

    where C0is a constant independent of h,τ.For simplicity of this paper,we omit the proof details.Next,we will prove the convergence of vnvia mathematical induction argument method.

    Theorem 2 Let un,vn∈XJbe the numerical approximations of SSFD-6.If u(x,t),v(x,t),and f(·)are sufficiently smooth,there exist two constants h0>0 and C independent of τ(or n)and h,such for any h ≤ h0and τ=o(h),

    Proof See Appendix B. ?

    3 Eighth-Order Split-Step Finite Difference Method

    To construct eighth-order split-step finite difference(SSFD-8)method for Schr¨odinger-KdV equations,we provide the eighth-order finite difference formulas for the first,second and third-order derivatives as follows:

    This together with Eq.(17),we obtain the relationship betweenx?gl,xx?gl,xxx?gl,and?glas follows

    Similar to the analysis in Sec.2,the details of SSFD-8 are provided as follows

    for n ≥ 1,and u1,v1can be calculated iteratively as we have done in Eqs.(33)–(36).

    Comparing with SSFD-6,we can see that the computational complexity of SSFD-8 is identical to SSFD-6,but SSFD-8 is more accurate than SSFD-6 in spatial direction.Thus the computational complexity of our methods will not increase along with the increment of spacial accuracy.Based on this,we can design more higher accurate SSFD method,which can achieve spectral-like accuracy in space when more higher-order finite difference method is investigated.

    4 Numerical Results

    In this section,we will provide some numerical examples to test the performance of SSFD method for Schr¨odinger-KdV equations.Based on the works of Refs.[2,18],we provide two kinds of solitary-wave solutions for problem(2)–(3)with f(v)=θv2.

    Example 1 Let γ=3/2,ξ=1/2,α =1/2,θ=1/2,ω =?1/2,and M=?9/20,δ=27/800.

    Example 2 Let γ=1,ξ=?1,α =1/3,θ=1,ω =?1/2,and M=1,δ=1/4.

    We calculate the L2and L∞norm errors using the formulas

    Table 1 The errors and convergence ratio of SSFD-6 for Example 1 at t=1 with ?=[?128,128].

    Table 2 The errors and convergence ratio of SSFD-6 for Example 2 at t=1 with ?=[?128,128].

    Fig.1 Numerical solutions of Example 1 for t ∈ [0,20]with ? =[?128,128].

    The errors and convergence ratio of SSFD-6 are examined in Tables 1–2,which demonstrate that SSFD-6 has sixthorder accuracy in space.Figures 1 and 2 simulate the numerical solutions of SSFD-6 for Example 1 and Example 2,respectively,with h=1/2 and τ=1/80.

    Fig.2 Numerical solutions of Example 2 for t∈ [0,20]with ? =[?128,128].

    Fig.3 The discretization errors of the conservative quantities for Example 1 with h=1/2,τ=1/80 and ? =[?128,128].

    Fig.4 The discretization errors of the conservative quantities for Example 2 with h=1/2,τ=1/80 and ? =[?128,128].

    From Table 3,we can see that SSFD-8 is of eighth-order accuracy in space.We have compared the accuracy of SSFD-6 and SSFD-8 in Table 4,which indicates that SSFD-8 is more accurate than SSFD-6.

    Table 3 The errors and convergence ratio of SSFD-8 for Example 2 at t=1 with? =[?128,128].

    Fig.5 Numerical solutions of general nonlinearity for t∈ [0,20]with h=1/2,τ=1/80 and ? =[?128,128].

    Fig.6 The discretization errors of the conservative quantities for general nonlinearity with h=1/2,τ=1/80 and? =[?128,128].

    Table 4 Comparison of L2and L∞error norms for numerical solutions of Example 1 at t=1 with ? =[?128,128].

    To validate the conservation properties,we have computed the total mass and energy of Example 1 and Example 2,the discretization errors of the conservative quantities are plotted in Fig.3 and Fig.4,which demonstrate that SSFD-6 preserves the total mass and energy very well.A comparative study has been conducted with some existing methods and the results are reported in Table 5.We choose quadratic spline functions as basis functions of FEM[3]and SSQBSFEM[4]for spacial discretization.From Table 5,we can see that SSFD-6 and SSFD-8 are more efficient and accurate than other three methods.As can be seen from Table 5 that SSFD-8 is more accurate than SSFD-6,but the complexity of SSFD-8 is identical to SSFD-6.It should be pointed that the standard fourth order Runge-Kutta method is used to solve the continuous time system of FEM,[3]hence FEM[3]is expected to spent more CPU time than SSQBS-FEM.[4]Since the coefficient matrix of FDM[5]is time-varying when we evaluate the complex component un,hence FDM[5]requires more computational time than SSFD-6 and SSFD-8.

    Table 5 Comparison of L∞error norms for numerical solutions of Example 1 at t=0.1 with h=1,τ=0.001 and ? =[?64,64].

    To examine SSFD-6 still works for the general nonlinearity,we take in the Schr¨odinger-KdV Eqs.(2)–(3)with f(v)=sin(v).Choosing the parameters γ,ξ,α,ω and the initial data same as Example 1,the corresponding numerical results are shown in Fig.5 and the discretization errors of the conservative quantities are plotted in Fig.6.

    5 Conclusion

    In this paper,two split-step finite difference methods are presented for solving Schr¨odinger-KdV numerically.The merit of our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform.The computational complexity of our methods will not increase along with the increment of spacial accuracy.Numerical results demonstrate the precision and conservation properties of our methods.

    Appendix A

    ProofMaking the complex conjugate inner product of Eq.(2)with u,then taking the imaginary part,we get

    which implies that Eq.(6)holds.

    Computing the the complex conjugate inner product of Eq.(2)with ut,then taking the real part,we have

    Followed by

    then we obtain

    Making the inner product of Eq.(3)with|u|2,f(v)and vxx,respectively,we obtain

    It follows from(A5)–(A7)that(7)is satisfied. ?

    Appendix B

    Denote the trigonometric interpolations of the numerical solutions as

    where un,vn∈ YJ.Define the“error”functions

    Denote the L2-projected solutions as

    Acting L2-projected operator on Eq.(3),using Taylor’s expansion and considering the orthogonality of the basis functions,we have

    Noticing

    With the help of mathematical induction argument,we assume that

    This together with the inverse inequality,triangle inequality and Sobolev inequality,we have

    Considering the conditions of Theorem 2 and(A13),we obtain

    It follows from Parserval’s identity and(A10)–(A13),we have

    Directly from(A15)and induction argument(A12),we have

    where C is a constant independent of τ and h.This completes the proof. ?

    日韩欧美一区视频在线观看| 精品人妻在线不人妻| 国产男女超爽视频在线观看| 无人区码免费观看不卡| 色综合婷婷激情| 少妇猛男粗大的猛烈进出视频| 国产精品99久久99久久久不卡| 手机成人av网站| 亚洲欧美激情在线| 欧美日韩黄片免| 久久久久久久国产电影| 巨乳人妻的诱惑在线观看| 久久天堂一区二区三区四区| 视频区欧美日本亚洲| 亚洲av熟女| 国产成人精品久久二区二区91| 电影成人av| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一小说 | 精品国产一区二区久久| av福利片在线| 久久精品亚洲av国产电影网| 麻豆av在线久日| 国产成人精品在线电影| 国产av一区二区精品久久| 女人高潮潮喷娇喘18禁视频| www.自偷自拍.com| 每晚都被弄得嗷嗷叫到高潮| 麻豆乱淫一区二区| 日韩中文字幕欧美一区二区| 美女视频免费永久观看网站| av网站在线播放免费| 国产成人精品久久二区二区91| 香蕉丝袜av| 免费女性裸体啪啪无遮挡网站| 久久国产精品大桥未久av| 男女床上黄色一级片免费看| 午夜福利乱码中文字幕| 日韩欧美国产一区二区入口| 欧美日韩亚洲高清精品| 久久香蕉精品热| 曰老女人黄片| 在线观看舔阴道视频| 日日夜夜操网爽| 欧美另类亚洲清纯唯美| 免费不卡黄色视频| 亚洲欧洲精品一区二区精品久久久| 18在线观看网站| 国产真人三级小视频在线观看| videos熟女内射| 身体一侧抽搐| 不卡一级毛片| 三上悠亚av全集在线观看| 一二三四在线观看免费中文在| 9191精品国产免费久久| 人人澡人人妻人| 久久久久精品国产欧美久久久| bbb黄色大片| 亚洲五月婷婷丁香| 久久人妻熟女aⅴ| 日韩三级视频一区二区三区| 美女午夜性视频免费| 自线自在国产av| 国产在线观看jvid| 亚洲精品在线观看二区| 午夜免费成人在线视频| 韩国精品一区二区三区| 久久人人97超碰香蕉20202| 91字幕亚洲| ponron亚洲| 悠悠久久av| 18禁观看日本| www.自偷自拍.com| 亚洲片人在线观看| 老熟女久久久| 18禁观看日本| 久久久国产欧美日韩av| 国产野战对白在线观看| 成人国产一区最新在线观看| 妹子高潮喷水视频| 亚洲国产欧美日韩在线播放| 18禁观看日本| 老熟妇仑乱视频hdxx| 男人舔女人的私密视频| 欧美亚洲日本最大视频资源| 变态另类成人亚洲欧美熟女 | 天堂√8在线中文| 深夜精品福利| 日韩三级视频一区二区三区| 亚洲精品粉嫩美女一区| 国产精品二区激情视频| 99国产精品免费福利视频| 十八禁网站免费在线| 在线免费观看的www视频| 精品一品国产午夜福利视频| 久久精品aⅴ一区二区三区四区| avwww免费| 国产又爽黄色视频| 在线观看一区二区三区激情| 免费在线观看影片大全网站| 天堂俺去俺来也www色官网| 亚洲五月色婷婷综合| 9热在线视频观看99| 日韩免费高清中文字幕av| 午夜日韩欧美国产| 免费观看精品视频网站| 美国免费a级毛片| 9热在线视频观看99| 悠悠久久av| 女人高潮潮喷娇喘18禁视频| 日韩 欧美 亚洲 中文字幕| 亚洲精品美女久久久久99蜜臀| 亚洲美女黄片视频| 亚洲国产看品久久| 老汉色∧v一级毛片| 超碰成人久久| 人妻丰满熟妇av一区二区三区 | e午夜精品久久久久久久| 丝袜人妻中文字幕| 欧美成狂野欧美在线观看| 99久久国产精品久久久| 国产精品久久久久久精品古装| 欧美日韩精品网址| 欧美精品亚洲一区二区| 免费一级毛片在线播放高清视频 | av免费在线观看网站| 日日摸夜夜添夜夜添小说| 国产精品永久免费网站| 国产区一区二久久| 日韩大码丰满熟妇| 国产免费现黄频在线看| 日韩 欧美 亚洲 中文字幕| 国产99白浆流出| 久久精品亚洲熟妇少妇任你| 怎么达到女性高潮| 法律面前人人平等表现在哪些方面| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人妻福利社区极品人妻图片| 精品国产美女av久久久久小说| 99久久人妻综合| 国产亚洲精品久久久久久毛片 | 精品一区二区三卡| 中文字幕制服av| 精品人妻1区二区| 久久人人97超碰香蕉20202| 午夜两性在线视频| 麻豆乱淫一区二区| 好男人电影高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 精品人妻1区二区| 亚洲视频免费观看视频| 国产av精品麻豆| av网站免费在线观看视频| 欧美日韩成人在线一区二区| 在线观看日韩欧美| 视频区图区小说| 极品人妻少妇av视频| 成熟少妇高潮喷水视频| 伦理电影免费视频| 午夜91福利影院| 黑人巨大精品欧美一区二区mp4| 女人高潮潮喷娇喘18禁视频| 啦啦啦 在线观看视频| 亚洲一码二码三码区别大吗| 日韩有码中文字幕| 日本wwww免费看| 女人精品久久久久毛片| 狂野欧美激情性xxxx| 自拍欧美九色日韩亚洲蝌蚪91| 高清av免费在线| 黄色丝袜av网址大全| 久久人妻av系列| 亚洲欧美日韩高清在线视频| 久久青草综合色| 中文字幕高清在线视频| 成人永久免费在线观看视频| 丝瓜视频免费看黄片| 19禁男女啪啪无遮挡网站| 青草久久国产| 精品一区二区三区四区五区乱码| 国产亚洲欧美98| 成年女人毛片免费观看观看9 | 免费观看精品视频网站| av免费在线观看网站| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区四区第35| 男女床上黄色一级片免费看| 露出奶头的视频| 满18在线观看网站| 一级作爱视频免费观看| 欧美丝袜亚洲另类 | 亚洲欧美色中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 日韩视频一区二区在线观看| 交换朋友夫妻互换小说| 热99re8久久精品国产| 久久人妻av系列| 国产99白浆流出| 18禁国产床啪视频网站| 日本a在线网址| 中文字幕人妻熟女乱码| 久久久久久亚洲精品国产蜜桃av| 国产片内射在线| 国产成人精品久久二区二区免费| 亚洲va日本ⅴa欧美va伊人久久| 精品国产亚洲在线| 日韩 欧美 亚洲 中文字幕| 天堂√8在线中文| 最近最新免费中文字幕在线| 欧美日韩视频精品一区| 国产成人免费观看mmmm| 免费久久久久久久精品成人欧美视频| 在线观看免费高清a一片| 侵犯人妻中文字幕一二三四区| 亚洲欧美色中文字幕在线| 国产一区二区三区在线臀色熟女 | 久久久久精品人妻al黑| 精品福利永久在线观看| av网站免费在线观看视频| 91国产中文字幕| av网站在线播放免费| 色播在线永久视频| 欧美性长视频在线观看| 欧美日韩黄片免| tube8黄色片| 91麻豆精品激情在线观看国产 | 久久久久精品人妻al黑| 麻豆av在线久日| 亚洲综合色网址| 国产1区2区3区精品| 亚洲精品成人av观看孕妇| 丁香欧美五月| 欧美激情 高清一区二区三区| 午夜亚洲福利在线播放| 一级作爱视频免费观看| 免费av中文字幕在线| 9191精品国产免费久久| 自线自在国产av| 丰满的人妻完整版| 国产精品自产拍在线观看55亚洲 | 在线十欧美十亚洲十日本专区| 亚洲 国产 在线| 久久狼人影院| 极品教师在线免费播放| 免费观看a级毛片全部| √禁漫天堂资源中文www| 一本大道久久a久久精品| 大型黄色视频在线免费观看| 亚洲精品美女久久av网站| 欧美精品人与动牲交sv欧美| 精品午夜福利视频在线观看一区| 王馨瑶露胸无遮挡在线观看| 一级黄色大片毛片| 婷婷精品国产亚洲av在线 | 99热国产这里只有精品6| 狂野欧美激情性xxxx| 怎么达到女性高潮| 曰老女人黄片| av天堂在线播放| 99国产精品免费福利视频| 满18在线观看网站| 中文字幕人妻熟女乱码| av一本久久久久| 午夜福利影视在线免费观看| 免费在线观看影片大全网站| 国产真人三级小视频在线观看| 岛国毛片在线播放| 日韩人妻精品一区2区三区| av片东京热男人的天堂| 国产人伦9x9x在线观看| 无限看片的www在线观看| 91字幕亚洲| 日本精品一区二区三区蜜桃| 天天操日日干夜夜撸| e午夜精品久久久久久久| 91精品国产国语对白视频| 亚洲成人免费电影在线观看| 男女午夜视频在线观看| www.999成人在线观看| 亚洲精品自拍成人| 久久草成人影院| 亚洲国产欧美网| 亚洲 国产 在线| 亚洲精品粉嫩美女一区| 中国美女看黄片| 国产精品免费大片| 一边摸一边抽搐一进一出视频| 久久久国产欧美日韩av| 国产亚洲欧美在线一区二区| 视频在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产激情欧美一区二区| 国产一区二区三区视频了| 两个人免费观看高清视频| 精品免费久久久久久久清纯 | 午夜激情av网站| 精品国产美女av久久久久小说| 国产亚洲精品久久久久5区| 无人区码免费观看不卡| 精品第一国产精品| a级毛片黄视频| 91成人精品电影| 美女高潮到喷水免费观看| 男人的好看免费观看在线视频 | av欧美777| 满18在线观看网站| 少妇的丰满在线观看| 色综合婷婷激情| av线在线观看网站| 五月开心婷婷网| 欧美乱妇无乱码| 国产人伦9x9x在线观看| 国产精品1区2区在线观看. | 久久久国产精品麻豆| 成人黄色视频免费在线看| 正在播放国产对白刺激| 国产精品1区2区在线观看. | 亚洲一码二码三码区别大吗| 三级毛片av免费| 国产成人av激情在线播放| av免费在线观看网站| 丁香欧美五月| 黄色视频,在线免费观看| 免费观看a级毛片全部| 欧美久久黑人一区二区| 亚洲精品在线美女| 欧美黑人欧美精品刺激| a在线观看视频网站| 久久午夜综合久久蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人精品巨大| 欧美在线一区亚洲| 成年人黄色毛片网站| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 波多野结衣av一区二区av| 黄色视频,在线免费观看| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 日韩制服丝袜自拍偷拍| 成在线人永久免费视频| 99香蕉大伊视频| 丁香六月欧美| 亚洲国产欧美日韩在线播放| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 在线天堂中文资源库| 亚洲人成电影观看| 久久精品亚洲精品国产色婷小说| 亚洲欧美一区二区三区久久| 色综合婷婷激情| 老熟女久久久| 露出奶头的视频| 99精品久久久久人妻精品| 免费在线观看日本一区| 嫩草影视91久久| 91av网站免费观看| 国产激情久久老熟女| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| av片东京热男人的天堂| 无限看片的www在线观看| 新久久久久国产一级毛片| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 精品高清国产在线一区| 亚洲美女黄片视频| 亚洲精品中文字幕一二三四区| 亚洲综合色网址| 麻豆乱淫一区二区| 免费在线观看完整版高清| 欧美日韩成人在线一区二区| 国产精品一区二区在线不卡| 亚洲精品成人av观看孕妇| 宅男免费午夜| 欧美日韩视频精品一区| av国产精品久久久久影院| av线在线观看网站| 久久中文字幕一级| 老司机福利观看| 国产在线精品亚洲第一网站| 午夜视频精品福利| 老司机影院毛片| 一级片'在线观看视频| 国产精品一区二区精品视频观看| 亚洲片人在线观看| 99riav亚洲国产免费| 一级毛片精品| 三上悠亚av全集在线观看| videosex国产| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频| 丁香欧美五月| 麻豆av在线久日| 黄色怎么调成土黄色| 日本五十路高清| 精品国产乱码久久久久久男人| 久久久国产一区二区| 一区二区三区激情视频| 美女高潮到喷水免费观看| 国产单亲对白刺激| 一级黄色大片毛片| 91精品三级在线观看| 日本vs欧美在线观看视频| 欧美激情久久久久久爽电影 | 制服诱惑二区| 91九色精品人成在线观看| 巨乳人妻的诱惑在线观看| 成年人黄色毛片网站| 香蕉久久夜色| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| 国产免费男女视频| 午夜福利,免费看| 亚洲一区高清亚洲精品| 国产精品亚洲一级av第二区| 久久中文字幕人妻熟女| 欧美丝袜亚洲另类 | 久久精品成人免费网站| 精品久久久久久久久久免费视频 | 精品国产一区二区三区久久久樱花| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 日本五十路高清| 国产精品久久久久久人妻精品电影| 国产人伦9x9x在线观看| 女人被躁到高潮嗷嗷叫费观| 国产男女超爽视频在线观看| 成人三级做爰电影| 国产成人欧美| 国产精品 国内视频| 亚洲av片天天在线观看| 国产又色又爽无遮挡免费看| 中文欧美无线码| 亚洲 国产 在线| 亚洲av成人av| 成人三级做爰电影| 日本黄色视频三级网站网址 | 免费久久久久久久精品成人欧美视频| 丰满饥渴人妻一区二区三| 日韩视频一区二区在线观看| 成熟少妇高潮喷水视频| 岛国在线观看网站| 91麻豆精品激情在线观看国产 | 成人手机av| 无限看片的www在线观看| 国产91精品成人一区二区三区| 欧美日韩福利视频一区二区| 99riav亚洲国产免费| 真人做人爱边吃奶动态| av在线播放免费不卡| 久9热在线精品视频| 女性被躁到高潮视频| 18禁国产床啪视频网站| 精品久久久久久电影网| 九色亚洲精品在线播放| 国产一区二区激情短视频| 欧美一级毛片孕妇| 精品一区二区三区视频在线观看免费 | 黄片大片在线免费观看| 欧美乱码精品一区二区三区| 精品国产美女av久久久久小说| 69精品国产乱码久久久| a级毛片黄视频| 女人久久www免费人成看片| 国内久久婷婷六月综合欲色啪| 伊人久久大香线蕉亚洲五| 中文欧美无线码| 午夜激情av网站| 成人免费观看视频高清| 伦理电影免费视频| 新久久久久国产一级毛片| av超薄肉色丝袜交足视频| 精品卡一卡二卡四卡免费| 午夜福利,免费看| 国产单亲对白刺激| 久久婷婷成人综合色麻豆| 大型av网站在线播放| 男男h啪啪无遮挡| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色 | 久久久久精品国产欧美久久久| 妹子高潮喷水视频| cao死你这个sao货| 热re99久久国产66热| 日韩欧美三级三区| 最近最新中文字幕大全电影3 | 成人黄色视频免费在线看| 91大片在线观看| 日本五十路高清| 国产成人影院久久av| 精品久久久精品久久久| 99热只有精品国产| 777米奇影视久久| 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 真人做人爱边吃奶动态| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| 男女免费视频国产| 丝袜美足系列| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 成人国产一区最新在线观看| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 欧美激情高清一区二区三区| 亚洲色图综合在线观看| 精品国产美女av久久久久小说| 99热网站在线观看| 久久久久久久国产电影| 日韩大码丰满熟妇| 岛国在线观看网站| 日韩视频一区二区在线观看| 窝窝影院91人妻| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 嫩草影视91久久| 制服诱惑二区| 97人妻天天添夜夜摸| 免费观看人在逋| 免费一级毛片在线播放高清视频 | av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 这个男人来自地球电影免费观看| 亚洲欧美一区二区三区久久| 人妻一区二区av| 在线播放国产精品三级| 国产又爽黄色视频| 国产97色在线日韩免费| www.自偷自拍.com| 中文字幕人妻熟女乱码| 在线观看66精品国产| 亚洲av日韩在线播放| 亚洲欧美一区二区三区久久| 亚洲精品国产精品久久久不卡| av天堂久久9| 久久精品熟女亚洲av麻豆精品| 亚洲欧美激情综合另类| 久久人人97超碰香蕉20202| 午夜精品久久久久久毛片777| 欧美成人午夜精品| 国产成人精品无人区| 真人做人爱边吃奶动态| 宅男免费午夜| 午夜成年电影在线免费观看| 亚洲 国产 在线| 免费观看a级毛片全部| 久久久久久免费高清国产稀缺| 久久天躁狠狠躁夜夜2o2o| 欧美日韩精品网址| 男女免费视频国产| 国产精品久久久久成人av| 国产男女超爽视频在线观看| 国产1区2区3区精品| av有码第一页| 99国产精品免费福利视频| 亚洲精品国产色婷婷电影| 一区二区日韩欧美中文字幕| 人妻久久中文字幕网| 国产在线一区二区三区精| 久99久视频精品免费| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 国产精品 国内视频| 下体分泌物呈黄色| 久久99一区二区三区| 精品无人区乱码1区二区| 国产精品99久久99久久久不卡| 精品福利永久在线观看| 欧美激情久久久久久爽电影 | 欧美精品av麻豆av| 99re在线观看精品视频| 99久久综合精品五月天人人| 国产精品久久久av美女十八| 国产成人欧美在线观看 | 99热国产这里只有精品6| 一进一出抽搐gif免费好疼 | 又大又爽又粗| 日本黄色视频三级网站网址 | 下体分泌物呈黄色| 最近最新中文字幕大全免费视频| 中文字幕精品免费在线观看视频| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 欧美激情高清一区二区三区| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 咕卡用的链子| 午夜亚洲福利在线播放| 午夜91福利影院| 男女之事视频高清在线观看| 曰老女人黄片| 亚洲国产欧美一区二区综合| 黑人巨大精品欧美一区二区mp4| 桃红色精品国产亚洲av| 妹子高潮喷水视频| 国产熟女午夜一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 一级作爱视频免费观看| 一进一出抽搐gif免费好疼 | 久久久久国内视频| 国产一区二区三区视频了| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 99热国产这里只有精品6| 成人国产一区最新在线观看| 别揉我奶头~嗯~啊~动态视频| 一进一出抽搐gif免费好疼 | 黄色视频不卡| 美女福利国产在线|