• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      高中生物理科學(xué)論證能力表現(xiàn)
      ——基于Rasch模型的測(cè)試評(píng)價(jià)

      2019-01-29 08:34:56張軍朋張玉發(fā)
      物理教師 2019年1期
      關(guān)鍵詞:科學(xué)論證測(cè)試工具均值

      鄭 穎 張軍朋 張玉發(fā)

      (1. 華南師范大學(xué)物理與電信工程學(xué)院,廣東 廣州 510006; 2. 廣東省新興縣惠能中學(xué),廣東 云浮 527400)

      21世紀(jì)以來的科學(xué)教育研究特別重視科學(xué)論證,認(rèn)為科學(xué)論證是詮釋科學(xué)思維的關(guān)鍵要素,指向科學(xué)學(xué)習(xí)的科學(xué)論證可以幫助學(xué)生發(fā)展科學(xué)探究能力、建構(gòu)科學(xué)知識(shí)并促進(jìn)科學(xué)概念轉(zhuǎn)變和理解、提升科學(xué)認(rèn)識(shí)論水平、提升推理能力、批判思維能力和交流能力[1].在這樣的大背景下,我國(guó)新修訂的《普通高中物理課程標(biāo)準(zhǔn)》將科學(xué)論證納入了學(xué)科體系,使之成為物理學(xué)科核心素養(yǎng)中科學(xué)思維的一個(gè)重要構(gòu)成要素;標(biāo)準(zhǔn)認(rèn)為科學(xué)論證是物理課程中的重要內(nèi)容和學(xué)習(xí)方式,也是物理教學(xué)中的重要教學(xué)目標(biāo),要求學(xué)生具備科學(xué)論證的意識(shí)和能力[2].因而,基于物理學(xué)科背景,對(duì)學(xué)生科學(xué)論證能力發(fā)展?fàn)顟B(tài)的精準(zhǔn)評(píng)價(jià)與診斷就顯得尤為重要.本研究基于Rasch模型開發(fā)測(cè)試工具、檢驗(yàn)測(cè)試工具的質(zhì)量,嘗試?yán)霉ぞ邷y(cè)量樣本學(xué)生的“物理科學(xué)論證能力”,并分析其發(fā)展特征.

      1 物理科學(xué)論證能力的內(nèi)涵及其水平構(gòu)建

      本研究在概述能力與科學(xué)論證的內(nèi)涵和研究基礎(chǔ)上,提出了物理科學(xué)論證能力的定義,即物理科學(xué)論證能力是指學(xué)生能基于對(duì)物理問題情境的描述和分析,依據(jù)現(xiàn)有證據(jù),進(jìn)行合理推理,支持正確觀點(diǎn)或反駁相異觀點(diǎn)所必須的、穩(wěn)定的心理特征.其中,觀點(diǎn)是指基于對(duì)物理問題情境的描述與分析而做出的判斷;證據(jù)是指支持觀點(diǎn)的物理知識(shí),包括物理模型與規(guī)律等;推理過程是指聯(lián)系觀點(diǎn)和證據(jù)的因果關(guān)系鏈,包括演繹推理和歸納推理等;反駁是指運(yùn)用物理知識(shí)對(duì)相異觀點(diǎn)以及支持該觀點(diǎn)的證據(jù)或推理過程的質(zhì)疑和批判,其過程本身也是在論證[3].

      對(duì)于學(xué)生物理科學(xué)論證能力的表現(xiàn)評(píng)價(jià)則是借鑒了SOLO分類理論的思想[4],從學(xué)習(xí)行為變化結(jié)果上考查學(xué)生的物理科學(xué)論證能力,即從觀點(diǎn)、證據(jù)、推理過程、反駁4個(gè)方面將學(xué)生的行為結(jié)果分為5個(gè)不同的水平來評(píng)價(jià)學(xué)生的表現(xiàn),并將其作為后續(xù)測(cè)試工具編制、評(píng)分標(biāo)準(zhǔn)制定、數(shù)據(jù)分析與討論的理論框架和重要依據(jù).劃分的水平如表1所示.

      表1 物理科學(xué)論證能力水平劃分[3]

      需要說明的是,由于本研究主要是基于物理問題情境對(duì)學(xué)生的物理科學(xué)論證能力進(jìn)行測(cè)評(píng),且測(cè)評(píng)的知識(shí)載體并不涉及物理課程之外的知識(shí),故試題的編制沒有涉及水平5這一層級(jí)的考查,對(duì)學(xué)生的作答情況只根據(jù)前4個(gè)水平進(jìn)行處理.

      2 物理科學(xué)論證能力表現(xiàn)測(cè)試工具的開發(fā)

      物理科學(xué)論證能力作為一種內(nèi)隱的心理特質(zhì),需要通過外顯的行為來進(jìn)行診斷和評(píng)估,即可以基于對(duì)學(xué)生解決物理問題時(shí)的外在表現(xiàn)的描述和分析,進(jìn)而對(duì)學(xué)生的科學(xué)論證能力水平作出合理推斷.本研究采用書面測(cè)試題的方式來開發(fā)測(cè)試工具,進(jìn)行物理科學(xué)論證能力表現(xiàn)評(píng)價(jià).

      2.1 測(cè)試工具的開發(fā)過程

      測(cè)試工具開發(fā)的科學(xué)有效性就直接關(guān)系到測(cè)試結(jié)果的可靠性,因此,必須以嚴(yán)格的命題程序來保證測(cè)試題的質(zhì)量以及評(píng)價(jià)的效度.本研究的測(cè)試工具開發(fā)過程主要包括以下環(huán)節(jié):綜合核心知識(shí)和物理科學(xué)論證能力表現(xiàn)規(guī)劃命題雙向細(xì)目表;基于雙向細(xì)目表選擇情境素材以命制試題,試題類型采用開放性試題;基于物理科學(xué)論證能力水平制訂評(píng)分標(biāo)準(zhǔn),采用等級(jí)評(píng)分;邀請(qǐng)物理教學(xué)專家和參加省培的物理骨干教師對(duì)編制的試題提出修改意見,同時(shí)請(qǐng)部分學(xué)生試做并提出相應(yīng)意見,根據(jù)專家和師生意見對(duì)試題進(jìn)行初步修改;編碼試題并組卷,然后進(jìn)行試測(cè);運(yùn)用Winsteps軟件對(duì)測(cè)試結(jié)果進(jìn)行分析,即基于Rasch模型對(duì)測(cè)試工具的信度、試題與模型匹配度(MNSQ)等相關(guān)質(zhì)量指標(biāo)進(jìn)行考察,對(duì)不符合要求的試題進(jìn)行修訂,然后再次進(jìn)行試測(cè),直到整個(gè)測(cè)試工具滿足Rasch模型的參數(shù)要求.

      2.2 測(cè)試工具的質(zhì)量評(píng)估

      為了檢驗(yàn)并優(yōu)化測(cè)試工具的質(zhì)量,本研究共進(jìn)行了兩輪試測(cè),測(cè)試時(shí)間均為40分鐘.第一輪試測(cè)的被試學(xué)生為南寧市某高中高二兩個(gè)班級(jí)共110人,回收的有效測(cè)試卷為106份,有效率為96.3%.用Winsteps軟件對(duì)第一輪試測(cè)結(jié)果進(jìn)行分析,結(jié)果表明,測(cè)試工具的總體信度為0.96,非常理想.而對(duì)應(yīng)于每道試題的信度,在Rasch模型中表現(xiàn)為各試題的MNSQ值;當(dāng)MNSQ的值在0.7到1.3之間時(shí),說明試題信度符合要求[5].本輪測(cè)試中有部分試題的MNSQ值不符合MNSQ的取值范圍,因此對(duì)這部分試題進(jìn)行改編與修訂,再進(jìn)行第二輪試測(cè).第二輪試測(cè)的被試學(xué)生為梧州市某高中高二兩個(gè)班級(jí)共112人,回收的有效測(cè)試卷為107份,有效率為95.5%.同樣運(yùn)用Winsteps軟件對(duì)測(cè)試結(jié)果進(jìn)行Rasch分析,結(jié)果表明,測(cè)試工具的總體信度為0.92,較為理想.試題MNSQ值最大值為1.20,最小值為0.77,即所有試題的MNSQ值在0.7到1.3之間,表明試題與模型的匹配度較好,測(cè)試工具可用于實(shí)測(cè)來評(píng)價(jià)學(xué)生的物理科學(xué)論證能力.

      3 物理科學(xué)論證能力表現(xiàn)的測(cè)評(píng)分析

      實(shí)測(cè)選取了云浮市某高中高二的5個(gè)班級(jí),其中2個(gè)為實(shí)驗(yàn)班,3個(gè)為普通班,共發(fā)放測(cè)試卷250份,回收的有效份數(shù)為208份,有效率為83.2%.其中男生128人,女生80人.首先,進(jìn)一步檢驗(yàn)了測(cè)試工具的質(zhì)量.運(yùn)用Winsteps軟件對(duì)樣本學(xué)生實(shí)測(cè)所獲數(shù)據(jù)進(jìn)行Rasch分析,結(jié)果表明,測(cè)試工具的總體信度為0.97,且所有試題的MNSQ值均落在0.7到1.3之間,滿足信度要求,這說明測(cè)試所獲數(shù)據(jù)能用于后續(xù)的表現(xiàn)評(píng)價(jià)分析.

      3.1 樣本學(xué)生物理科學(xué)論證能力總體表現(xiàn)水平

      運(yùn)用Rasch模型對(duì)全部測(cè)試數(shù)據(jù)進(jìn)行處理可得到個(gè)體能力值(即logit得分),也可得到樣本學(xué)生總體物理科學(xué)論證能力表現(xiàn)的懷特圖(Item-map).表2是樣本學(xué)生總體物理科學(xué)論證能力的描述性統(tǒng)計(jì)數(shù)據(jù).由表可知,樣本學(xué)生的物理科學(xué)論證能力的logit得分全距為4.65,標(biāo)準(zhǔn)差為0.71,樣本學(xué)生能力水平分布廣,差異顯著;而能力均值為-0.14,均值的標(biāo)準(zhǔn)誤為0.05,說明數(shù)據(jù)具有較高的可信度.

      表2 樣本學(xué)生總體物理科學(xué)論證能力的描述性統(tǒng)計(jì)

      基于樣本總體的懷特圖來劃分樣本學(xué)生的物理科學(xué)論證能力水平,劃定的水平分界值具體如下:當(dāng)學(xué)生的能力值小于-1.20時(shí),可認(rèn)為學(xué)生的物理科學(xué)論證能力水平位于水平1;當(dāng)學(xué)生的能力值在[-1.20,-0.24)時(shí),則位于水平2;當(dāng)學(xué)生的能力值在[-0.24,0.77)時(shí),則位于水平3;當(dāng)學(xué)生的能力值大于等于0.77時(shí),則位于水平4.總體學(xué)生在各水平上的人次百分比如圖1所示.

      圖1 樣本學(xué)生物理科學(xué)論證能力水平分布

      由圖1可知,全體樣本中有3.85%的學(xué)生處于水平1;有35.58%的學(xué)生處于水平2;有48.56%的學(xué)生處于水平3;有12.02%的學(xué)生處于水平4.總體來看,樣本學(xué)生的物理科學(xué)論證能力主要集中在水平2和水平3,總?cè)藬?shù)占到84.14%.

      3.2 不同班級(jí)學(xué)生物理科學(xué)論證能力表現(xiàn)的比較分析

      將兩個(gè)實(shí)驗(yàn)班分別編號(hào)為1班和2班,3個(gè)普通班分別編號(hào)為3班、4班和5班,然后對(duì)5個(gè)班級(jí)的學(xué)生的能力值做統(tǒng)計(jì)平均,得到學(xué)生的能力均值結(jié)果如表3所示.

      表3 不同班級(jí)學(xué)生物理科學(xué)論證能力的描述性統(tǒng)計(jì)

      由表3可以看出,在實(shí)測(cè)中,1班學(xué)生的能力均值為0.1904,整體水平處于水平3;2班學(xué)生的能力均值為0.0198,整體水平處于水平3;3班學(xué)生的能力均值為-0.3600,整體水平處于水平2;4班學(xué)生的能力均值為-0.4042,整體水平處于水平2;5班學(xué)生的能力均值為-0.1400,整體水平處于水平3.總體而言,實(shí)驗(yàn)班的能力表現(xiàn)比普通班好.另外,各班級(jí)學(xué)生的能力均值估計(jì)標(biāo)準(zhǔn)誤均小于0.20,保證了樣本學(xué)生具有較好的代表性.圖2則更直觀地顯示了各個(gè)班級(jí)學(xué)生的能力均值.

      圖2 不同班級(jí)學(xué)生物理科學(xué)論證能力均值圖

      雖然不同班級(jí)學(xué)生的能力均值有差異,但這種差異是否具有統(tǒng)計(jì)學(xué)意義,還需要對(duì)不同班級(jí)的學(xué)生能力值進(jìn)行單因素方差分析(One-Way ANOVA),檢驗(yàn)其差異性,結(jié)果如表4所示.

      表4 不同班級(jí)學(xué)生物理科學(xué)論證能力方差分析

      方差齊性檢驗(yàn)結(jié)果顯示,對(duì)于學(xué)生的能力值,Levene統(tǒng)計(jì)量的值為1.752,對(duì)應(yīng)顯著性值為0.140,大于顯著性水平0.05,說明方差齊性.而方差分析結(jié)果顯示,F值對(duì)應(yīng)的顯著性值為0.000,小于顯著性水平0.05,說明五個(gè)班中至少有一個(gè)班和其他四個(gè)班存在顯著性差異.因?yàn)楦靼嗉?jí)學(xué)生logit得分方差齊性,所以選用LSD方式對(duì)數(shù)據(jù)進(jìn)行檢驗(yàn),結(jié)果如表5所示.

      表5 不同班級(jí)學(xué)生物理科學(xué)論證能力均值多重比較統(tǒng)計(jì)

      續(xù)表

      *. 均值差的顯著性水平為 0.05.

      從多重比較結(jié)果可以看出,在能力均值上,除了2班和5班無顯著性差異外,實(shí)驗(yàn)班與普通班之間均有顯著性差異,且實(shí)驗(yàn)班之間和普通班之間均無顯著性差異.

      3.3 樣本學(xué)生物理科學(xué)論證能力表現(xiàn)與物理成績(jī)的相關(guān)性分析

      將樣本學(xué)生的能力值(即logit得分)和物理成績(jī)進(jìn)行相關(guān)性分析.物理成績(jī)數(shù)據(jù)是學(xué)生高二下學(xué)期期中考試的物理成績(jī),該階段學(xué)生已學(xué)完本研究開發(fā)的測(cè)試工具包含的所有知識(shí)載體,故將其代表學(xué)生平時(shí)的物理成績(jī)進(jìn)行分析.圖3是樣本學(xué)生的logit得分與物理成績(jī)的散點(diǎn)分布圖.

      從圖3中可以初步判定樣本學(xué)生的物理科學(xué)論證能力與物理成績(jī)之間呈線性相關(guān),可以進(jìn)行二元變量相關(guān)分析.表6為皮爾遜相關(guān)的統(tǒng)計(jì)分析結(jié)果.從表中可以看出,相關(guān)性檢驗(yàn)得出的皮爾遜相關(guān)系數(shù)為0.551,顯著性(雙側(cè))值為0.000,小于顯著性水平0.01,說明樣本學(xué)生的物理科學(xué)論證能力與物理成績(jī)存在著顯著的正相關(guān).

      圖3 樣本學(xué)生logit得分與物理成績(jī)的散點(diǎn)分布圖

      logit得分物理成績(jī) logit得分Pearson相關(guān)性10.551??顯著性(雙側(cè))0.000N208208物理成績(jī)Pearson相關(guān)性0.551??1顯著性(雙側(cè))0.000N208208??. 在0.01 水平(雙側(cè))上顯著相關(guān).

      3.4 不同性別學(xué)生物理科學(xué)論證能力表現(xiàn)的比較分析

      表7是實(shí)測(cè)中不同性別學(xué)生物理科學(xué)論證能力的描述性統(tǒng)計(jì)數(shù)據(jù).表8是實(shí)測(cè)中樣本學(xué)生物理科學(xué)論證能力性別差異的獨(dú)立樣本t檢驗(yàn)結(jié)果.

      表8 樣本學(xué)生物理科學(xué)論證能力性別差異的獨(dú)立樣本T檢驗(yàn)

      由統(tǒng)計(jì)結(jié)果可以看出,男生物理科學(xué)論證能力的能力均值為-0.1112,女生的能力均值為-0.1862,男生的能力均值比女生高0.075,說明男生的表現(xiàn)平均略好于女生.另外,方差齊性檢驗(yàn)結(jié)果顯示,對(duì)于學(xué)生的能力值,Levene統(tǒng)計(jì)量的F值等于0.407,顯著性概率(Sig.)為0.524,大于顯著性水平0.05,說明方差齊性.而均值方程的t檢驗(yàn)結(jié)果顯示,雙側(cè)顯著性概率(Sig.)為0.460,大于顯著性水平0.05,說明男生和女生的物理科學(xué)論證能力的均值無顯著性差異.

      4 測(cè)評(píng)結(jié)果討論與教學(xué)建議

      本研究對(duì)“物理科學(xué)論證能力”進(jìn)行了水平建構(gòu)、測(cè)試工具的開發(fā)及優(yōu)化、能力測(cè)驗(yàn)及數(shù)據(jù)分析.研究表明,修訂后的測(cè)試工具符合Rasch模型的相關(guān)質(zhì)量指標(biāo),具有可信性.而實(shí)測(cè)結(jié)果表明,題目情境或知識(shí)內(nèi)容的難易程度不同,對(duì)學(xué)生物理科學(xué)論證能力的鑒別結(jié)果也有所不同.總體來看,樣本學(xué)生的物理科學(xué)論證能力與物理成績(jī)存在著顯著的正相關(guān),其能力水平主要集中在水平2和水平3,只有12.02%的學(xué)生處于較高水平.雖然男生的表現(xiàn)平均略好于女生,但兩者并無顯著性差異.5個(gè)班級(jí)學(xué)生的能力均值由大到小為1班>2班>5班>3班>4班,除了2班和5班無顯著性差異外,實(shí)驗(yàn)班與普通班之間均有顯著差異,且實(shí)驗(yàn)班之間和普通班之間均無顯著性差異.樣本學(xué)生的具體表現(xiàn)有以下特征:一是學(xué)生傾向于調(diào)用生活經(jīng)驗(yàn)或已有的認(rèn)識(shí),并非基于事實(shí)證據(jù)進(jìn)行科學(xué)地論證;二是學(xué)生沒有深刻理解物理概念和規(guī)律的內(nèi)涵和外延,往往羅列相關(guān)的概念規(guī)律,但不能和問題情境相結(jié)合進(jìn)行相關(guān)論證;三是學(xué)生在進(jìn)行科學(xué)論證時(shí),容易根據(jù)部分的事實(shí)證據(jù)進(jìn)行推理,缺乏清晰連貫闡述推理過程的意識(shí),在應(yīng)用所學(xué)知識(shí)說明所得結(jié)論時(shí)不能清晰表達(dá),邏輯推理不夠嚴(yán)密.

      樣本學(xué)生在此次測(cè)試中的物理科學(xué)論證能力表現(xiàn)從一定程度上可以對(duì)課堂教學(xué)形成診斷作用,在測(cè)試結(jié)果基礎(chǔ)上,提出基于科學(xué)論證能力培養(yǎng)為主的教學(xué)建議如下.

      (1) 在物理教學(xué)中顯化科學(xué)論證,培養(yǎng)學(xué)生科學(xué)論證的意識(shí).

      在教師為學(xué)生創(chuàng)造科學(xué)論證機(jī)會(huì)之前,第一步工作是要在課堂教學(xué)中顯化科學(xué)論證,讓學(xué)生知道科學(xué)論證包含觀點(diǎn)、與觀點(diǎn)相關(guān)的證據(jù)、聯(lián)系觀點(diǎn)和證據(jù)的推理以及反駁這些基本構(gòu)成要素,并且要把這些融入教學(xué)語言,向?qū)W生展示科學(xué)論證的過程和方法,學(xué)生才可以通過模仿教師的示范過程,知道論證的形式、推理的過程以及證據(jù)的使用等,從而發(fā)展學(xué)生對(duì)科學(xué)論證的認(rèn)識(shí),增強(qiáng)學(xué)生進(jìn)行科學(xué)論證的意識(shí).

      (2) 創(chuàng)設(shè)科學(xué)論證的學(xué)習(xí)情境,讓學(xué)生經(jīng)歷科學(xué)論證的過程.

      在物理教學(xué)實(shí)踐中,創(chuàng)設(shè)讓學(xué)生參與科學(xué)論證活動(dòng)的學(xué)習(xí)情境,引導(dǎo)學(xué)生發(fā)現(xiàn)問題,通過科學(xué)論證解決問題,經(jīng)歷概念、規(guī)律的學(xué)習(xí)理解過程,可以促進(jìn)學(xué)生科學(xué)論證能力的發(fā)展.那如何在課堂上創(chuàng)造良好的科學(xué)論證環(huán)境呢?本研究認(rèn)為,教師可以在課堂教學(xué)中提出一些開放性問題來引發(fā)學(xué)生思考,讓學(xué)生陳述自己的觀點(diǎn),并基于學(xué)生的回答進(jìn)行追問,如“你為什么這么認(rèn)為”、“你是怎么得到這個(gè)結(jié)論的”.在這種互動(dòng)過程中,引導(dǎo)學(xué)生說出其中的原因和理由,同時(shí)引導(dǎo)學(xué)生之間對(duì)彼此的觀點(diǎn)和推理過程進(jìn)行相互評(píng)論,指出各自推理過程中可能存在的自相矛盾的地方,激發(fā)學(xué)生使用更多的證據(jù)來支持自己的觀點(diǎn).當(dāng)學(xué)生遇到困難時(shí),教師可以通過搭建“支架”引導(dǎo)學(xué)生進(jìn)行推理,幫助學(xué)生探索原始認(rèn)識(shí)中的不正確之處,讓學(xué)生重新建構(gòu)正確的推理過程,同時(shí)引導(dǎo)學(xué)生反思自己觀點(diǎn)的轉(zhuǎn)變過程和轉(zhuǎn)變?cè)?充分認(rèn)識(shí)原始論證過程和科學(xué)論證過程之間的差異,幫助學(xué)生邁上臺(tái)階,使學(xué)生在物理現(xiàn)象的宏觀描述與微觀解釋的溝通中、在從定性描述到定量描述中、在物理過程的靜態(tài)與動(dòng)態(tài)分析中逐步發(fā)展科學(xué)論證能力.

      猜你喜歡
      科學(xué)論證測(cè)試工具均值
      邊緣智力兒童及其智力測(cè)試工具的研究進(jìn)展
      美國(guó)科學(xué)教育中科學(xué)論證教學(xué)的困境、策略與啟示*
      比爾·奈談支持科學(xué)論證:疫情本該已經(jīng)結(jié)束
      英語文摘(2022年7期)2022-07-23 05:56:38
      基于科學(xué)論證思維培養(yǎng)的初中科學(xué)教學(xué)策略
      科學(xué)論證在我國(guó)課程政策中的歷史演進(jìn)
      ——以高中物理課程標(biāo)準(zhǔn)(教學(xué)大綱)為例
      物理教師(2019年3期)2019-12-27 12:20:58
      Http并發(fā)連接測(cè)試工具
      均值不等式失效時(shí)的解決方法
      均值與方差在生活中的應(yīng)用
      福祿克推出先進(jìn)的連接式測(cè)試工具系統(tǒng)
      關(guān)于均值有界變差函數(shù)的重要不等式
      霍城县| 桐柏县| 肇东市| 瓦房店市| 江西省| 泰和县| 台中市| 公主岭市| 镶黄旗| 会宁县| 公主岭市| 准格尔旗| 金门县| 定州市| 平远县| 通化市| 津南区| 卓尼县| 商水县| 股票| 蓝田县| 青铜峡市| 青州市| 富川| 万源市| 咸宁市| 湛江市| 花垣县| 繁峙县| 嫩江县| 湖州市| 渑池县| 焉耆| 抚松县| 漳浦县| 甘孜县| 大化| 工布江达县| 上高县| 固原市| 八宿县|