王明夏 賈麗紅 翟玲玲 魏薇 孫琦 白英龍
[摘要] 心血管疾病是當(dāng)前威脅我國(guó)人民健康最嚴(yán)重的公共衛(wèi)生問題。動(dòng)脈粥樣硬化是其主要病理基礎(chǔ),可發(fā)生于兒童時(shí)期,肥胖兒童患病風(fēng)險(xiǎn)增高。內(nèi)質(zhì)網(wǎng)應(yīng)激是動(dòng)脈粥樣硬化發(fā)生發(fā)展的重要機(jī)制。肥胖的脂肪組織中巨噬細(xì)胞浸潤(rùn)增多,內(nèi)質(zhì)網(wǎng)應(yīng)激加劇,脂肪細(xì)胞與巨噬細(xì)胞間交互作用也加速動(dòng)脈粥樣硬化進(jìn)程,在動(dòng)脈粥樣硬化性心血管疾病的發(fā)生發(fā)展中起重要作用。本文就脂肪組織內(nèi)質(zhì)網(wǎng)應(yīng)激與肥胖兒童動(dòng)脈粥樣硬化發(fā)生發(fā)展關(guān)系的相關(guān)機(jī)制進(jìn)行綜述,旨在加深人們對(duì)肥胖加速兒童患動(dòng)脈粥樣硬化疾病的理解,提高人們預(yù)防兒童肥胖的認(rèn)識(shí),并為肥胖引發(fā)的兒童動(dòng)脈粥樣硬化的治療開拓新思路。
[關(guān)鍵詞] 兒童肥胖;脂肪組織;內(nèi)質(zhì)網(wǎng)應(yīng)激;動(dòng)脈粥樣硬化;心血管疾病
[中圖分類號(hào)] R723.14 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)11(b)-0024-04
[Abstract] Cardiovascular disease is the most serious public health problem that currently threatens the health of people in our country. Atherosclerosis is the main pathological basis and can occur in childhood, and the risk of obesity in children is increasing. Endoplasmic reticulum stress is an important mechanism for the development of atherosclerosis. Macrophage infiltration in obese adipose tissue increases, endoplasmic reticulum stress aggravates, interaction between adipocytes and macrophages accelerates atherosclerotic progression, which plays an important role in the development of atherosclerotic cardiovascular disease. For deepening people′s knowledge of obesity accelerating atherosclerosis and raising awareness of preventing childhood obesity, and exploiting new ideas for treating atherosclerosis in children with obesity, this review introduced the relationship between endoplasmic reticulum stress of adipose tissue and the development of atherosclerosis in children with obesity.
[Key words] Childhood obesity; Adipose tissue; Endoplasmic reticulum stress; Atherosclerosis; Cardiovascular disease
心血管疾病(cardiovascular diseases,CVDs)是當(dāng)前威脅我國(guó)人民健康最嚴(yán)重的公共衛(wèi)生問題。動(dòng)脈粥樣硬化(AS)是CVDs的主要病理基礎(chǔ)[1],且兒童肥胖是患CVDs的危險(xiǎn)因素[2]。據(jù)WHO最新數(shù)據(jù)顯示,全球有超過3.4億名5~19歲兒童和青少年超重或肥胖[3]。兒童期肥胖與成年期CVDs的發(fā)病率和死亡率增加有關(guān)[4],盡管CVDs事件直到成年期才會(huì)發(fā)生,但CVDs的發(fā)生始于兒童期,隨后一直處在進(jìn)展階段。此外,已有研究人員在3歲兒童冠狀動(dòng)脈中發(fā)現(xiàn)了脂紋[5]。
血脂異常是CVDs發(fā)生的傳統(tǒng)危險(xiǎn)因素之一。兒童和青少年時(shí)期肥胖的孩子發(fā)生血脂異常的情況較常見,且其成年期AS以及CVDs的發(fā)病風(fēng)險(xiǎn)也較高[6]。青春期血脂異常會(huì)增加成年期發(fā)生頸動(dòng)脈內(nèi)膜中層厚度(IMT)增厚的風(fēng)險(xiǎn)[7]。超聲波檢測(cè)IMT是臨床上診斷AS進(jìn)展的一個(gè)重要指標(biāo)[8]。兒童時(shí)期的低密度脂蛋白膽固醇(LDL-C)水平與成年期頸動(dòng)脈IMT相關(guān),暴露于高水平的LDL-C可能會(huì)導(dǎo)致成年期AS的發(fā)生與發(fā)展[9]。
1 脂肪組織中的內(nèi)質(zhì)網(wǎng)應(yīng)激在AS進(jìn)展中發(fā)揮重要作用
1.1 內(nèi)質(zhì)網(wǎng)應(yīng)激是AS發(fā)生發(fā)展的重要機(jī)制
內(nèi)質(zhì)網(wǎng)是大多數(shù)分泌蛋白和跨膜蛋白折疊和成熟的場(chǎng)所。能夠擾亂細(xì)胞能級(jí)、氧化還原狀態(tài)或Ca2+濃度,甚至蛋白質(zhì)內(nèi)的突變都可能降低內(nèi)質(zhì)網(wǎng)對(duì)蛋白質(zhì)的折疊能力并且阻礙其在內(nèi)質(zhì)網(wǎng)內(nèi)的進(jìn)一步加工或轉(zhuǎn)運(yùn)。當(dāng)內(nèi)質(zhì)網(wǎng)的折疊能力不能適應(yīng)未折疊蛋白質(zhì)的負(fù)載時(shí),內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)受到破壞,這被稱為內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERs)[10]。
ERs在AS進(jìn)展中具有重要作用。在人類[11]和動(dòng)物[12]的AS病變細(xì)胞中,尤其是在巨噬細(xì)胞和內(nèi)皮細(xì)胞中都可觀察到一些ERs和未折疊蛋白反應(yīng)(unfolded protein reaction,UPR)的標(biāo)志物,如葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein,GRP78)、磷酸化雙鏈RNA激活的蛋白激酶樣內(nèi)質(zhì)網(wǎng)激酶(double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase,PERK)和C/EBP同源蛋白(C/EBP homologous protein,CHOP)等。值得注意的是,只有當(dāng)人類血液?jiǎn)魏思?xì)胞分化為巨噬細(xì)胞后,斑塊中才會(huì)出現(xiàn)UPR標(biāo)志物[13]。持續(xù)過度的ERs通過需求肌醇激酶1(inositol-requiring kinase 1α,IRE-1α)和CHOP可誘導(dǎo)巨噬細(xì)胞凋亡和晚期AS斑塊壞死,并在AS的發(fā)展惡化過程中發(fā)揮關(guān)鍵作用[14]。一些與AS相關(guān)的ERs誘導(dǎo)物,包括氧化應(yīng)激、飽和脂肪酸、氧化磷脂等均可促進(jìn)巨噬細(xì)胞的凋亡[15],尤其在肥胖、胰島素抵抗和糖尿病等疾病的發(fā)展中被加劇[16]。
1.2 肥胖的脂肪組織中巨噬細(xì)胞ERs導(dǎo)致AS
除脂質(zhì)紊亂以外,巨噬細(xì)胞積聚和炎性細(xì)胞因子表達(dá)增加也是AS病理過程的重要組成部分[17]。脂肪組織不僅包含脂肪細(xì)胞,還包含許多其他類型的細(xì)胞,如前脂肪細(xì)胞、巨噬細(xì)胞和血管基質(zhì)細(xì)胞。脂肪組織巨噬細(xì)胞的數(shù)量與人類肥胖程度成正比,巨噬細(xì)胞在正常個(gè)體的脂肪組織中所占比例不足10%,而在肥胖人和小鼠的脂肪組織中可達(dá)40%~50%[18]。
此外,肥胖時(shí)脂肪組織內(nèi)的免疫細(xì)胞群體不僅數(shù)量增多,而且炎癥表型也發(fā)生了變化。肥胖時(shí)脂肪組織中各種T-淋巴細(xì)胞的浸潤(rùn)性增強(qiáng),并且浸潤(rùn)到脂肪組織中的巨噬細(xì)胞數(shù)量也增加,致使一些炎性細(xì)胞因子如白細(xì)胞介素-6(IL-6)和腫瘤壞死因子(TNF)大量釋放[19-20]。依據(jù)表型特點(diǎn),巨噬細(xì)胞通常被分為ATM1和ATM2兩種類型。ATM1產(chǎn)生大量的炎性細(xì)胞因子,如TNF-α、IL-1β和IL-6等,均可以引起脂肪組織發(fā)生胰島素抵抗;而ATM2則通過產(chǎn)生抗炎細(xì)胞因子來增強(qiáng)局部組織的胰島素敏感性[21]。巨噬細(xì)胞浸潤(rùn)能夠加劇脂肪組織內(nèi)炎性標(biāo)志物的表達(dá)[22]。飲食誘導(dǎo)的肥胖可引起巨噬細(xì)胞表型轉(zhuǎn)變。高脂飲食誘導(dǎo)肥胖大鼠的白色脂肪組織炎癥具有部位特異性,同時(shí)伴有ATM2表達(dá)減少[23]。AS患者的ATM1/ATM2值增高,血清中M1相關(guān)的趨化因子水平也升高。推測(cè)ATM1/ATM2比值的變化可能是導(dǎo)致AS發(fā)生發(fā)展的重要原因[24]。
巨噬細(xì)胞內(nèi)發(fā)生ERs導(dǎo)致AS。巨噬細(xì)胞源性泡沫細(xì)胞位于血管壁內(nèi)皮下,是AS病理改變的重要標(biāo)志[25]。氧化型低密度脂蛋白(ox-LDL)可誘導(dǎo)巨噬細(xì)胞在形成泡沫細(xì)胞過程中發(fā)生ERs,主要是通過PERK上調(diào)CHOP的表達(dá),進(jìn)而加快巨噬細(xì)胞凋亡,最終促進(jìn)AS斑塊壞死[26],人群調(diào)查也證實(shí)肥胖兒童的血脂異常,其血中ox-LDL的含量顯著高于正常體重同伴[27]。
巨噬細(xì)胞作為崗哨細(xì)胞,可通過各種表面受體和分泌的分子來監(jiān)測(cè)和響應(yīng)局部微環(huán)境信號(hào)[28]。脂肪組織是最大的內(nèi)分泌器官,可分泌多種具有生物活性的脂肪因子,如TNF-α、單核細(xì)胞趨化蛋白1、脂聯(lián)素和抵抗素都能在外周和內(nèi)臟脂肪細(xì)胞中產(chǎn)生和分泌[29]。機(jī)體發(fā)生肥胖后,脂肪因子的表達(dá)和分泌被修飾,會(huì)導(dǎo)致脂肪細(xì)胞的分泌特征向致炎譜偏移。高脂飲食誘導(dǎo)肥胖動(dòng)物內(nèi)臟脂肪組織來源的外泌體可促進(jìn)巨噬細(xì)胞源性泡沫細(xì)胞生成,并通過調(diào)節(jié)巨噬細(xì)胞極性轉(zhuǎn)變來發(fā)揮致AS作用[30]。
1.3 脂肪細(xì)胞與巨噬細(xì)胞間交互作用加速ERs以及AS進(jìn)程
脂肪因子和趨化因子是脂肪細(xì)胞和巨噬細(xì)胞的交互作用中的關(guān)鍵角色,在調(diào)節(jié)脂肪組織炎癥中起到重要作用。由脂肪細(xì)胞和巨噬細(xì)胞組成的體外共培養(yǎng)系統(tǒng)是研究這兩種細(xì)胞間發(fā)生交互作用分子機(jī)制的良好模型。來源于巨噬細(xì)胞的TNF-α是脂肪細(xì)胞中的主要炎癥介質(zhì),而來源于脂肪細(xì)胞的游離脂肪酸(free fatty acids,F(xiàn)FA)可能是巨噬細(xì)胞中的主要炎癥介質(zhì)。因此,推測(cè)在脂肪細(xì)胞和巨噬細(xì)胞之間存在旁分泌環(huán),TNF-α和FFA構(gòu)成了一個(gè)惡性循環(huán),進(jìn)而加重脂肪組織的炎性反應(yīng)[31]。
為了解肥胖脂肪組織內(nèi)脂肪細(xì)胞與巨噬細(xì)胞浸潤(rùn)間相互作用的分子基礎(chǔ),Yanaka團(tuán)隊(duì)在體內(nèi)和3T3-L1脂肪細(xì)胞與RAW264.7巨噬細(xì)胞共培養(yǎng)的體外體系中篩選了脂肪細(xì)胞基因,Ras相關(guān)結(jié)構(gòu)域家族6(Ras association domain family 6,RASSF6)被鑒定出來,在肥胖小鼠體內(nèi)脂肪細(xì)胞中和體外與活化的巨噬細(xì)胞共培養(yǎng)的脂肪細(xì)胞中RASSF6 mRNA的表達(dá)均減少,提示脂肪細(xì)胞與巨噬細(xì)胞交互作用可影響RASSF6的細(xì)胞功能。肥胖脂肪組織中RASSF6表達(dá)的顯著下降可能參與控制了脂肪細(xì)胞分化狀態(tài)和/或數(shù)量[32]。此外,脂肪細(xì)胞通過與活化巨噬細(xì)胞的相互作用可上調(diào)IKK-ε的表達(dá)[33]。IKK-ε是IKK(inhibitor of nuclear factor kappa-B kinase,IκB激酶)家族中的新成員,IKKε主要介導(dǎo)核轉(zhuǎn)錄因子κB(nuclear factor-kappa B,NF-κB)途徑,可顯著刺激NF-κB活性,超活化NF-κB途徑加速ERs,并且還可能通過調(diào)節(jié)血管中一氧化氮和超氧化物的釋放來影響血管內(nèi)皮功能[29,34]。
2 脂肪組織ERs可作為治療AS的關(guān)鍵靶點(diǎn)
內(nèi)臟脂肪組織分泌的絲氨酸蛋白酶抑制劑(vaspin)是研究的焦點(diǎn)之一。它是一種具有潛在的胰島素致敏性的脂肪因子[35]。肥胖和T2D患者的血清中vaspin濃度升高[36-37]。最初,人們借助免疫沉淀實(shí)驗(yàn),在發(fā)生ERs的內(nèi)皮細(xì)胞表面看到vaspin與GRP78形成電壓依賴性陰離子通道復(fù)合物,其具有抑制內(nèi)皮細(xì)胞凋亡、保護(hù)糖尿病患者血管損傷的作用[38]。其后,發(fā)現(xiàn)vaspin可以明顯抑制體外培養(yǎng)巨噬細(xì)胞的ATF6、CHOP和JNK1/2的表達(dá),并且可以顯著減少vaspin轉(zhuǎn)染apoE-/-小鼠的AS斑塊中CHOP的表達(dá)和壞死面積,表明vaspin可以通過抑制ERs誘導(dǎo)的巨噬細(xì)胞凋亡來緩解AS的進(jìn)展[39]。
3 結(jié)論與展望
綜上所述,鑒于目前兒童肥胖在全球范圍流行以及隨之帶來的代謝紊亂風(fēng)險(xiǎn)增加,人們正面臨著新的挑戰(zhàn)。在過去的幾十年中,人們已經(jīng)認(rèn)識(shí)到脂肪組織中的ERs在AS的發(fā)生和惡化中被加劇。作為最大的內(nèi)分泌器官,脂肪組織將成為治療肥胖相關(guān)代謝性疾病的關(guān)鍵靶點(diǎn)?;蚬こ虅?dòng)物模型和體外脂肪細(xì)胞-巨噬細(xì)胞共培養(yǎng)體系已經(jīng)證明了脂肪細(xì)胞與巨噬細(xì)胞之間的相互作用,人們還需深入探索ERs在AS的病理生理進(jìn)展中的作用機(jī)制。此外,脂肪組織內(nèi)的其他細(xì)胞如前體脂肪細(xì)胞和血管基質(zhì)細(xì)胞也可以分泌大量的信號(hào)分子和與炎性細(xì)胞因子。為了有效地治療肥胖引發(fā)的兒童AS,未來需投入更多的精力來研究減輕脂肪組織中ERs的方法和有效藥物。
[參考文獻(xiàn)]
[1] Clarke R,Du H,Kurmi O,et al. Burden of carotid artery atherosclerosis in Chinese adults:Implications for future risk of cardiovascular diseases [J]. Eur J Prev Cardiol,2017, 24(6):647-656.
[2] Mendizabal B,Urbina EM. Subclinical atherosclerosis in youth:relation to obesity,insulin resistance,and polycystic ovary syndrome [J]. J Pediatr,2017,190:14-20.
[3] WHO. Obesity[EB/OL].(2017-10)[2018-5-30]. http://www.who.int/topics/obesity/en/.
[4] Yan Y,Hou D,Liu J,et al. Effect of childhood adiposity on long-term risks of carotid atherosclerosis and arterial stiffness in adulthood [J]. Zhonghua Yu Fang Yi Xue Za Zhi,2016,50(1):28-33.
[5] Olson M,Chambers M,Shaibi G. Pediatric markers of adult cardiovasculardisease [J]. Curr Pediatr Rev,2017,13(4):255-259.
[6] Nuotio J,Pitkanen N,Magnussen CG,et al. Prediction of adult dyslipidemia using genetic and childhood clinical risk factors:the cardiovascular risk in young finns study [J]. Circ Cardiovasc Genet,2017,10(3):pii:e001604.
[7] Unal E,Akin A,Yildirim R,et al. Association of subclinical hypothyroidism with dyslipidemia and increased carotid intima-media thickness in children [J]. J Clin Res Pediatr Endocrinol,2017,9(2):144-149.
[8] Wendell CR,Waldstein SR,Evans MK,et al. Distributions of subclinical cardiovascular disease in a socioeconomically and racially diverse sample [J]. Stroke,2017,48(4):850-856.
[9] Li S,Chen W,Srinivasan SR,et al. Childhood cardiovascular risk factorsand carotid vascular changes in adulthood:the bogalusa heart study [J]. JAMA,2003,290(17):2271-2276.
[10] Choy KW,Murugan D,Mustafa MR. Natural products targeting ER stresspathway for the treatment of cardiovascular diseases [J]. Pharmacol Res,2018,132:119-129.
[11] Saksi J,Ijas P,Mayranpaa MI,et al. Low-expression variant of fatty acid-binding protein 4 favors reduced manifestations of atherosclerotic disease and increased plaque stability [J]. Circ Cardiovasc Genet,2014,7(5):588-598.
[12] Rabar S,Harker M,O′Flynn N,et al. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease:summary of updated NICE guidance [J]. BMJ,2014,349:g4356.
[13] Dickhout JG,Lhotak S,Hilditch BA,et al. Induction of the unfolded protein response after monocyte to macrophage differentiation augments cell survival in early atherosclerotic lesions [J]. FASEB J,2011,25(2):576-589.
[14] Go AS,Mozaffarian D,Roger VL,et al. Executive summary:heart disease and stroke statistics--2013 update:a report from the American Heart Association[J]. Circulation,2013,127(1):143-152.
[15] Kang PP,Yao ST,Guo TT,et al. Activating transcription factor 6-C/EBP homologous protein pathway mediates advanced glycated albumin-induced macrophage apoptosis [J]. Sheng Li Xue Bao,2017,69(6):767-774.
[16] Sun J,Cui J,He Q,et al. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes [J]. Mol Aspects Med,2015,42:105-118.
[17] Wakana N,Irie D,Kikai M,et al. Maternal high-fat diet exaggerates atherosclerosis in adult offspring by augmenting periaortic adipose tissue-specific proinflammatory response [J]. Arterioscler Thromb Vasc Biol,2015,35(3):558-569.
[18] Weisberg SP,McCann D,Desai M,et al. Obesity is associated with macrophage accumulation in adipose tissue [J]. J Clin Invest,2003,112(12):1796-1808.
[19] Wensveen FM,Valentic S,Sestan M,et al. The "Big Bang" in obese fat:Events initiating obesity-induced adipose tissue inflammation [J]. Eur J Immunol,2015,45(9):2446-2456.
[20] Liu Y,Chen Y,Zhang J,et al. Retinoic acid receptor-related orphan receptor alpha stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress [J]. J Biol Chem,2017,292(34):13 959-13 969.
[21] Chylikova J,Dvorackova J,Tauber Z,et al. M1/M2 macr-ophage polarization in human obese adipose tissue [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2018.
[22] Suzuki T,Gao J,Ishigaki Y,et al. ER stress protein CHOP mediates insulin resistance by modulating adipose tissue macrophage polarity [J]. Cell Rep,2017,18(8):2045-2057.
[23] Wang N,Guo J,Liu F,et al. Depot-specific inflammation with decreased expression of ATM2 in white adipose tissues induced by high-margarine/lard intake [J]. PLoS One,2017,12(11):e0188007.
[24] Williams H,Cassorla G,Pertsoulis N,et al. Human classical monocytes display unbalanced M1/M2 phenotype with increased atherosclerotic risk and presence of disease [J]. Int Angiol,2017,36(2):145-155.
[25] Shirai T,Hilhorst M,Harrison DG,et al. Macrophages in vascular inflammation--From atherosclerosis to vasculitis [J]. Autoimmunity,2015,48(3):139-151.
[26] Seimon TA,Nadolski MJ,Liao X,et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress [J]. Cell Metab,2010,12(5):467-482.
[27] Santanam N,Elitsur Y,Stanek R,et al. Association between retinol binding protein 4 with atherosclerotic markers in obese children [J]. Minerva Endocrinol,2016,41(3):291-297.
[28] Dutta P,Nahrendorf M. Regulation and consequences of monocytosis [J]. Immunol Rev,2014,262(1):167-178.
[29] Engin A. The Pathogenesis of Obesity-Associated adipose tissue inflammation [J]. Adv Exp Med Biol,2017,960:221-245.
[30] Xie Z,Wang X,Liu X,et al. Adipose-Derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization [J]. J Am Heart Assoc,2018,7(5):e007442.
[31] Engin AB. Adipocyte-Macrophage Cross-Talk in Obesity [J]. Adv Exp Med Biol,2017,960:327-343.
[32] Sanada Y,Kumoto T,Suehiro H,et al. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages [J]. PLoS One,2013,8(4):e61931.
[33] Sanada Y,Kumoto T,Suehiro H,et al. IkappaB kinase epsilon expression in adipocytes is upregulated by interaction with macrophages [J]. Biosci Biotechnol Biochem,2014,78(8):1357-1362.
[34] Chen J, Zhang M,Zhu M,et al. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1alpha/NF-kappaB signalingpathway [J]. Food Funct,2018,9(4):2386-2397.
[35] Hida K,Wada J,Eguchi J,et al. Visceral adipose tissue-derived serine protease inhibitor:a unique insulin-sensitizing adipocytokine in obesity [J]. Proc Natl Acad Sci USA,2005,102(30):10 610-10 615.
[36] Chang HM,Lee HJ,Park HS,et al. Effects of weight reduction on serum vaspin concentrations in obese subjects:modification by insulin resistance [J]. Obesity (Silver Spring),2010,18(11):2105-2110.
[37] Hida K,Poulsen P,Teshigawara S,et al. Impact of circulating vaspin levels on metabolic variables in elderly twins [J]. Diabetologia,2012,55(2):530-532.
[38] Nakatsuka A,Wada J,Iseda I,et al. Visceral adipose tissue-derived serine proteinase inhibitor inhibits apoptosis of endothelial cells as a ligand for the cell-surface GRP78/voltage-dependent anion channel complex [J]. Circ Res,2013,112(5):771-780.
[39] Lin Y,Zhuang J,Li H,et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE/ mice [J]. Mol Med Rep,2016,13(2):1509-1516.
(收稿日期:2018-06-08 本文編輯:任 念)