• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Embryonic Growth and Yolk Depletion during Incubation in the Chinese Skink, Plestiodon chinensis

    2019-03-27 12:47:52LiMAKunGUOShanSUandXiangJI
    Asian Herpetological Research 2019年1期

    Li MA, Kun GUO, Shan SU and Xiang JI

    Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University,Nanjing 210023, Jiangsu, China

    Abstract We collected 24 gravid female Chinese skinks (Plestiodon chinensis) to study embryonic growth and yolk depletion during incubation. Females laid eggs between late May and mid-June. Eggs were incubated at 24 (± 0.3)°C. One egg from each clutch was dissected at 5-d intervals starting at laying. Embryonic stages at laying varied from Dufaure and Hubert’s (1961) Stage 30-35, with a mean stage of 32.6. Incubation lengths at 24 °C varied from 35.1 to 48.3 d, with a mean of 41.5 d. Based on the derived functions describing instantaneous changes in embryo dry mass and yolk dry mass, we identi fi ed three phases of embryonic growth or yolk depletion in P. chinensis. Phase 1, from Day 0 (at laying) to Day 15 (~36% of the way through incubation), was one of minimal transfer of material from yolk to embryo. Phase 2, from Day 15 to Day 32-33 (~77%-80% of the way through incubation), was characterized by increasingly rapid embryonic growth or yolk depletion. Phase 3, from Day 32-33 to hatching, was characterized by reduced embryonic growth or yolk depletion. The length of the last embryonic stage (Stage 40 = completely differentiated embryos) accounted for about 28% of incubation length, and the dry mass of the smallest embryos of Stage 40 accounted for only ~48% of the hatchling dry mass. Our study adds evidence to the idea that oviposition is not timed to coincide with the onset of rapid embryonic growth in oviparous reptiles, and is fi rst to demonstrate that ~50%embryonic growth occurs in the last quarter of incubation in P. chinensis.

    Keywords egg incubation, embryonic growth, embryonic stage, Plestiodon chinensis, scincid lizard, yolk depletion

    1. Introduction

    As occurring in other animal taxa, embryonic development in reptiles involves differentiation and growth, two distinct processes that are integrated but dissociated to some extent during embryogenesis. Early embryonic development is characterized by differentiation(the origin of tissues and organ systems), whereas late development is characterized by rapid growth (the rapid increase in the size of the embryo) (Andrews, 2004).Oviparous reptiles lay eggs that contain all nutrients necessary for producing a hatchling with some amount of residual yolk (Fischer et al., 1991; Booth and Yu, 2009;Kolá?ková et al., 2015; Wu et al., 2017; Qu et al., 2019).

    During incubation, embryos use yolk as the source of all organic and most inorganic nutrients and eggshell as the additional source of inorganic nutrients such as calcium(Packard et al., 1985; Du et al., 2001; Wu et al., 2017).Most oviparous squamate reptiles (lizards, snakes and amphisbaenians) lay eggs with more advanced embryos than do turtles (gastrulation), tuataras (gastrulation) and crocodilians (neurulation) (Shine, 1983). Embryos of these squamate species have completed a substantial proportion of differentiation prior to oviposition but,because differentiation is well before dramatic embryonic growth (Andrews, 2004), the mass of the embryo accounts for only a very small fraction of the hatchling mass (Shadrix et al., 1994; Ji et al., 1997; Thompson and Stewart, 1997; Cai et al., 2007; Lu et al., 2009).

    Studies of lizards such as the Ordos racerunner Eremias brenchleyi (Xu and Wu, 2003), the coral skink Plestiodon (formerly Eumeces) anthracinus (Thompson and Stewart, 1997), the five-lined skink Plestiodon fasciatus (Shadrix et al., 1994) and the northern grass lizard Takydromus septentrionalis (Xu et al., 2004) have showed that dramatic embryonic growth or yolk depletion does not occur until the second quarter of incubation in species where females deposit eggs with embryos at Dufaure and Hubert’s (1961) Stage 26-30. Unfortunately,as mathematical functions describing embryonic growth or yolk depletion during incubation were not provided in these studies, the detailed inverse relationship between two major egg components, embryo and yolk, still remains unknown in lizards. Mathematical functions that have been established for two species of colubrid snakes,the red-necked keelback snake Rhabdophis tigrinus lateralis (Cai et al., 2007) and the checkered keelback snake Xenochrophis piscator (Lu et al., 2009), show three phases of embryonic growth or yolk depletion: Phase 1 is one of the minimal transfer of energy and material from yolk to embryo, Phase 2 is characterized by increasingly rapid embryonic growth or yolk depletion, and Phase 3 is characterized by a gradual reduction in embryonic growth or yolk depletion. Are these three phases detected in snakes generalisable to reptiles? To answer this question,we need to collect independent datasets from different reptilian taxa.

    Here, we describe a study dissecting lizard eggs at 5-d intervals starting at oviposition to quantify embryonic growth and yolk depletion during incubation. We used the Chinese skink (Plestiodon chinensis), a medium sized(up to 134 mm snout-vent length, SVL) scincid lizard that is widely distributed in southeastern China (Lin and Ji,2000), as a model animal for two reasons: (1) the skink is among oviparous species with substantial differentiation but negligible embryonic growth prior to oviposition(Ji and Zhang, 2001; Lu et al., 2014; Qu et al., 2014;Shen et al., 2017; Ma et al., 2018); and (2) females often lay at least 10 eggs per clutch, and the larger clutch size provides an opportunity to dissect eggs laid by a single female at different incubation stages. We aim to establish mathematical functions describing embryonic growth, yolk depletion and their instantaneous changes during incubation, to examine whether egg-laying is timed to coincide with the onset of dramatic embryonic growth, and to test the hypothesis that the three phases of embryonic growth or yolk depletion detected in snakes are generalisable to reptiles.

    2. Materials and Methods

    2.1. Animal collection and care We collected 24 gravid females (> 90 mm SVL) in early May 2015 from Lishui(28°27’N, 119°55’E, ~70 m elevation), Zhejiang, East China. Females were transported to our laboratory in Nanjing, where six were housed in each of four outdoor enclosures (length × width × height: 1.5 ×1.5 ×0.6 m)with a turf-covered soil substrate (~150 mm depth).Females could regulate body temperature by using natural thermal flux. Food, mealworm larvae (Tenebrio molitor), house crickets (Achetus domestica), cockroaches(Blaptica dubia) and water enriched with vitamins and minerals were provided daily. We checked the cages at least thrice daily for freshly laid eggs after the first female laid eggs, thereby collecting and weighing (to the nearest 1 mg) eggs less than 3 h post-laying. The fertility of freshly laid eggs was identified through the eggshell by visual inspection due to the presence of a reddish embryonic disc (Ji and Zhang, 2001). Post-oviposition females were individually measured for SVL and tail length, weighed, and then moved to their own enclosure where they remained until they were released to the field in late July.

    2.2. Methods Fertilized eggs were either dissected at laying or incubated individually in covered plastic jars(50 ml) with moist vermiculite at -12 kPa (Ji and Bra?a,1999). Egg was half-buried in the substrate, with the surface near the embryo being exposed to air inside the jar. Jars were placed in an incubator (Binder, Germany)at 24 ± 0.3 °C. This temperature falls within the range of temperatures optimal for egg incubation in P. chinensis(Ji and Zhang, 2001; Qu et al., 2014; Shen et al., 2017).Jars were weighed at five-day intervals, and distilled water was evenly added into substrates when necessary to compensate for evaporative losses and water absorbed by eggs. We rotated jars daily according to a predetermined schedule to minimize the possible influence of thermal gradients; nevertheless, gradients in temperature inside the incubator were trivial (0.3 °C), as veri fi ed by Tinytalk loggers (Gemini Pty, Australia) placed inside jars.

    One egg from each clutch was dissected at five-day intervals starting at laying (Day 0 of incubation). Each dissected egg was separated into embryo and yolk, and its Dufaure and Hubert’s (1961) stage of embryonic development was identified; the two egg components were then dried to constant mass in an oven at 65°C, weighed and preserved frozen for later use. We followed Dufaure and Hubert (1961) to identify embryos at Stage 40 as completely differentiated. Hatchlings were collected, measured for SVL and tail length and weighed immediately after they emerged from the egg.One hatchling from each clutch was dissected, and the remaining hatchlings were released to the site where their mothers were collected. Each dissected hatchling was separated into carcass (including fat bodies) and residual yolk, and the two hatchling components were also dried to constant mass in an oven at 65 °C, weighed and preserved frozen for later use. We extracted lipids from dried samples in a Soxhlet apparatus for 5.5 h using absolute ether as the solvent (Ji and Bra?a, 1999). The amount of lipids in each sample was determined by subtracting the lipid-free dry mass from the total sample dry mass.

    2.3. Statistical analysis We used one-way ANOVA to examine whether eggs dissected at different stages of incubation differed in mean mass. We used non-linear estimation to establish functions and curves describing changes in dry mass and lipid mass, and then established derived functions and curves to show instantaneous variation in tangent slopes of the corresponding curves.Throughout this paper, values are presented as mean ±SE, and significance level is set at α = 0.05.

    3. Results

    Females laid a single clutch of 10-23 eggs between late May and mid-June. Eggs at laying varied in mass from 0.53-1.00 g, with a mean of 0.73 g. Eggs hatched and dissected at different stages of incubation did not differ from each other in mean mass at laying (F9,230= 0.22, P= 0.99). Eggs steadily gained mass during incubation,and the fi nal mass was about three times heavier than the initial mass (Figure 1). Incubation lengths varied from 35.1-48.3 d, with a mean of 41.5 d. Embryonic stages identified at laying varied from Stage 30-35, with a mean stage of 32.6. Differentiation was nearly completed on Day 30 of incubation (~72% of the way through incubation) when 23 out of 24 embryos were at Stage 40(Figure 2).

    Figure 3 shows mean values (± SE) for dry mass and lipid mass of two major egg components (embryo and yolk) at different stages of incubation and their instantaneous changes (tangent slopes) during incubation.There was a clear-cut “ebb and flow” relationship between embryo and yolk; that is, embryonic growth is tightly associated with yolk depletion, and vice versa.Functions describing instantaneous changes in dry mass and lipid mass revealed that embryonic growth or yolk depletion was less striking in the interval from Day 0-15(0-36% of the way through incubation) and that the interval from Day 30-35 (72-84% of the way through incubation) represented the greatest embryonic growth or yolk depletion (Figure 3).

    Figure 1 Means (±SE) for egg mass at different days of incubation.The function and curve describing temporal changes in egg mass are provided in the fi gure. N = 24 for each sampling day.

    Figure 2 Means (± SE) for Dufaure and Hubert’s (1961) embryonic stage at different days of incubation. The function and curve describing temporal changes in embryonic stage are provided in the fi gure.

    4. Discussion

    Figure 3 Means (± SE) for dry mass (A) and lipid mass (B) at different days of incubation, and instantaneous rates of changes in dry mass (C)and lipid mass (D). All related functions are provided in the fi gure. H: hatched

    It seems likely that oviparous reptiles of different taxa share the same pattern of dynamic changes in embryonic growth and yolk depletion as shown in Figure 3 (lizards:Shadrix et al., 1994; Xu and Wu, 2003; Xu et al., 2004;snakes: Cai et al., 2007; Lu et al., 2009; turtles: Du et al., 2001). Consistent with the results reported for other oviparous squamate reptiles (lizards: Shadrix et al., 1994;Ji and Bra?a, 1999; Ji et al., 2002; Wang et al., 2013;snakes: Ji et al., 1997, 1999; Cai et al., 2007; Lu et al.,2009), embryos of P. chinensis completed a substantial proportion of differentiation at laying but had negligible dry mass in comparison to the rest of the egg (Figure 3). Here, we did not observe rapid embryonic growth or yolk depletion in the interval from Day 0 (Stage 30-35)to Day 15 (Stage 36-38) of incubation. Accordingly,we conclude that, as in other lizards such as the bearded dragon Amphibolurus barbata (Packard et al., 1985), E.brenchleyi (Xu and Wu, 2003), P. anthracinus (Thompson and Stewart, 1997), P. fasciatus (Shadrix et al., 1994)and T. septentrionalis (Xu et al., 2004), the timing of oviposition does not precede immediately an interval of rapid embryonic growth in P. chinensis. Our study therefore adds evidence to the idea that a dramatic change in the pattern of embryonic growth or yolk depletion is not the proximate cause for egg-laying in oviparous reptiles (Shadrix et al., 1994; Thompson and Stewart,1997; Du et al., 2001; Cai et al., 2007; Lu et al., 2009).

    Based on the derived mathematical functions and curves (Figure 3), we can also identify three phases of embryonic growth or yolk depletion in P. chinensis. The first phase, from Day 0 to Day 15 (~36% of the way through incubation), is an interval within which the rate of embryonic growth or yolk depletion does not rise steeply and embryonic growth is therefore slow. The second phase, from Day 15 to Day 32-33 (~77-80%of the way through incubation), is characterized by increasingly rapid embryonic growth or yolk depletion,with the greatest rate of embryonic growth or yolk depletion occurring at the end of the phase. The third phase, from Day 32-33 to hatching, is characterized by a gradual reduction in the rate of embryonic growth or yolk depletion. The first phase ends at an earlier incubation stage in P. chinensis than in P. fasciatus (~50%; Shadrix et al., 1994), presumably because females oviposit at a later mean embryonic stage in the former (Stage 30-35,with a mean stage of 32.6) than in the later (Stage 30;Shadrix et al., 1994) species. That the fi rst phase ends at an earlier incubation stage in species with more advanced embryos at laying has also been documented in snakes.For example, the fi rst phase ends at an earlier incubation stage in red-necked keelback snake Rhabdophis tigrinus lateralis (~36% of the way through incubation; Cai et al.,2007) than in the checkered keelback snake Xenochrophis piscator (~41% of the way through incubation; Lu et al., 2007), simply because females oviposit at a later embryonic stage in R. t. lateralis (Stage 26-27; Cai et al., 2007) than in X. piscator (Stage 25; Lu et al., 2009).The second phase identified in this study ends at an incubation stage (~80% of the way through incubation)surprisingly consistent with that reported for two snakes,R. t. lateralis (~81 of the way through incubation; Cai et al., 2007) and X. piscator (also ~81 of the way through incubation; Lu et al., 2009). This consistency, together with the similarity of the three phases among reptiles of different taxa (Shadrix et al., 1994; Du et al., 2001; Xu et al., 2004; Cai et al., 2007; Lu et al., 2009), suggests that the pattern of embryonic growth or yolk depletion during embryogenesis is common among reptiles.

    Our data showed that differentiation did not complete until ~72% of the way through incubation (Day 30), and that the length of the last embryonic stage (Stage 40)accounted for ~28% (11.5/41.5) of incubation length(Figure 3). The mean dry mass of the smallest fully differentiated embryos (Stage 40) accounted for only~48% (58/120) of the hatchling mean dry mass (Figure 3). Taken together, these finding suggest that ~50%embryonic growth occurs in the last quarter of incubation in P. chinensis. Of the earlier 50% embryonic growth,~10%, ~15% and ~25% occur in the first, second and third quarters of incubation, respectively.

    Acknowledgements This work was carried out in compliance with laws on animal welfare and research in China. We thank Guo-Hua Ding, Zhi-Hua Lin and Shu-Zhan Zhao for assistance during the research. For funding,we thank the National Natural Science Foundation of China (31470471).

    日本av免费视频播放| av在线老鸭窝| 天天躁日日躁夜夜躁夜夜| 久久韩国三级中文字幕| 亚洲综合精品二区| av卡一久久| 亚洲精品久久成人aⅴ小说| 国产亚洲精品第一综合不卡| 国产日韩欧美在线精品| 老熟女久久久| 久久国产精品男人的天堂亚洲| 国产精品久久久av美女十八| 一个人免费看片子| 在线观看免费视频网站a站| 久久毛片免费看一区二区三区| 十八禁网站网址无遮挡| 成年动漫av网址| 欧美激情极品国产一区二区三区| 国产色婷婷99| 国产色婷婷99| 久久狼人影院| 十八禁网站网址无遮挡| 99国产精品免费福利视频| 深夜精品福利| 大陆偷拍与自拍| 亚洲av.av天堂| 日本欧美视频一区| 1024视频免费在线观看| 国产免费现黄频在线看| 午夜老司机福利剧场| 欧美人与性动交α欧美软件| 五月天丁香电影| 久久久久久久国产电影| 精品少妇内射三级| 午夜福利视频在线观看免费| 国产精品麻豆人妻色哟哟久久| 国产免费又黄又爽又色| 飞空精品影院首页| 欧美亚洲日本最大视频资源| 亚洲三区欧美一区| 男人爽女人下面视频在线观看| 99久久综合免费| 毛片一级片免费看久久久久| 夜夜骑夜夜射夜夜干| 成年人午夜在线观看视频| 一级黄片播放器| 三上悠亚av全集在线观看| 老女人水多毛片| 欧美在线黄色| 高清视频免费观看一区二区| 性高湖久久久久久久久免费观看| 熟女电影av网| 大话2 男鬼变身卡| 欧美日韩成人在线一区二区| 精品久久久久久电影网| 欧美少妇被猛烈插入视频| 大片电影免费在线观看免费| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| av福利片在线| 美国免费a级毛片| 97在线人人人人妻| 制服丝袜香蕉在线| 大码成人一级视频| 下体分泌物呈黄色| 熟女av电影| 国产精品国产三级专区第一集| 成人影院久久| 老汉色∧v一级毛片| 深夜精品福利| 久久久精品国产亚洲av高清涩受| 国语对白做爰xxxⅹ性视频网站| 亚洲伊人色综图| 午夜福利在线免费观看网站| 大码成人一级视频| 99热全是精品| 国产精品.久久久| 日韩不卡一区二区三区视频在线| 一本久久精品| 在线观看免费视频网站a站| 精品人妻偷拍中文字幕| 校园人妻丝袜中文字幕| 亚洲精品国产av蜜桃| 美女高潮到喷水免费观看| 欧美bdsm另类| 一本久久精品| 久久毛片免费看一区二区三区| 免费高清在线观看视频在线观看| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 欧美黄色片欧美黄色片| 欧美最新免费一区二区三区| 美女脱内裤让男人舔精品视频| 日本色播在线视频| 高清av免费在线| 我要看黄色一级片免费的| 伊人久久大香线蕉亚洲五| 国产成人午夜福利电影在线观看| 香蕉丝袜av| 久久久久精品久久久久真实原创| 91久久精品国产一区二区三区| 午夜老司机福利剧场| 18禁动态无遮挡网站| 国产av一区二区精品久久| 免费观看av网站的网址| 中文字幕人妻熟女乱码| 在线观看国产h片| 超碰成人久久| 成人二区视频| 精品亚洲成国产av| 性高湖久久久久久久久免费观看| 欧美日韩成人在线一区二区| 激情五月婷婷亚洲| 久久青草综合色| 国产精品久久久久成人av| 亚洲av综合色区一区| 美女午夜性视频免费| 国产av码专区亚洲av| 一区二区av电影网| 男女高潮啪啪啪动态图| 午夜福利视频精品| 亚洲欧美一区二区三区久久| av网站在线播放免费| 久久99热这里只频精品6学生| 欧美国产精品va在线观看不卡| 美女视频免费永久观看网站| 一级爰片在线观看| 女人久久www免费人成看片| 亚洲情色 制服丝袜| 91在线精品国自产拍蜜月| 最近2019中文字幕mv第一页| 久久久国产欧美日韩av| 国产欧美亚洲国产| av网站免费在线观看视频| 99香蕉大伊视频| 91在线精品国自产拍蜜月| 久久精品国产鲁丝片午夜精品| 欧美激情高清一区二区三区 | 制服诱惑二区| 国产成人a∨麻豆精品| 丝袜喷水一区| 成人手机av| 一区二区三区四区激情视频| 亚洲国产精品国产精品| 天天操日日干夜夜撸| 黄片播放在线免费| 亚洲欧美色中文字幕在线| 男女边摸边吃奶| 天美传媒精品一区二区| 午夜影院在线不卡| 免费观看a级毛片全部| av电影中文网址| 成年女人在线观看亚洲视频| 日韩伦理黄色片| 国产精品久久久久成人av| 少妇被粗大的猛进出69影院| 久久久久精品久久久久真实原创| 97人妻天天添夜夜摸| 99re6热这里在线精品视频| 搡女人真爽免费视频火全软件| 老司机亚洲免费影院| 少妇的逼水好多| 成人黄色视频免费在线看| 咕卡用的链子| 久久亚洲国产成人精品v| 26uuu在线亚洲综合色| 超碰成人久久| 欧美激情极品国产一区二区三区| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区蜜桃| 日韩一本色道免费dvd| 校园人妻丝袜中文字幕| 波多野结衣av一区二区av| 91午夜精品亚洲一区二区三区| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 视频在线观看一区二区三区| 午夜91福利影院| 国产av一区二区精品久久| 欧美日韩一级在线毛片| 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| 少妇人妻久久综合中文| 国产精品国产三级国产专区5o| 五月开心婷婷网| 2018国产大陆天天弄谢| 国产爽快片一区二区三区| 国产福利在线免费观看视频| 日日爽夜夜爽网站| 丁香六月天网| 午夜日本视频在线| 久久国内精品自在自线图片| 不卡视频在线观看欧美| xxx大片免费视频| 麻豆精品久久久久久蜜桃| 黑丝袜美女国产一区| 精品一区在线观看国产| 精品亚洲成国产av| 五月伊人婷婷丁香| 亚洲精品成人av观看孕妇| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 亚洲图色成人| 久久精品亚洲av国产电影网| 亚洲国产色片| 欧美最新免费一区二区三区| 午夜免费鲁丝| 午夜免费观看性视频| 哪个播放器可以免费观看大片| 国产精品久久久久成人av| 欧美+日韩+精品| 最近最新中文字幕免费大全7| 三级国产精品片| 久久国产精品大桥未久av| 欧美精品av麻豆av| 欧美精品高潮呻吟av久久| 两性夫妻黄色片| av不卡在线播放| 午夜福利,免费看| 免费不卡的大黄色大毛片视频在线观看| 日韩中文字幕欧美一区二区 | 国产在线视频一区二区| 亚洲精品国产色婷婷电影| 伊人久久大香线蕉亚洲五| a级毛片在线看网站| 大片免费播放器 马上看| 考比视频在线观看| 亚洲国产欧美在线一区| 97在线人人人人妻| 久久精品国产自在天天线| 男人爽女人下面视频在线观看| 美女高潮到喷水免费观看| 黑人猛操日本美女一级片| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 99热全是精品| 男的添女的下面高潮视频| 好男人视频免费观看在线| 亚洲第一青青草原| www.精华液| 性色av一级| 欧美精品高潮呻吟av久久| 亚洲欧美中文字幕日韩二区| 欧美精品高潮呻吟av久久| 国产有黄有色有爽视频| 免费不卡的大黄色大毛片视频在线观看| 精品国产国语对白av| 国产精品久久久av美女十八| 男女免费视频国产| 日韩中文字幕视频在线看片| 免费日韩欧美在线观看| 久久精品熟女亚洲av麻豆精品| 中文天堂在线官网| 色哟哟·www| 韩国av在线不卡| 国产探花极品一区二区| 日韩中字成人| 嫩草影院入口| 老女人水多毛片| 人成视频在线观看免费观看| 一级毛片电影观看| 激情视频va一区二区三区| 日本黄色日本黄色录像| 日韩精品有码人妻一区| 久久精品国产综合久久久| 日本91视频免费播放| 中文字幕另类日韩欧美亚洲嫩草| 国产精品欧美亚洲77777| 精品人妻一区二区三区麻豆| 日韩伦理黄色片| 欧美成人午夜精品| 久久久久久久久久久久大奶| 五月天丁香电影| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 日韩视频在线欧美| 国产一区亚洲一区在线观看| 两个人看的免费小视频| 欧美在线黄色| 国产一区亚洲一区在线观看| 波多野结衣av一区二区av| 免费播放大片免费观看视频在线观看| 久热久热在线精品观看| 国产精品偷伦视频观看了| www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 亚洲av电影在线观看一区二区三区| 在线观看一区二区三区激情| 亚洲一级一片aⅴ在线观看| 丝袜在线中文字幕| 青草久久国产| 三级国产精品片| 中文天堂在线官网| 9热在线视频观看99| 久久国产精品大桥未久av| 久久精品久久精品一区二区三区| 国产探花极品一区二区| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 黑人猛操日本美女一级片| 天天影视国产精品| 成年女人毛片免费观看观看9 | 欧美国产精品一级二级三级| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 自线自在国产av| 波多野结衣一区麻豆| 日韩一区二区三区影片| 免费高清在线观看视频在线观看| 国产日韩欧美视频二区| 亚洲精品视频女| 亚洲精品日本国产第一区| 精品国产一区二区三区久久久樱花| 国精品久久久久久国模美| 高清视频免费观看一区二区| 欧美日韩视频高清一区二区三区二| 久久毛片免费看一区二区三区| av网站在线播放免费| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 成年av动漫网址| 男人操女人黄网站| 欧美成人精品欧美一级黄| 成人手机av| 国产精品国产三级国产专区5o| 一级片免费观看大全| 午夜91福利影院| videosex国产| 美女福利国产在线| 久久女婷五月综合色啪小说| 久久97久久精品| 国产探花极品一区二区| 国精品久久久久久国模美| 99国产精品免费福利视频| 亚洲国产精品一区三区| 亚洲男人天堂网一区| 久久影院123| 久热这里只有精品99| 亚洲精品国产一区二区精华液| 国产成人精品一,二区| 亚洲一级一片aⅴ在线观看| 亚洲av综合色区一区| 国产精品成人在线| 美女视频免费永久观看网站| 欧美bdsm另类| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| www.自偷自拍.com| 亚洲国产av影院在线观看| 久久久久久人妻| 看非洲黑人一级黄片| 婷婷成人精品国产| 亚洲天堂av无毛| 老汉色∧v一级毛片| 国产一区二区三区av在线| 热re99久久精品国产66热6| 这个男人来自地球电影免费观看 | av视频免费观看在线观看| 国产精品三级大全| 免费看不卡的av| 欧美另类一区| 1024香蕉在线观看| 久久久久久久久免费视频了| 亚洲国产日韩一区二区| 精品少妇内射三级| 99国产综合亚洲精品| 一区二区三区乱码不卡18| 精品国产一区二区三区久久久樱花| 精品国产国语对白av| 老司机影院毛片| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 亚洲国产精品成人久久小说| 成人毛片60女人毛片免费| 不卡av一区二区三区| 午夜福利在线观看免费完整高清在| 最近手机中文字幕大全| 亚洲欧美一区二区三区黑人 | 国产黄频视频在线观看| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 国产亚洲欧美精品永久| 久久久久久久亚洲中文字幕| 色哟哟·www| 亚洲人成网站在线观看播放| 青春草亚洲视频在线观看| 免费在线观看完整版高清| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 国产精品久久久久久av不卡| 亚洲成人av在线免费| 久久午夜福利片| 熟女电影av网| a 毛片基地| 国产精品 国内视频| 侵犯人妻中文字幕一二三四区| freevideosex欧美| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 韩国精品一区二区三区| 亚洲精品乱久久久久久| 秋霞伦理黄片| 在线观看国产h片| 91精品三级在线观看| 人人澡人人妻人| 国产欧美亚洲国产| 咕卡用的链子| 中文天堂在线官网| 在线观看www视频免费| 婷婷色综合大香蕉| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 黄片小视频在线播放| 国产综合精华液| 黄色配什么色好看| 亚洲综合精品二区| 电影成人av| 建设人人有责人人尽责人人享有的| 国产 一区精品| 熟妇人妻不卡中文字幕| 亚洲成国产人片在线观看| 国产淫语在线视频| 国产精品女同一区二区软件| 久久久久久久久久久免费av| 婷婷色综合www| 亚洲精品aⅴ在线观看| 777久久人妻少妇嫩草av网站| 男女边摸边吃奶| 另类精品久久| 亚洲欧洲国产日韩| 少妇精品久久久久久久| 国产精品三级大全| 一区二区日韩欧美中文字幕| 成年女人毛片免费观看观看9 | 妹子高潮喷水视频| 男女午夜视频在线观看| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 亚洲精华国产精华液的使用体验| 亚洲欧洲日产国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影观看| 精品一区二区三区四区五区乱码 | 中国三级夫妇交换| 九九爱精品视频在线观看| 午夜日本视频在线| 一区二区三区四区激情视频| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 亚洲成人手机| 日本黄色日本黄色录像| 亚洲av电影在线观看一区二区三区| 在线观看免费视频网站a站| 中文字幕色久视频| 高清在线视频一区二区三区| 久久久久精品久久久久真实原创| 国产精品久久久久久久久免| 91国产中文字幕| 精品少妇一区二区三区视频日本电影 | 亚洲av国产av综合av卡| 老司机亚洲免费影院| 欧美激情高清一区二区三区 | 国产高清不卡午夜福利| 咕卡用的链子| 日韩人妻精品一区2区三区| 久久久精品区二区三区| 亚洲伊人久久精品综合| 久久狼人影院| 日韩成人av中文字幕在线观看| 国产精品一区二区在线观看99| 我要看黄色一级片免费的| 亚洲激情五月婷婷啪啪| 天天躁夜夜躁狠狠躁躁| 大片电影免费在线观看免费| 亚洲在久久综合| 咕卡用的链子| 亚洲一区二区三区欧美精品| 美女视频免费永久观看网站| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 国产成人av激情在线播放| 亚洲av电影在线进入| 老司机亚洲免费影院| 亚洲精品,欧美精品| 丝瓜视频免费看黄片| 久久久久国产一级毛片高清牌| 亚洲欧美成人精品一区二区| 亚洲婷婷狠狠爱综合网| 伊人亚洲综合成人网| 丝袜在线中文字幕| 国产一区亚洲一区在线观看| 深夜精品福利| 又黄又粗又硬又大视频| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲av天美| 777米奇影视久久| 国产成人一区二区在线| 99九九在线精品视频| 欧美精品一区二区大全| 久久久久久人人人人人| 一本—道久久a久久精品蜜桃钙片| 两个人免费观看高清视频| 久久ye,这里只有精品| 亚洲经典国产精华液单| 五月天丁香电影| 制服诱惑二区| 在线观看一区二区三区激情| 观看美女的网站| 国产熟女欧美一区二区| 丰满饥渴人妻一区二区三| 精品久久久久久电影网| 久久久欧美国产精品| 丝袜美足系列| 麻豆av在线久日| 熟妇人妻不卡中文字幕| 欧美国产精品一级二级三级| 女人久久www免费人成看片| 美女国产高潮福利片在线看| 亚洲熟女精品中文字幕| 欧美在线黄色| 亚洲,一卡二卡三卡| 制服丝袜香蕉在线| 国产精品久久久久久久久免| 欧美精品国产亚洲| 久久鲁丝午夜福利片| 女性被躁到高潮视频| 国产熟女午夜一区二区三区| 亚洲国产看品久久| 最近中文字幕高清免费大全6| 国产成人精品久久久久久| 国产精品久久久久久精品古装| 女人精品久久久久毛片| 午夜福利,免费看| 婷婷色综合www| 成人手机av| 国产精品麻豆人妻色哟哟久久| 天堂8中文在线网| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品人妻al黑| 成年人午夜在线观看视频| 看非洲黑人一级黄片| 秋霞伦理黄片| 王馨瑶露胸无遮挡在线观看| 视频在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 国产亚洲午夜精品一区二区久久| 国产精品不卡视频一区二区| 久久97久久精品| 黄频高清免费视频| 亚洲av综合色区一区| 99热网站在线观看| 美女中出高潮动态图| 国产精品欧美亚洲77777| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站| 亚洲av.av天堂| 亚洲男人天堂网一区| 欧美国产精品va在线观看不卡| 69精品国产乱码久久久| 亚洲国产看品久久| 国产精品久久久久久av不卡| 18在线观看网站| 极品少妇高潮喷水抽搐| 丰满迷人的少妇在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产欧美日韩在线播放| 午夜久久久在线观看| 波野结衣二区三区在线| 亚洲精品成人av观看孕妇| 成人国语在线视频| 亚洲精品美女久久av网站| 水蜜桃什么品种好| 亚洲综合色惰| 99re6热这里在线精品视频| 国产片特级美女逼逼视频| 最新中文字幕久久久久| 国产不卡av网站在线观看| 又黄又粗又硬又大视频| 日韩中字成人| 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 99香蕉大伊视频| 另类亚洲欧美激情| 春色校园在线视频观看| 美女主播在线视频| 久热这里只有精品99| 人妻人人澡人人爽人人| 哪个播放器可以免费观看大片| 秋霞伦理黄片| 国语对白做爰xxxⅹ性视频网站| 欧美日韩视频精品一区| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美网| 中文欧美无线码| 秋霞伦理黄片| av电影中文网址| 中文字幕人妻熟女乱码| 免费看不卡的av| 免费日韩欧美在线观看| 久久久精品国产亚洲av高清涩受| 午夜福利,免费看| 下体分泌物呈黄色| 日日撸夜夜添| 久久鲁丝午夜福利片| 亚洲五月色婷婷综合| 大码成人一级视频| 午夜福利在线免费观看网站| 成人二区视频| 男女国产视频网站|