• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      帶有Hatree和對數(shù)非線性項(xiàng)的Schrodinger方程非平凡解的存在性

      2019-01-14 02:46:56郝劍偉黃永艷
      河北科技大學(xué)學(xué)報 2019年6期
      關(guān)鍵詞:變分山路對數(shù)

      郝劍偉 黃永艷

      摘 要:為了深入闡述變號勢對對數(shù)非線性項(xiàng)和Hatree非線性項(xiàng)造成的影響,利用Ekeland變分方法,將方程轉(zhuǎn)化為求能量泛函的臨界點(diǎn),然后利用Hatree非線性項(xiàng)的性質(zhì)和對對數(shù)非線性項(xiàng)的技巧性處理,證明了帶變號勢,對數(shù)非線性項(xiàng)和Hatree非線性項(xiàng)的Schrodinger問題的能量泛函滿足山路型結(jié)構(gòu),利用序列的有界性得到了(PS)條件。結(jié)果表明,結(jié)合山路結(jié)構(gòu),能夠獲得問題非平凡解的存在性。研究方法在理論證明得到了良好的預(yù)期結(jié)果,對研究帶有雙變號勢的對數(shù)非線性項(xiàng)的Schrodinger方程解的存在性具有一定的借鑒意義。

      關(guān)鍵詞:非線性泛函分析;Schrodinger方程;變號的勢函數(shù);對數(shù)不等式;變分方法;非平凡解

      中圖分類號:O175 ? 文獻(xiàn)標(biāo)志碼:A ? doi:10.7535/hbkd.2019yx06001

      Abstract:In order to expound the influence of sign-changing potential on logarithmic nonlinearity and Hatree nonlinearity. By the variational method, a weak solution to the problem is a critical point of the energy functional. Then, by the logarithmic inequality, the energy functional of Schrodinger problem satisfies the mountain geometry and (PS) condition. The existence of nontrivial solutions is obtained by mountain pass theorem. The research method has good expected results in theoretical proof and laid a good foundation for the study of Schrodinger problem with logarithmic nonlinearity with double sign-changing potential.

      Keywords:nonlinear functional analysis; Schrodinger equation; sign-changing potential; logarithmic inequality; variational method; nontrivial solution

      參考文獻(xiàn)/References:

      [1] ELLIOTT H L. Existence and uniqueness of the minimizing solution of choquard\"s nonlinear equation [J]. Studies in Applied Mathematics, 1977, 57(2):93-105.

      [2] LIONS P L. The Choquard equation and related questions [J]. Nonlinear analysis:Theory,Methods & Applications, 1980, 4(6):1063-1072.

      [3] MOROZ V, SCHAFTINGEN J V. Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asympto-tics[J]. Journal of Functional Analysis, 2013, 265(2):153-184.

      [4] GAO Fashun, YANG Minbo. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents[J]. Journal of Mathematical Analysis and Applications, 2017, 448(2):1006-1041.

      [5] DAVID R, SCHAFTINGEN J V. Odd symmetry of least energy nodal solutions for the Choquard equation [J]. Journal of Differential Equations, 2016:S0022039617305193.

      [6] LI Guidong, LI Yongyong, TANG Chunlei, et al. Existence and concentrate behavior of ground state solutions for critical Choquard equation [J]. Applied Mathematics Letters,2019,81:96.

      [7] MOROZ V, SCHAFTINGEN J V. A guide to the Choquard equation [J]. Journal of Fixed Point Theory and Applications, 2017,19(1):773-813.

      [8] TIAN Shuying. Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity [J]. Journal of Mathematical Analysis & Applications, 2017,454(2):816-828.

      [9] SQUASSINA M, SZULKIN A. Multiple solutions to logarithmic Schrodinger equations with periodic potential [J]. Calculus of Variations and Partial Differential Equations, 2015, 54(1):585-597.

      [10] KAZUNAGA T, ZHANG Chengxiang. Multi-bump solutions for logarithmic Schrodinger equations [J]. Calculus of Variations and Partial Differential Equations, 2017, 2(2):33-56.

      [11] ARDILA A H, SQUASSINA M. Gausson dynamics for logarithmic Schrodinger equations [J]. Asymptotic Analysis, 2017, 107(3/4):203-226.

      [12] JI Chao, SZULKIN A. A logarithmic Schrodinger equation with asymptotic conditions on the potential[J]. Journal of Mathematical Analysis and Applcations,2016, 437(1): 241-254.

      [13] CARRILLO J A, NI Lei. Sharp logarithmic Sobolev inequalities on gradient solitons and applications [J]. Communications in Analysis & Geometry, 2009, 17(4):721-753.

      [14] JIA Wenyan, WANG Zuji. Multiple solution of p-Laplacian equation with the logarithmic nnlinearity[J]. Journal of North University of China, 2019,40(1):26-33.

      [15] ZHAO Li, HUANG Yongyan. The existence of the solution for Kirchhoff problem with sign-changing potential and logarithmic nonlinearity [J]. Journal of Shaanxi University of Science, 2019, 37(3):176-184.

      [16] WANG Jun, TIAN Lixin, XU Junxiang, et al. Erratum to: Existence and concentration of positive solutions for semilinear Schrodinger-Poisson systems in R3[J]. Calculus of Variations and Partial Differential Equations, 2013, 48(1/2):275-276.

      [17] LI Yuhua, LI Fuyi, SHI Junping. Existence and multiplicity of positive solutions to Schrodinger-Poisson type systems with critical nonlocal term [J]. Calculus of Variations & Partial Differential Equations, 2017,56(5):134-151.

      [18] WANG Zhengping, ZHOU Huansong. Sign-changing solutions for the nonlinear Schrodinger-Poisson system in R3[J]. Calculus of Variations & Partial Differential Equations, 2015, 52:927-943.

      [19] LIU Hongliang, LIU Zhisu, XIAO Qizhen. Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity[J]. Applied Mathematics Letters, 2017,79:176-181.

      [20] WILLEM M. Minimax theorems[J]. Progress in Nonlinear Differential Equations & Their Applications, 1996, 50(1):139-141.

      猜你喜歡
      變分山路對數(shù)
      危險的山路
      含有對數(shù)非線性項(xiàng)Kirchhoff方程多解的存在性
      指數(shù)與對數(shù)
      漫漫離山路
      指數(shù)與對數(shù)
      逆擬變分不等式問題的相關(guān)研究
      求解變分不等式的一種雙投影算法
      山路彎彎
      對數(shù)簡史
      關(guān)于一個約束變分問題的注記
      南昌县| 天门市| 湖北省| 含山县| 湘阴县| 沾化县| 清镇市| 固始县| 枞阳县| 武城县| 平顶山市| 龙门县| 石门县| 淄博市| 碌曲县| 隆德县| 佛山市| 揭东县| 互助| 东安县| 宜丰县| 郴州市| 五家渠市| 霍城县| 枞阳县| 云浮市| 巴马| 墨竹工卡县| 抚州市| 通城县| 庆阳市| 绍兴市| 白水县| 大庆市| 韶关市| 蚌埠市| 永修县| 连州市| 吉木萨尔县| 隆尧县| 呼图壁县|