• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pull-in Instability Analysis of Nanoelectromechanical Rectangular Plates Including the Intermolecular, Hydrostatic, and Thermal Actuations Using an Analytical Solution Methodology

    2019-03-12 02:41:50SamadaniAnsariHosseiniandZabihi
    Communications in Theoretical Physics 2019年3期

    F.Samadani, R.Ansari,K.Hosseini, and A.Zabihi

    1Department of Mechanical Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran

    2Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

    3Department of Mechanical Engineering, Ahrar Institute of Technology & Higher Education, Rasht, Iran

    (Received May 10, 2018; revised manuscript received August 21, 2018)

    Abstract The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations.Based on the Kirchhoff theory along with Eringen’s nonlocal elasticity theory, a nonclassical model is developed.Using the Galerkin method (GM), the governing equation which is a nonlinear partial differential equation (NLPDE)of the fourth order is converted to a nonlinear ordinary differential equation (NLODE)in the time domain.Then, the reduced NLODE is solved analytically by means of the homotopy analysis method.At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.

    Key words: Nanoelectromechanical rectangular plates,Pull-in instability,Kirchhoff theory,Eringen’s nonlocal elasticity theory, Homotopy analysis method

    1 Introduction

    Numerous applications of micro- and nano-electromechanical systems (MEMS/NEMS)have motivated researchers to study their performance in various situations.Because the classical continuum theories cannot consider the size effects in the mechanical analysis of nanostructures,[1?4]some size-dependent continuum theories like Eringen’s nonlocal elasticity theory,[5]the couple stress elasticity theory,[6]the Gurtin-Murdoch continuum elasticity theory,[7?11]the strain gradient elasticity theory,[12]and the stress-driven nonlocal model[13]were proposed to consider the size effects.In the classical theories, the stress state at a given point is determined only by the strain state at that point, but in Eringen’s nonlocal elasticity theory, the stress state at a given point is determined by the strain states of all points in the body.The first use of Eringen’s nonlocal elasticity theory to nanotechnology was proposed by Peddiesonet al.,[14]followed by many other researchers.[15?19]One of the important designing considerations in MEMS/NEMS is the pull-in instability.[20]The pull-in instability happens when the internal and applied external forces surpass the elastic restoring force of the nanostructures, leading to contact between the movable and substrate electrodes.When the rate of applied voltage variation is significant,the effect of inertia is considered.In this case, the pull-in instability is referred to as the dynamic pull-in instability.

    Once the space of movable and bottom electrodes is less than the plasma wavelength or the absorption wavelength of the ingredient material of surfaces, the intermolecular force is considered as the van der Waals (vdW)attraction.In this situation, there is a small separation regime such that the vdW force is the dominant attraction and it is proportional to the inverse cube of the separation.Nevertheless, when the separation is adequately large (typically above 20 nm)the intermolecular interaction is referred to as the Casimir force.[21]In this case,there is a large separation regime in which the Casimir force is dominant(typically above several tens of nanometers)and it is proportional to the inverse fourth power of the separationπ2hc/240g4, in whichh=1.055×10?34is Planck’s constant divided by 2πandc=2.998×108m/s is the speed of light.[21]The reader is referred to Refs.[22–30]as some important papers and books about the Casimir effect.One of the most remarkable predictions of quantum electrodynamics (QED), obtained by Casimir in 1948, is that two parallel, closely spaced, conducting plates will be mutually attracted.[31]This measurement, as reported by Sparnaay in 1958, confirmed the formula.[32]A closely related effect, the attraction of a neutral atom to a conducting plate, has been also measured.[33]

    In the past few years, many researchers have focused on the pull-in instability of nanoplates.For instance, based on a modified continuum model, Ansariet al.[34]studied the size-dependent pull-in behavior of electrostatically and hydrostatically actuated rectangular nanoplates considering the surface stress effects.Ebrahimi and Hosseini[35]investigated the effect of temperature on pull-in voltage and nonlinear vibration of nanoplatebased NEMS under hydrostatic and electrostatic actuations.Mirkalantariet al.[36]studied the pull-in instability of rectangular nanoplates based on the strain gradient theory taking the surface stress effects into account.Shokravi[37]analyzed the dynamic pull-in of viscoelastic nanoplates under the electrostatic and Casimir forces.The interested reader is referred to Refs.[38–44].

    Moreover,different methods have been used for the vibration analysis of rectangular nanoplates.For example,Aghababaei and Reddy[45]presented the Navier solutions for the vibrations of rectangular plates based on the nonlocal third-order shear deformation plate theory.Also,Pradhan and Phadikar[46]used the same solution technique for addressing the vibration problem of rectangular plates with simply-supported boundary conditions in the context of Eringen’s nonlocal model,the classical and firstorder shear deformation plate theories.Another application of the Navier-type method to the vibration problem of nonlocal plates can be found in Ref.[47].Aksencer and Aydogdu[48]employed the Levy-type solution method for the vibration analysis of nanoplates based on the nonlocal elasticity theory.Ansariet al.[49?50]used the generalized differential quadrature method to numerically solve the free vibration problem of rectangular Mindlin-type plates with various boundary conditions.The Galerkin method was applied by Shakouriet al.[51]for the vibrational analysis of nonlocal Kirchhoff plates with different edge supports.

    The classical analytical methods cannot handle the strongly nonlinear differential equations.In this regard,Liao[52]developed an efficient technique called the homotopy analysis method (HAM), which can be adopted for solving ordinary and partial differential equations with different nonlinearities.For example, Samadaniet al.[53]applied HAM for the pull-in and nonlinear vibration analysis of nanobeams using a nonlocal Euler-Bernoulli beam model.Moghimi Zand and Ahmadian[54]used HAM in studying the dynamic pull-in instability of microsystems.Also, Miandoabet al.[55]utilized this method for the forced vibration analysis of a nano-resonator with cubic nonlinearities.

    In the present paper, HAM is used to study the static and dynamic pull-in instabilities of rectangular nanoplates using the nonlocal Kirchhoff plate theory.The rest of paper is organized as follows: In Sec.2,using Eringen’s nonlocal elasticity and the Kirchhoff plate theory, the nonlinear equation of motion subjected to fully clamped boundary condition (CCCC)is derived.In Secs.3 and 4, the governing equation of motion is reduced to an NLODE in the time domain by the Galerkin method.Then, HAM is adopted to solve the obtained nonlinear equation.The effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameter on the deflection,nonlinear frequency, and the critical voltage of dynamic pull-in instability (Vpdyn)are investigated in Sec.5.At the end, the main findings of the paper is given in Sec.6.

    2 Problem Formulation

    2.1 Nonlocal Elasticity Theory

    Based on Eringen’s nonlocal elasticity theory,[3]the stress at a reference point depends on the strain at all points in the body.The constitutive equation of the nonlocal elasticity can be written as

    whereσij,tij,e0,andaare the nonlocal stress tensor,the classical stress tensor, nonlocal elasticity constant appropriate to each material and internal characteristic length scale (e.g.atomistic distance), respectively.e0can be obtained from experiments or through comparisons between the results of nonlocal continuum model and the ones from lattice dynamics.Eringen[3]estimated the value ofe0equal to 0.31 based on the comparison of Rayleigh surface wave using the nonlocal theory and lattice dynamics.Whene0is zero,the constitutive relations of the local theories are obtained.Also,?2is the Laplacian operator which in the Cartesian coordinate can be expressed as

    2.2 Kirchhoff Thin Plate Theory

    Based on the Kirchhoff thin plate theory, the strains in the plate are

    wherewis the transverse deflection of plate, respectively.The relations of bending moment are given by

    wherehis the thickness of plate.

    Under plane stress conditions, one has

    where?andEare Poisson’s ratio and Young’s modulus of the plate.By substituting Eqs.(3)and(5)into Eq.(4),one obtains

    whereD=Eh3/12(1??2)is the classical bending stiffness of the plate.By inserting Eqs.(1)and (4), one can arrive at

    Hamilton’s principle is given in the following form

    whereK,U, andWdenote the kinetic energy, strain energy and work of external forces and thermal actuation,respectively.The first variation of strain energy is presented as

    in whichSsignifies the area of plate.The first variation of the work of the external forces and thermal actuation is expressed as

    where the termsNxx,Nyy,Nxy,andqare determined by the thermal and external forces.It should be mentioned that the thermal force caused by the uniform temperature variation,θ=T ?T0, is described by[56]

    where the termαindicates the coefficient of thermal expansion.

    The first variation of kinetic energy is

    in whichρshows the density of plate.

    By inserting Eqs.(9)–(12)in Eq.(8), then integrating by parts and setting the coefficientδwto zero, one can reach the governing equation as

    Now, by means of the nonlocal bending moment equations given in Eq.(7)and expanding Eq.(13), one will arrive at the governing equation of motion in the following form

    Note that the governing equation of local model is obtained by settinge0a=0.

    3 Mathematical Modeling of the Problem

    A schematic of nanoelectromechanical rectangular plate with lengthlaand widthlb, including a pair of parallel electrodes with the distancegis given in Fig.1.The upper movable electrode is assumed to be under the influence of intermolecular, hydrostatic, and thermal actuations.

    It is noted that the movable electrode pulls down the fixed electrode by applying the DC voltage between two electrodes.Once the applied voltage approaches the critical point (pull-in voltage), the structure becomes unstable.[57]

    The electrostatic force per unit area of nanoplate can be described as[39]

    whereε0=8.854×10?12C2N?1·m?2is the vacuum permittivity,gis the air initial gap of nanoplates, andVdcis the direct current voltage as illistrated in Fig.1.The van dar Waals effect per unit area of nanoplate can be written as[39]

    whereAhis the Hamaker constant in the range of [0.4?4]×10?19.

    Fig.1 Schematic of fully clamped nanoelectromechanical rectangular plates under intermolecular, hydrostatic and thermal actuations.

    In the following analyses, it is assumed that

    whereFhstands for the hydrostatic actuation.By substituting Eqs.(15)and (16)into Eq.(17)and then inserting the resulting equation in Eq.(14),the following governing equation of motion is obtained

    with the following fully clamped boundary conditions

    By considering the following nondimensional variables

    and using the Taylor expansion(see Appendix),the nondimensional form of governing equation can be derived as

    with the following boundary conditions

    Here,GM is utilized to reduce Eq.(21)to an NLODE.To this end, it is considered that

    whereφ1(X,Y)= sin2(πX)sin2(πY)is the first eigenmode of fully clamped nanoplate andW1(X,Y,T)=u(T)sin2(πX)sin2(πY).[58]

    By insertingW1(X,Y,T)in Eq.(21),multiplying it byφ1(X,Y)and then integrating twice from zero to one, the following NLODE is obtained

    where the parametersa0,a1,a2,a3,a4, andMare given in Appendix.

    4 Implementation of the HAM to the Reduced Equation

    Now, using the transformationτ= ?pT, the existing reduced problem

    is changed into

    where the oscillation nonlinear frequency ?pis expressed as

    In a manner similar to that performed in Ref.[53],one can obtain ? andu(T)for vibrating actuated fully clamped nanoplate as below

    5 Results and Discussion

    The current section provides numerical results to show the effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameterμon the deflection, nonlinear frequency, andVpdyn.For producing the results, the following parameters are selected:h=21 nm,la=lb=30h,g=1.2h,?=0.35, andE=68.5 GPa (Al alloy).

    In Fig.2,the nondimensional center point deflection of nanoplate obtained using HAM is compared to that calculated using the Runge-Kutta method.It is seen that there is an excellent agreement between the results of two methods.

    Fig.2 HAM results versus those of the Runge-Kutta method.

    Figure 3 shows the change in amplitude of vibration against the nondimensional time.In this case, the dynamic pull-in voltage is 22.540.TheVpdynobtained in the absence of the intermolecular and thermal parameters agrees well with those reported in Refs.[34, 59] (in Ref.[34]Vpdyn= 22.5 and in Ref.[59]Vpdyn= 22.38).The amplitude enhances with the increase of time and the nanoplate experiences a harmonic motion.Also, the nanoplate collapses onto the bottom, when the pull-in happens.

    Fig.3 Centerpoint deflection of a fully clamped nanoplate at Nthermal=R3=0.

    Figure 4 presents the normalized fundamental frequency of nanoplate with respect to the electrostatic parameterβ.It is observed that the normalized fundamental frequency becomes zero when the applied voltage reachesVpdyn.

    Figure 5 indicates that the pull-in time decreases (11 percent)by increasingμ(0.01 per unit).By decreasingμ,the pull-in phenomenon occurs later in this model.

    Fig.4 Relation between the normalized fundamental frequency and the electrostatic force parameter.

    Fig.5 Effect of the parameter μ on the pull-in and deflection time.

    Fig.6 Effect of the parameters μ and Vpdyn on the fundamental frequency.

    The variations of fundamental frequencies againstVpdynare illustrated in Fig.6 for different values of nonlocal parameter.It is observed that by increasingμ(0.02 per unit), the fundamental frequency decreases (2 percent).For example,whenμis considered to be 0.06,Vpdynoccurs at 21.

    Figure 7 demonstrates the variations of fundamental frequencies against the hydrostatic pressure parameter for different values of nonlocal parameter.The increase ofNhydroleads to the decrease of fundamental frequency.

    Fig.7 Effect of the nondimensional hydrostatic pressure on the fundamental frequency.

    Fig.8 Effect of the nondimensional thermal actuation on the pull-in frequency.

    Fig.9 Effect of the intermolecular actuation on the pull-in frequency.

    The variations of fundamental frequencies against the nondimensional thermal parameter are illustrated in Fig.8 for various values ofμ.One can find that via increasingNthermal, the fundamental frequency gets larger.

    Figure 9 shows the variations of fundamental natural frequency versusAfor a number of vdW parameters.It is seen that by increasingA, the nonlinear frequency of vibration diminishes.For instance, whenR3is equal to 5,the pull-in phenomenon happens atA=1.

    Fig.10 Variations of static pull-in deflection of the nanoplate versus the μ.

    Fig.11 Comparison of the static and dynamic pullvoltage parameter versus g in μ=0.01.

    Fig.12 Evaluation of the static and dynamic pullvoltage against Nthermal in μ=0.01.

    The influence ofla/lbon the static nondimensional deflection versus the nonlocal parameter is highlighted in Fig.10.According to this figure, the pull-in instability is suspended asλincreases.The influences of distance of parallel electrodes, thermal and nonlocal parameters on the static and dynamic pull-in voltage parameter are compared in Figs.11–13, respectively.Based on Fig.11,the pull-in voltage is postponed as the distance increases.Also, Fig.12 indicates that as the thermal parameter increases, the pull-in voltage is delayed.Finally, Fig.13 shows that by increasing the nonlocal parameter,the pullin voltage decreases.

    Fig.13 Comparision of dynamic and static pull-in voltage parameter of the nanoplate versus the μ.

    6 Conclusion

    In the present research, the dynamic pull-in of CCCC plate-type nanosensor, subjected to electrostatic, intermolecular, hydrostatic and thermal actuations was analyzed based on the nonlocal theory.GM was utilized for reducing the governing NLPDE to an NLODE in the time domain.HAM was also applied for solving the NLODE.The outcomes reveal that:

    (i)By increasingA,Vpdyndecreases.

    (ii)With the increase ofμ, vdW, andβ, the fundamental frequency diminishes.

    (iii)Vpdyndecreases as the vdW,μ, andAincrease;also, it increases as the thermal and hydrostatic parameters increase.

    (iv)? decreases as the pull-in voltage,R3,hydrostatic,nonlocal parameters, andAincrease; but, it increases as the thermal parameter rises.

    (v)The softening effect detected qualitatively is in agreement with that in the bending and vibrations of the nonlocal Kirchhoff model.

    Appendix

    久久国内精品自在自线图片| 视频区图区小说| 插逼视频在线观看| 五月伊人婷婷丁香| 日本猛色少妇xxxxx猛交久久| av卡一久久| 香蕉精品网在线| 久久狼人影院| 精品国产一区二区三区久久久樱花| 蜜臀久久99精品久久宅男| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 狠狠精品人妻久久久久久综合| 97超碰精品成人国产| 午夜福利在线观看免费完整高清在| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 男人狂女人下面高潮的视频| 丰满人妻一区二区三区视频av| 成人黄色视频免费在线看| 午夜日本视频在线| 欧美精品一区二区免费开放| 国产午夜精品久久久久久一区二区三区| 午夜福利网站1000一区二区三区| 欧美日韩综合久久久久久| 99精国产麻豆久久婷婷| 在线精品无人区一区二区三| 美女脱内裤让男人舔精品视频| 国产精品秋霞免费鲁丝片| 国产av国产精品国产| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 偷拍熟女少妇极品色| 久久精品国产亚洲网站| 99re6热这里在线精品视频| 一区二区三区精品91| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 日韩精品免费视频一区二区三区 | 国产视频首页在线观看| 国产亚洲一区二区精品| 欧美+日韩+精品| av播播在线观看一区| 一级二级三级毛片免费看| 少妇熟女欧美另类| 日韩,欧美,国产一区二区三区| 国产一区二区三区av在线| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 一个人看视频在线观看www免费| 日日啪夜夜撸| 嫩草影院新地址| 美女视频免费永久观看网站| 国产在线男女| 大陆偷拍与自拍| 丝袜脚勾引网站| 我要看日韩黄色一级片| 黄色怎么调成土黄色| 国产黄片视频在线免费观看| 18禁在线无遮挡免费观看视频| 色视频www国产| 蜜桃久久精品国产亚洲av| 蜜桃在线观看..| 久久人妻熟女aⅴ| 亚洲熟女精品中文字幕| 亚洲综合色惰| 五月伊人婷婷丁香| 自拍偷自拍亚洲精品老妇| 久久久亚洲精品成人影院| 日韩欧美 国产精品| 久久久久久久久久久久大奶| 亚洲天堂av无毛| 欧美亚洲 丝袜 人妻 在线| 青春草国产在线视频| 婷婷色综合www| 久久 成人 亚洲| 亚洲va在线va天堂va国产| 国产高清国产精品国产三级| 国产综合精华液| 亚洲国产精品一区三区| 熟妇人妻不卡中文字幕| 少妇高潮的动态图| 99久久精品热视频| 精品一区二区三区视频在线| 国产毛片在线视频| 成人黄色视频免费在线看| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| 最新的欧美精品一区二区| av天堂久久9| 亚洲成人一二三区av| 一个人看视频在线观看www免费| av播播在线观看一区| 最近中文字幕高清免费大全6| 欧美 日韩 精品 国产| 伦理电影大哥的女人| 26uuu在线亚洲综合色| 啦啦啦视频在线资源免费观看| 一级av片app| 欧美激情极品国产一区二区三区 | 久久久久久久久久久免费av| 大码成人一级视频| 国产精品一二三区在线看| 欧美人与善性xxx| 精品久久久久久久久亚洲| 在线观看免费高清a一片| 又爽又黄a免费视频| 国产av码专区亚洲av| 精品午夜福利在线看| 久久久久网色| 99国产精品免费福利视频| 最黄视频免费看| 毛片一级片免费看久久久久| h视频一区二区三区| 这个男人来自地球电影免费观看 | 曰老女人黄片| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| 热re99久久国产66热| 久久久久久久久久久丰满| 国产精品久久久久久久电影| 狂野欧美激情性xxxx在线观看| 热re99久久精品国产66热6| 岛国毛片在线播放| 国产亚洲欧美精品永久| 欧美xxxx性猛交bbbb| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品电影小说| 少妇被粗大的猛进出69影院 | 一个人看视频在线观看www免费| 亚洲av成人精品一二三区| 一区二区三区免费毛片| 夜夜爽夜夜爽视频| 最黄视频免费看| 最近手机中文字幕大全| 亚洲性久久影院| 国内揄拍国产精品人妻在线| 水蜜桃什么品种好| 三级经典国产精品| 菩萨蛮人人尽说江南好唐韦庄| 一本久久精品| 99re6热这里在线精品视频| 精品一区二区免费观看| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 亚洲情色 制服丝袜| 高清毛片免费看| 中文字幕人妻丝袜制服| 9色porny在线观看| 国产深夜福利视频在线观看| 久久久午夜欧美精品| 亚洲欧美日韩卡通动漫| av视频免费观看在线观看| 观看av在线不卡| videossex国产| 青春草视频在线免费观看| 国产极品天堂在线| 亚洲va在线va天堂va国产| 午夜视频国产福利| 国产成人91sexporn| 亚洲国产色片| 一个人看视频在线观看www免费| 99热网站在线观看| 在线观看www视频免费| 三级经典国产精品| 丰满迷人的少妇在线观看| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲 | 国产女主播在线喷水免费视频网站| 成人漫画全彩无遮挡| 久久精品国产a三级三级三级| 午夜福利网站1000一区二区三区| 六月丁香七月| 国产伦精品一区二区三区四那| 国产熟女午夜一区二区三区 | 国产日韩欧美在线精品| 日韩伦理黄色片| 国产亚洲精品久久久com| 丰满乱子伦码专区| 国产亚洲一区二区精品| 久久久久久久久久人人人人人人| 国产精品三级大全| 国产深夜福利视频在线观看| 久久久亚洲精品成人影院| 啦啦啦视频在线资源免费观看| 亚洲国产毛片av蜜桃av| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 黄色配什么色好看| 激情五月婷婷亚洲| 亚洲图色成人| 亚洲av欧美aⅴ国产| av在线播放精品| 亚洲av成人精品一区久久| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 一个人看视频在线观看www免费| 18禁裸乳无遮挡动漫免费视频| 亚洲精品成人av观看孕妇| 国产一区二区三区综合在线观看 | 亚洲欧美成人综合另类久久久| 男人爽女人下面视频在线观看| 亚洲av成人精品一区久久| 插逼视频在线观看| 国产白丝娇喘喷水9色精品| 日本黄色日本黄色录像| 免费高清在线观看视频在线观看| 一本色道久久久久久精品综合| 91在线精品国自产拍蜜月| 亚洲成人手机| 三级国产精品片| 久久国产精品男人的天堂亚洲 | 国产中年淑女户外野战色| 在线观看人妻少妇| 亚洲久久久国产精品| 亚洲天堂av无毛| 在线观看三级黄色| 高清欧美精品videossex| 欧美 日韩 精品 国产| 国产成人一区二区在线| 国产精品无大码| 街头女战士在线观看网站| 成人特级av手机在线观看| 亚洲国产色片| av福利片在线观看| 日本爱情动作片www.在线观看| 免费少妇av软件| 日本午夜av视频| 国产精品久久久久久精品电影小说| 欧美激情极品国产一区二区三区 | 一本—道久久a久久精品蜜桃钙片| 日本黄色片子视频| 日韩一本色道免费dvd| 热re99久久国产66热| 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 成人二区视频| 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 国产精品国产av在线观看| av免费在线看不卡| 老熟女久久久| 少妇丰满av| 一区二区三区免费毛片| 一个人免费看片子| 最新的欧美精品一区二区| 丰满迷人的少妇在线观看| 丝袜在线中文字幕| 三级国产精品欧美在线观看| 性色avwww在线观看| 国产成人一区二区在线| 国产视频首页在线观看| 精品一品国产午夜福利视频| 各种免费的搞黄视频| 丝袜在线中文字幕| 亚洲av中文av极速乱| 国语对白做爰xxxⅹ性视频网站| 亚洲在久久综合| 少妇的逼好多水| 精品亚洲乱码少妇综合久久| 最黄视频免费看| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 国产av国产精品国产| 国产又色又爽无遮挡免| 亚洲内射少妇av| 老熟女久久久| 久久久久精品久久久久真实原创| 极品教师在线视频| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 国产成人精品无人区| 美女内射精品一级片tv| www.av在线官网国产| 狂野欧美激情性xxxx在线观看| 在线观看一区二区三区激情| 久久久久久久久大av| 亚洲精品456在线播放app| 久久久亚洲精品成人影院| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看 | 国产成人精品婷婷| 中文字幕免费在线视频6| 久久99精品国语久久久| 国产日韩欧美视频二区| 男人舔奶头视频| 99久久精品国产国产毛片| 少妇高潮的动态图| 久久 成人 亚洲| 高清视频免费观看一区二区| 成人漫画全彩无遮挡| av专区在线播放| 99久久中文字幕三级久久日本| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 午夜福利影视在线免费观看| 精品国产露脸久久av麻豆| 久久久久久久精品精品| 国产精品99久久久久久久久| 综合色丁香网| 在线播放无遮挡| 久久久国产一区二区| 伊人久久国产一区二区| 精品一区二区免费观看| 欧美成人午夜免费资源| av福利片在线| 男人狂女人下面高潮的视频| 亚洲欧美精品专区久久| 三级国产精品片| 久久久亚洲精品成人影院| 老司机影院成人| 大陆偷拍与自拍| 午夜福利视频精品| 人人妻人人澡人人爽人人夜夜| 成人影院久久| 午夜免费男女啪啪视频观看| 黑人猛操日本美女一级片| 国产日韩欧美在线精品| 国产亚洲91精品色在线| 精品一区二区三卡| 国产男女内射视频| 久久精品熟女亚洲av麻豆精品| 99久久中文字幕三级久久日本| 老熟女久久久| 久久久久久伊人网av| 三上悠亚av全集在线观看 | 国产一区有黄有色的免费视频| 精品久久久久久电影网| 伊人久久国产一区二区| av免费在线看不卡| 又黄又爽又刺激的免费视频.| 色婷婷av一区二区三区视频| 乱码一卡2卡4卡精品| 日本wwww免费看| 欧美日韩亚洲高清精品| 美女主播在线视频| 777米奇影视久久| 涩涩av久久男人的天堂| 各种免费的搞黄视频| 精品亚洲成国产av| 中国三级夫妇交换| 一级爰片在线观看| 2018国产大陆天天弄谢| 国产伦精品一区二区三区四那| 大片电影免费在线观看免费| 成年女人在线观看亚洲视频| 夫妻午夜视频| 国产精品国产av在线观看| 黑人猛操日本美女一级片| 久久这里有精品视频免费| 午夜激情久久久久久久| 午夜免费观看性视频| 精品久久久久久久久av| 秋霞伦理黄片| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| a级毛片免费高清观看在线播放| 亚洲丝袜综合中文字幕| 亚洲欧洲精品一区二区精品久久久 | 嫩草影院入口| 99视频精品全部免费 在线| 国产免费一区二区三区四区乱码| 国产有黄有色有爽视频| 2021少妇久久久久久久久久久| 国产熟女欧美一区二区| 五月天丁香电影| 亚洲欧美一区二区三区黑人 | 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 麻豆精品久久久久久蜜桃| 久久99精品国语久久久| 热re99久久精品国产66热6| 91aial.com中文字幕在线观看| 男人狂女人下面高潮的视频| 又大又黄又爽视频免费| 高清在线视频一区二区三区| 久久久久视频综合| 秋霞伦理黄片| 欧美性感艳星| 国产在线免费精品| 国产免费一区二区三区四区乱码| 免费观看av网站的网址| 国产 精品1| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 亚洲一区二区三区欧美精品| 超碰97精品在线观看| 美女主播在线视频| 97在线人人人人妻| 精品午夜福利在线看| 日韩精品免费视频一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 韩国高清视频一区二区三区| 国产一区二区在线观看日韩| 国产在线一区二区三区精| 国产成人免费观看mmmm| 国产淫语在线视频| 国产精品一区二区在线不卡| 十八禁网站网址无遮挡 | 国产免费一级a男人的天堂| 亚洲国产色片| 日韩av在线免费看完整版不卡| 亚洲精品第二区| 在线观看免费日韩欧美大片 | 国产精品一区二区三区四区免费观看| av卡一久久| 色网站视频免费| 亚洲综合精品二区| 伊人亚洲综合成人网| 韩国av在线不卡| 欧美日韩视频精品一区| 亚洲不卡免费看| 美女国产视频在线观看| 精品久久久噜噜| 免费av中文字幕在线| 97超碰精品成人国产| 黄色怎么调成土黄色| 看十八女毛片水多多多| 99久国产av精品国产电影| 伊人亚洲综合成人网| 麻豆精品久久久久久蜜桃| 日本色播在线视频| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| 亚洲,欧美,日韩| 一二三四中文在线观看免费高清| 高清午夜精品一区二区三区| 国产成人aa在线观看| 只有这里有精品99| 成年av动漫网址| 18禁裸乳无遮挡动漫免费视频| 国产淫语在线视频| 国产综合精华液| 成人免费观看视频高清| 久久国内精品自在自线图片| 永久免费av网站大全| 日本欧美国产在线视频| 插逼视频在线观看| 亚洲成人手机| 欧美+日韩+精品| 综合色丁香网| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 国产精品无大码| 老熟女久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥| 久久6这里有精品| 日本免费在线观看一区| 亚洲欧美日韩另类电影网站| 久久国产亚洲av麻豆专区| 亚洲久久久国产精品| 美女内射精品一级片tv| 在线看a的网站| 免费黄色在线免费观看| 深夜a级毛片| 国产精品蜜桃在线观看| 色吧在线观看| 国产av一区二区精品久久| 一级毛片久久久久久久久女| 欧美日韩综合久久久久久| 欧美日韩av久久| 久久99精品国语久久久| av线在线观看网站| 国产精品三级大全| 精品少妇黑人巨大在线播放| 最近手机中文字幕大全| 亚洲精品乱码久久久久久按摩| 欧美 日韩 精品 国产| 精品国产乱码久久久久久小说| 性色av一级| 人人妻人人澡人人看| 一级爰片在线观看| 国产精品女同一区二区软件| 欧美区成人在线视频| 亚洲人与动物交配视频| 69精品国产乱码久久久| 丁香六月天网| 97在线视频观看| 黄色配什么色好看| 日韩亚洲欧美综合| av播播在线观看一区| av黄色大香蕉| 激情五月婷婷亚洲| 国产黄片美女视频| 水蜜桃什么品种好| 国产欧美日韩综合在线一区二区 | 久久精品久久久久久噜噜老黄| av在线老鸭窝| 一级毛片久久久久久久久女| 在线天堂最新版资源| 99热6这里只有精品| 日韩不卡一区二区三区视频在线| 精品一品国产午夜福利视频| 中文字幕av电影在线播放| 日本-黄色视频高清免费观看| 三级国产精品片| 亚洲伊人久久精品综合| 少妇被粗大的猛进出69影院 | 亚洲国产精品专区欧美| 亚洲人成网站在线观看播放| 大片免费播放器 马上看| 国产永久视频网站| 自线自在国产av| 免费久久久久久久精品成人欧美视频 | 国产高清有码在线观看视频| 制服丝袜香蕉在线| 欧美3d第一页| 国产欧美另类精品又又久久亚洲欧美| 国产成人一区二区在线| 中文字幕精品免费在线观看视频 | 亚洲精品乱码久久久久久按摩| 精品99又大又爽又粗少妇毛片| 高清av免费在线| 伊人久久精品亚洲午夜| 久久久久网色| 欧美bdsm另类| 午夜免费观看性视频| 国产免费视频播放在线视频| 边亲边吃奶的免费视频| 中文字幕免费在线视频6| 国产色婷婷99| 午夜免费鲁丝| 男女免费视频国产| 久热久热在线精品观看| 中文精品一卡2卡3卡4更新| 十八禁网站网址无遮挡 | 深夜a级毛片| 亚洲av成人精品一区久久| 综合色丁香网| 高清黄色对白视频在线免费看 | 日韩中文字幕视频在线看片| 国产探花极品一区二区| 国产淫片久久久久久久久| 精华霜和精华液先用哪个| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| a级毛片在线看网站| 国产深夜福利视频在线观看| 亚洲精品国产色婷婷电影| 久久久久久久久久人人人人人人| 麻豆精品久久久久久蜜桃| 99久久中文字幕三级久久日本| 人妻一区二区av| 国内精品宾馆在线| av福利片在线| 国产在线男女| 一区二区三区乱码不卡18| 国产亚洲5aaaaa淫片| 老女人水多毛片| 天美传媒精品一区二区| 在线看a的网站| 热re99久久精品国产66热6| av又黄又爽大尺度在线免费看| 免费看光身美女| 丝袜脚勾引网站| 又大又黄又爽视频免费| 久久久欧美国产精品| 日韩免费高清中文字幕av| 黄片无遮挡物在线观看| 国产成人精品一,二区| 啦啦啦中文免费视频观看日本| 国产免费一级a男人的天堂| 成年av动漫网址| 噜噜噜噜噜久久久久久91| 欧美日韩一区二区视频在线观看视频在线| 另类精品久久| 国产国拍精品亚洲av在线观看| 成人免费观看视频高清| 麻豆乱淫一区二区| 亚洲精品色激情综合| 黄色配什么色好看| 97精品久久久久久久久久精品| 女人精品久久久久毛片| 伦精品一区二区三区| 亚洲国产精品成人久久小说| 亚洲欧洲国产日韩| 日韩在线高清观看一区二区三区| 亚洲四区av| 又大又黄又爽视频免费| a级片在线免费高清观看视频| 夜夜骑夜夜射夜夜干| 日韩中字成人| 人人妻人人看人人澡| 国产精品久久久久成人av| av免费观看日本| 欧美变态另类bdsm刘玥| 春色校园在线视频观看| 日韩中字成人| 蜜桃在线观看..| 色婷婷久久久亚洲欧美| 草草在线视频免费看| 熟女av电影| 亚洲精品日本国产第一区| 国产精品秋霞免费鲁丝片| 国产毛片在线视频| 简卡轻食公司| 色吧在线观看| 少妇高潮的动态图| 久久99热6这里只有精品| 国产国拍精品亚洲av在线观看| 黑丝袜美女国产一区| 欧美3d第一页| 多毛熟女@视频| 国产av精品麻豆|