胡皓 李穎
摘要:
選用三羥基多面體低聚倍半硅氧烷(POSS-OH)為基質,三乙氧基硅基丙基異氰酸酯(TEPIC)為偶聯(lián)劑,通過化學鍵合的方法將POSS與β-二酮類有機配體乙酰丙酮相結合,再以配位的形式引入稀土鋱離子,制備了一種新型POSS功能化的稀土有機-無機雜化材料Tb(POSS-ACAC)3。利用紅外光譜和紫外光譜確定了Tb(POSS-ACAC)3的結構,并通過與稀土小分子配合物Tb(ACAC)3的熱重分析對比發(fā)現(xiàn),POSS基團的引入能夠提高材料的熱穩(wěn)定性。進一步對材料的熒光性能進行分析,結果表明,Tb(POSS-ACAC)3的發(fā)光純度和熒光強度較純配合物都有明顯提高,同時解決了熒光淬滅問題。
關鍵詞:
乙酰丙酮功能化POSS; 稀土熒光; 有機-無機雜化材料
中圖分類號: TQ 324.2 文獻標志碼: A
Synthesis and Characteration of POSS Functionalized Lanthanide Rear Earth Complexes Hybrid Material
HU Hao, LI Ying
(School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract:
POSS functionalized rare-earth organic-inorganic hybrid material Tb(POSS-ACAC)3 was prepared by linking the Tb3+ complexes to the functionalized hydroxy polyhedral oligomeric silsesquioxane(POSS-OH) with the triethoxysilyl propyl isocyanate(TEPIC) as coupling agent through the process of chemical bonding between POSS and the β-diketone ligand ACAC.The structure of Tb(POSS-ACAC)3 was well characterized by IR and UV spectra.Compared with pure Tb(ACAC)3 complexes,it was showed that the introduction of POSS group could improve the thermal stability of the material.Furthermore,the luminescence properties of the resulting material was characterized in detail,and the results revealed that the luminescence intensity and purity of Tb(POSS-ACAC)3 were significantly improved.In addition,the problem of fluorescence quenching was solved.
Keywords:
ACAC functionalized POSS; rear-earth luminescence; organic-inorganic hybrid material
有機β-二酮配體中的亞甲基非?;顫?,由于受到雙重羰基吸引電子的氧原子的影響,容易發(fā)生各種反應。稀土β-二酮配合物中存在著從具有高吸收系數(shù)的β-二酮配體到Eu3+,Tb3+等離子的高效能量傳遞,而具有極高的發(fā)光效率。它們與鑭系離子形成穩(wěn)定的六元環(huán),直接吸收激發(fā)光并有效地傳遞能量。為了進一步提高該類配合物的性能,將稀土有機β-二酮類配合物與固體基質進行復合以獲得稀土有機雜化發(fā)光材料,此類研究引起了廣泛的關注[1-3]。稀土有機雜化發(fā)光材料是一類以稀土發(fā)光配合物為客體,凝膠[4-5]、多孔框架[6]、納米顆粒[7]、高分子[8-9]和離子液[10-11]等為主體基質,通過主客體之間的相互作用進行組裝構筑的新型功能雜化材料。這類材料的熒光性能優(yōu)良,光譜呈窄帶發(fā)射、單色性好,有較強的紫外線吸收能力和較長的熒光壽命。
多面體低聚倍半硅氧烷(POSS)是一種新型的納米功能性分子,由于其具有高度對稱的SiOSi籠型骨架結構,自身的熱穩(wěn)定性較好并具有多個反應活性點,具有無機材料的熱穩(wěn)定性和優(yōu)異的力學性能,同時兼具有機材料的結構可調控的優(yōu)點[12-13]。以POSS骨架作為基質與稀土配合物進行復合可以有效地提高材料的熱穩(wěn)定性,從而在一定程度上解決小分子稀土配合物光熱穩(wěn)定性差的問題。本文通過化學鍵將POSS與β-二酮類有機配體乙酰丙酮(ACAC)進行鍵合,再以配位的形式引入稀土鋱離子(Tb3+),制備了一種新型POSS功能化的稀土有機-無機雜化材料Tb(POSS-ACAC)3,對材料的結構進行了分析,并進一步研究了雜化材料的熱穩(wěn)定性和熒光性能。
1 試驗部分
1.1 試驗材料
乙酰丙酮(ACAC)(純度為99%,質量分數(shù),下同),三乙氧基硅基丙基異氰酸酯(TEPIC)(純度為97%),三羥基多面體低聚倍半硅氧烷(POSS-OH),氧化鋱(純度為99.99%),過氧化氫(分析純),四氫呋喃(分析純),氫化鈉(純度為95%),濃鹽酸(質量分數(shù)37%),三氯甲烷(分析純),無水乙醇(分析純AR)。
1.2 試驗步驟
1.2.1 制備稀土配合物Tb(ACAC)3
將TbCl3(0.33 mmol)溶于15 mL去離子水中,再加入ACAC(1 mmol),用NaOH(0.1 mol/L)水溶液調節(jié)pH至中性,60 ℃加熱攪拌4 h,旋轉蒸發(fā)除去溶劑,得到淡黃色固體Tb(ACAC)3。
1.2.2 合成前驅體ACAC-Si
在氮氣氣氛保護下,將ACAC(1 mmol)溶于20 mL四氫呋喃中,然后加入氫化鈉(2 mmol),65 ℃加熱回流,反應2 h后,緩慢滴加TEPIC(2 mmol),反應6 h后,旋轉蒸發(fā)去除溶劑,得到黃色油狀產物ACAC-Si。
1.2.3 合成ACAC功能化的POSS(POSS-ACAC)
將POSS-OH與ACAC-Si加入三氯甲烷(25 mL)與四氫呋喃(5 mL)的混合溶劑中,60 ℃加熱攪拌4 h,旋轉蒸發(fā)后得到黃色黏稠油狀產物POSS-ACAC。
1.2.4 合成含Tb3+的POSS基雜化材料Tb(POSS-ACAC)3
將上述制備的POSS-ACAC溶于無水乙醇中,再滴加0.1 mol/L氯化鋱的乙醇溶液(3.3 mL),70 ℃加熱回流,旋轉蒸發(fā)除去溶劑,得到產物為白色粉末,70 ℃干燥。
1.3 表 征
采用SPECTRUM 100 Perkin Elmer型紅外光譜儀,通過溴化鉀壓片在4 000~400 cm-1測量紅外光譜;采用Lambda 750型紫外-可見光光譜儀,以乙醇作溶劑測量紫外光譜;采用Pyris1型熱重-差熱分析儀,在初始質量3~8 mg,升溫速率10 ℃/min,氮氣氛圍下測量熱失重圖譜;采用RF-5301型分光光度計,以氙燈作為發(fā)射光源(波長分辨率為0.5 nm)進行熒光激發(fā)和發(fā)射光譜的測量。
2 結果與討論
2.1 紅外光譜
圖1為ACAC,ACAC-Si,POSS-ACAC和POSS-OH的紅外光譜。從ACAC的圖譜中可以觀察到,位于1 620 cm-1處的吸收峰歸屬于β-二酮結構中的CO的伸縮振動。在ACAC-Si和POSS-ACAC的圖譜中出現(xiàn)了同樣位置的對應吸收峰,說明ACAC與POSS成功進行了嫁接[14-15]。此外,從POSS-ACAC的圖譜中可以觀察到,由SiO伸縮振動引起的1 100 cm-1左右處的吸收峰,以及位于1 643 cm-1和1 554 cm-1處的由CO伸縮振動引起的吸收峰,同樣證實了POSS與ACAC之間發(fā)生了鍵合作用。
圖1 ACAC,ACAC-Si,POSS-ACAC和POSS-OH的紅外光譜
Fig.1 FT-IR spectra of ACAC,ACAC-Si,POSS-ACAC and POSS-OH
2.2 紫外光譜
POSS-ACAC和ACAC-Si的紫外光譜如圖2所示,其中ACAC-Si的吸收光譜在200~250 nm處出現(xiàn)寬的吸收峰,且最高峰在211 nm處,這是由β-二酮的烯醇基團的π-π*躍遷所引起的[16]。對比ACAC-Si和POSS-ACAC,從它們的紫外吸收光譜圖上能夠觀察到從211到237 nm處π-π*電子躍遷的紅移現(xiàn)象。結果表明,TEPIC及POSS骨架中SiO的介入,不同程度地引起了配體結構的改變,從而證實了POSS與ACAC的成功嫁接。
圖2 ACAC-Si和POSS-ACAC的紫外光譜
Fig.2 UV-vis absorption spectra of ACAC-Si and POSS-ACAC
2.3 熱穩(wěn)定性
Tb(ACAC)3和Tb(POSS-ACAC)3的熱重分析如圖3所示。從圖3(a)中可以觀察到,Tb(ACAC)3在150 ℃開始分解,這是由小分子水和有機溶劑蒸發(fā)所引起的。從失重速率圖可以看出,其分解速率在300和480 ℃處不斷升高,這主要是由ACAC的分解所引起的[17]。從圖3(b)中可以看出,Tb(POSS-ACAC)3從200 ℃時開始分解,在280 ℃左右達到第1個分解速率頂點,隨后在350 ℃達到最高分解速率,這主要歸因于POSS的分解。與Tb(ACAC)3相比,雜化材料Tb(POSS-ACAC)3的初始分解溫度有所升高,這表明POSS骨架的引入能夠提高材料的熱穩(wěn)定性。
圖3 Tb(ACAC)3與Tb(POSS-ACAC)3的熱重曲線對比
Fig.3 Comparison of thermog ravimetric curves between Tb(ACAC)3 and Tb(POSS-ACAC)3
2.4 熒光性能
以Tb3+的最高發(fā)射波長545 nm為監(jiān)測波長,測得Tb(ACAC)3和Tb(POSS-ACAC)3的熒光激發(fā)光譜(EX)和發(fā)射光譜(EM),如圖4所示。從圖4中可以觀察到,Tb(ACAC)3和Tb(POSS-ACAC)3的激發(fā)光譜在250~450 nm處都出現(xiàn)了較寬的激發(fā)峰,且最佳激發(fā)波長分別位于328和343 nm處,這歸因于有機配體ACAC引起的π-π*躍遷,從Tb(POSS-ACAC)3的熒光發(fā)射光譜可以觀察到明顯的Tb3+的特征發(fā)射峰,其中,波長為485,545,580和620 nm的發(fā)射峰分別對應于5D4→7F6,5D4→7F5,5D4→7F4和5D4→7F3的電子躍遷[18]。結果表明,ACAC與Tb3+之間發(fā)生了有效的能量傳遞,雜化材料可以在紫外燈下發(fā)出明亮的綠光(圖5)。對比Tb(ACAC)3的熒光發(fā)射光譜發(fā)現(xiàn),Tb(POSS-ACAC)3的5D4→7F6,5D4→7F5的電子躍遷發(fā)射峰強度明顯提高。這表明,POSS-ACAC與Tb3+之間發(fā)生了更有效的能量傳遞,改善了它的熒光性能。
圖4 稀土配合物和POSS基稀土雜化材料的熒光表征
Fig.4 Fluorescence characterization of rare earth
complexes and POSS based rare
earth hybrid materials
圖5 紫外燈下的雜化材料Tb(POSS-ACAC)3照片
Fig.5 Digital photo of the hybrid material
Tb(POSS-ACAC)3 under UV-light
3 結 論
(1) 選用β-二酮類有機配體ACAC,通過化學鍵與含有活性羥基官能團的POSS進行鍵合,制備了ACAC功能化的雜化材料POSS-ACAC。通過紅外光譜和紫外光譜分析確定了POSS骨架上存在共價鍵鍵合的有機官能團ACAC。
(2) 利用配位化學原理,將Tb3+引入到POSS-ACAC骨架中,合成了雜化材料Tb(POSS-ACAC)3。對材料的結構和性能進行了表征分析,得出POSS-ACAC可以很好地敏化中心Tb3+發(fā)光,并且有效提高熒光強度。
(3) 雜化材料Tb(POSS-ACAC)3顯示了很強的Tb3+特征發(fā)射和較好的熱穩(wěn)定性。
參考文獻:
[1] 劉政,孫麗寧,施利毅,等.近紅外稀土熒光在功能材料領域的研究進展[J].化學進展,2011,23(1):153-164.
[2] 曹俊,陳連平,李翠云.稀土摻雜鋁酸鍶長余輝薄膜制備方法的研究現(xiàn)狀[J].有色金屬材料與工程,2016,37(4):171-175.
[3] SUN L N,ZHANG Y,YU J B,et al.Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris(8-hydroxyquinolinate) lanthanide(Ⅲ) complexes[J].Microporous and Mesoporous Materials,2008,115(3):535-540.
[4] FENG J,YU J B,SONG S Y,et al.Near-infrared luminescent xerogel materials covalently bonded with ternary lanthanide[Er(Ⅲ),Nd(Ⅲ),Yb(Ⅲ),Sm(Ⅲ)]complexes[J].Dalton Transactions,2009(13):2406-2414.
[5] BINNEMANS K,LENAERTS P,DRIESENA K,et al.A luminescent tris(2-thenoyltrifluoroacetonato) europium(Ⅲ) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass[J].Journal of Materials Chemistry,2004,14(2):191-195.
[6] MISHRA S,JEANNEAU E,LEDOUXC G,et al.Lanthanide complexes in hybrid halometallate materials:interconversion between a novel 2D microporous framework and a 1D zigzag chain structure of iodoargentates templated by octakis-solvated terbium(Ⅲ) cation[J].Dalton Transactions,2009(25):4954-4961.
[7] 劉舒曼,徐征,劉峰奇,等.稀土摻雜ZnS納米晶中稀土離子與納米基質之間的能量傳遞[J].中國稀土學報,2001,19(6):565-569.
[8] WANG J Y,GROENEVELD A,OIKONOMOU M,et al.Revealing and tuning the core,structure,properties and function of polymer micelles with lanthanide-coordination complexes[J].Soft Matter,2016,12(1):99-105.
[9] CHENG M L,TAO F,CHEN L T,et al.Lanthanide(Ⅲ)-based coordination monomers and polymers of 3,4-pyrazoledicarboxylate:Extended synergy within the ligand,structures and magnetic properties[J].Inorganica Chimica Acta,2015,429:22-29.
[10] ANSARI S A,LIU L S,RAO L S.Binary lanthanide(Ⅲ)/nitrate and ternary lanthanide(Ⅲ)/nitrate/chloride complexes in an ionic liquid containing water:optical absorption and luminescence studies[J].Dalton Transactions,2015,44(6):2907-2914.
[11] LI Z Q,WANG J,CHEN M,et al.Lanthanide luminescence improvement by using a functional poly(ionic liquid) as matrix and co-ligand[J].Chemistry-An Asian Journal,2016,11(5):745-749.
[12] HE Z C,ZHONG M Q,YANG Y,et al.Synthesis of POSS-based star-shaped poly(ionic liquid)s and its application in supercritical CO2 microcellular foaming of polystyrene[J].Journal of Polymer Research,2106,23:243.
[13] JEON J H,TANAKA K,CHUJO Y,et al.Synthesis of sulfonic acid-containing POSS and its filler effects for enhancing thermal stabilities and lowering melting temperatures of ionic liquids[J].Journal of Materials Chemistry A,2014,2(3):624-630.
[14] YANG J,LI Z Q,XU Y,et al.Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium(Ⅲ) complexes bonded[J].Optical Materials,2016,55:78-82.
[15] JIMENEZ G L,REYES-RODRIGUEZ J L,PADILLA I,et al.Reducing the photo-bleaching effect of a new europium complex embedded in styrene butadiene copolymer[J].Optical Materials,2018,76:271-277.
[16] BEHZAD S K,AMINI M M,GHANBARI M,et al.Synthesis,structure,photoluminescence,and electroluminescence of four novel europium complexes:Fabrication of pure red organic light emitting diodes from europium complexes[J].European Journal of Inorganic Chemistry,2017,2017(30):3644-3654.
[17] XU H,YIN K,HUANG W.Novel light-emitting ternary Eu3+ complexes based on multifunctional bidentate aryl phosphine oxide derivatives:Tuning photophysical and electrochemical properties toward bright electroluminescence[J].The Journal of Physical Chemistry C,2010,114(3):1674-1683.
[18] HARRIS S M,SRIVASTAVA K,LEAGUE A B,et al.Achieving selectivity for copper over zinc with luminescent terbium probes bearing phenanthridine antennas[J].Dalton Transactions,2018,47(7):2202-2213.