王 會,何 偉,段福建,胡國慶,婁燕宏,宋付朋,諸葛玉平
?
秸稈還田對鹽漬土團(tuán)聚體穩(wěn)定性及碳氮含量的影響
王 會,何 偉,段福建,胡國慶,婁燕宏,宋付朋,諸葛玉平※
(土肥資源高效利用國家工程實(shí)驗(yàn)室,山東農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,泰安 271018)
以黃河三角洲典型鹽化潮土為研究對象,分析了3種鹽漬化程度(輕度、中度、重度)和3 a連續(xù)秸稈還田下土壤水穩(wěn)性團(tuán)聚體組成、穩(wěn)定性以及各級團(tuán)聚體C、N含量的變化。研究結(jié)果表明:重度鹽漬土0.25~2 mm和0.053~0.25 mm團(tuán)聚體所占比例顯著低于輕度和中度鹽漬土;土壤鹽分含量與0.25~2 mm團(tuán)聚體中有機(jī)碳和全氮的分配比例、0.053~0.25 mm團(tuán)聚體中全氮的分配比例成顯著負(fù)相關(guān)。秸稈還田使輕度鹽漬土平均重量直徑(MWD)、幾何平均直徑(GMD)和>0.25 mm團(tuán)聚體所占比例(0.25)分別增加47.6%、39.7%和54.0%,使中度鹽漬土MWD、GMD和0.25分別增加31.0%、31.9%和31.4%;各粒級中秸稈還田使輕度鹽漬土0.053~0.25 mm粒級有機(jī)碳和全氮含量增加最多,增加比例分別為29.1%和28.8%,該粒級中C、N分配比例也顯著提高;秸稈還田使中度鹽漬土0.25~2 mm團(tuán)聚體有機(jī)碳及其分配比例提高最多,比例分別為56.1%和58.7%。秸稈還田對輕度和中度鹽漬土團(tuán)聚體的穩(wěn)定性均起到了明顯的改善作用,但不同鹽漬土秸稈還田對土壤團(tuán)聚體C、N分布的影響明顯不同。
土壤;有機(jī)碳;團(tuán)聚體;秸稈;全氮;鹽化潮土
土壤團(tuán)聚體是土壤肥力的物理基礎(chǔ),是土壤有機(jī)質(zhì)保持的場所,與土壤養(yǎng)分保持和供給、微生物數(shù)量及活性等密切相關(guān)[1-3]。以250m為界限,可將團(tuán)聚體分為大團(tuán)聚體(>250m)和微團(tuán)聚體(<250m),不同團(tuán)聚體粒級對C、N等養(yǎng)分的保護(hù)機(jī)制和供給能力不同[4-5]。一般認(rèn)為,大團(tuán)聚體中的C、N以物理保護(hù)為主,多為植物來源,周轉(zhuǎn)速度快;微團(tuán)聚體中的C、N以化學(xué)保護(hù)為主,多為微生物來源,周轉(zhuǎn)速度慢[2,6]。充分認(rèn)識各種自然條件下土壤團(tuán)聚體組成和C、N分布特征以及農(nóng)業(yè)管理措施的影響,對于利用團(tuán)聚體功能來調(diào)控管理土壤養(yǎng)分庫具有重要意義。
黃河三角洲鹽堿地是中國重要的后備土地資源,該區(qū)土壤由黃河沖積母質(zhì)發(fā)育而來,質(zhì)地較輕,不利于土壤團(tuán)聚體形成。受海水浸灌影響,土壤中Na+、K+、Cl-等可溶性鹽分含量較高,更加不利于土壤顆粒的凝聚膠結(jié)和土壤養(yǎng)分的保持,肥力水平總體較低,限制了農(nóng)田生產(chǎn)力提升和區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展。秸稈還田一方面可有效改善土壤水鹽環(huán)境,另一方面可提供團(tuán)聚體形成所需的膠結(jié)物質(zhì),被認(rèn)為是改良鹽漬土的有效手段[7-8]。盡管添加秸稈對土壤團(tuán)聚體穩(wěn)定性的提升效果已在棕壤、砂姜黑土等多種土壤上證實(shí)[9-10],其對團(tuán)聚體中C、N分布的影響卻尚未得出一致的結(jié)論:如關(guān)松等[11]對吉林黑土、徐國鑫等[12]對四川紫色土的田間試驗(yàn)均發(fā)現(xiàn)秸稈還田降低了0.25~2 mm大團(tuán)聚體和0.053~0.25 mm微團(tuán)聚體有機(jī)碳貢獻(xiàn)率;而解鈺等[13]對水稻土、張玥琪等[14]對棕壤的長期定位研究則發(fā)現(xiàn)添加秸稈可顯著增加0.25~2 mm大團(tuán)聚體中碳對總有機(jī)碳的貢獻(xiàn)率,土壤類型可能是導(dǎo)致這種不一致的重要因素。而關(guān)于秸稈還田如何影響濱海鹽漬土團(tuán)聚體組成及C、N含量,至今尚不清楚。
本研究以黃河三角洲典型鹽化潮土為供試土壤,通過分析土壤水穩(wěn)性團(tuán)聚體組成、穩(wěn)定性以及各級團(tuán)聚體C、N含量的變化,探討鹽漬化程度以及連續(xù)秸稈還田(3 a)對鹽化潮土團(tuán)聚體組成及C、N分布的影響,為進(jìn)一步認(rèn)識團(tuán)聚體組成及養(yǎng)分分布特征沿土壤鹽分梯度的變化規(guī)律、全面了解濱海鹽漬土改良措施的培肥效果提供科學(xué)依據(jù)。
試驗(yàn)地位于山東省濱州市無棣縣境內(nèi)山東農(nóng)業(yè)大學(xué)無棣綜合試驗(yàn)站即“渤海糧倉”示范區(qū)(117°55′-117°57′E,37°55′-37°56′N),該地區(qū)年平均氣溫11.5 ℃,年降雨量600 mm,地下水礦化度為6.86 g/L。供試土壤于2017年4月采集自“渤海糧倉”示范區(qū)輕度、中度和重度鹽化潮土樣地。輕度和中度鹽漬土秸稈還田試驗(yàn)布設(shè)于2014年秋季,均采用小麥-玉米一年兩熟輪作制,分別布設(shè)了對照(秸稈不還田)和秸稈還田2個(gè)處理(每處理面積5 m× 24 m=120 m2),試驗(yàn)開始前土壤全鹽含量分別為1.91‰和3.37‰,有機(jī)質(zhì)含量分別為16.39和15.03 g/kg,全氮含量分別為0.78和0.88 g/kg;參照當(dāng)?shù)馗鞴芾砹?xí)慣,秸稈還田處理采用小麥玉米秸稈雙還田制度,冬小麥?zhǔn)斋@時(shí)(6月上旬)采用聯(lián)合收割機(jī)進(jìn)行秸稈粉碎和秸稈全量覆蓋還田,玉米收獲后(10月上旬)使用秸稈粉碎機(jī)粉碎玉米秸稈,借助旋耕機(jī)對秸稈進(jìn)行耕翻還田(還田深度約15 cm),秸稈不還田處理作物收獲時(shí)將秸稈全部移除,其他田間管理與當(dāng)?shù)亓?xí)慣一致。重度鹽漬土樣地為“光板地”,土壤全鹽含量6.33‰,采樣時(shí)僅有少量耐鹽植物生長,無法種植小麥、玉米,故未設(shè)置秸稈還田試驗(yàn)。
本研究共采集5種鹽漬土:(1)輕度鹽漬土(LCK):秸稈不還田,化肥施用量單季N-P2O5-K2O:225-150-75 kg/hm2;(2)輕度鹽漬土+秸稈(LS):秸稈還田,小麥秸稈還田量約6.2 t/hm2,玉米秸稈還田量約6.5 t/hm2,化肥施用量單季N-P2O5-K2O:225-150- 75 kg/hm2;(3)中度鹽漬土(MCK):秸稈不還田,化肥施用量單季N-P2O5-K2O:225-75-75 kg/hm2;(4)中度鹽漬土+秸稈(MS):秸稈還田,小麥秸稈還田量約3.7 t/hm2,玉米秸稈還田量約3.6 t/hm2,化肥施用量單季N-P2O5-K2O:225-75-75 kg/hm2;(5)重度鹽漬土(HCK):光板地,無肥料和秸稈施用。采樣時(shí)每個(gè)樣地內(nèi)隨機(jī)選擇5點(diǎn),每點(diǎn)用鐵鍬采集20 cm深、20 cm長、10 cm寬的原狀土壤樣品,采集過程中盡量避免對土壤結(jié)構(gòu)的破壞,樣品混勻帶回實(shí)驗(yàn)室自然風(fēng)干,風(fēng)干過程中沿土樣自然結(jié)構(gòu)面掰成直徑約1 cm的小塊,用于水穩(wěn)性團(tuán)聚體的試驗(yàn)分析。
土壤團(tuán)聚體分級采用濕篩法,所采集5種鹽漬土分別稱取3份,每份200 g,具體分析方法參考文獻(xiàn)[15-16]:土樣用蒸餾水浸潤20 min后倒入不銹鋼套篩,套篩孔徑分別為2、0.25和0.053 mm,運(yùn)用團(tuán)聚體分析儀,在20 r/min下豎直上下篩動15 min,將原狀土篩分為>2、0.25~2、0.053~0.25和<0.053 mm 4個(gè)團(tuán)聚體級別,其中<0.053 mm團(tuán)聚體經(jīng)靜置沉降后獲得。轉(zhuǎn)移各級別團(tuán)聚體至小燒杯中,50 ℃下烘干稱質(zhì)量,計(jì)算各級別水穩(wěn)性團(tuán)聚體的百分組成,同時(shí)將烘干的各組分磨細(xì)過60目篩,待測土壤有機(jī)碳(SOC)和全氮(TN)含量。
4個(gè)級別(>2、0.25~2、0.053~0.25和<0.053 mm)團(tuán)聚體的SOC和TN含量采用常規(guī)方法測定:SOC采用K2Cr2O7氧化法(外加熱法)測定;TN采用半微量凱氏法測定。
某級團(tuán)聚體百分含量=該級團(tuán)聚體質(zhì)量/稱取原狀土質(zhì)量×100%。根據(jù)各級別團(tuán)聚體所占比例,計(jì)算平均重量直徑(MWD,mm)、幾何平均直徑(GMD,mm)和>0.25 mm團(tuán)聚體所占比例(0.25,%)以評價(jià)團(tuán)聚體穩(wěn)定性,計(jì)算公式如下
式中d為級團(tuán)聚體平均直徑,mm;w為級團(tuán)聚體所占比例;m為土壤不同粒級團(tuán)聚體的質(zhì)量,g;M為團(tuán)聚體總質(zhì)量,g。
團(tuán)聚體對土壤碳氮的貢獻(xiàn)率(%)=[該級團(tuán)聚體中碳氮含量(g/kg)×該級團(tuán)聚體百分含量]/全土碳氮含量(g/kg)×100%,式中全土碳氮含量為4個(gè)團(tuán)聚體級別的加權(quán)值,即4個(gè)粒級的碳氮含量分別乘以對應(yīng)級別的質(zhì)量百分比并加和。
小麥玉米測產(chǎn)采用實(shí)打?qū)嵤辗绞剑魈幚砣斯な斋@,PM8188濕度測量儀測定籽粒含水量,記錄產(chǎn)量。
采用Excel 2013進(jìn)行數(shù)據(jù)整理和作圖,采用SPSS 18.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)和單因素方差分析,多重比較采用Duncan新復(fù)極差法,差異顯著性水平采用< 0.05。圖表中所有數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)誤差。
鹽漬化程度對土壤有機(jī)碳(SOC)和速效鉀(AK)含量有顯著影響:鹽漬化程度越高,SOC含量越低,AK含量越高(表1)。秸稈還田可顯著提高SOC和AK含量,與LCK相比,輕度鹽漬土秸稈還田(LS)使SOC、AK分別增加20.2%和24.3%;與MCK相比,中度鹽漬土秸稈還田(MS)使SOC含量顯著增加,增加比例達(dá)35.2%。秸稈還田使輕度鹽漬土TN含量增加20.0%,但對中度鹽漬土TN含量影響不顯著(>0.05)。秸稈還田未顯著降低土壤pH值和全鹽含量(>0.05)。秸稈還田下土壤有效磷在輕度和中度鹽漬土上的變化趨勢不一致,可能與有效磷空間變異較大有關(guān)。鹽漬化程度和秸稈還田對土壤機(jī)械組成的影響均不顯著(>0.05)。
鹽漬化程度和秸稈還田對鹽漬土團(tuán)聚體組成和穩(wěn)定性有顯著影響(表2)。對比LCK、MCK和HCK 3種鹽漬土,>2 mm粒級團(tuán)聚體含量無顯著差異,LCK和MCK大團(tuán)聚體(0.25~2 mm)和微團(tuán)聚體(0.053~0.25 mm)含量顯著高于HCK(< 0.05),而<0.053 mm粒級團(tuán)聚體分別比HCK低13.3%和23.1%;MWD、GMD、0.25均以MCK最高,HCK最低,表明鹽分與其他因素共同影響著團(tuán)聚體組成及穩(wěn)定性。輕度和中度鹽漬土秸稈還田使<0.053 mm粒級團(tuán)聚體分別降低17.0%和15.5%。秸稈還田使輕度鹽漬土MWD、GMD和0.25分別增加47.6%、39.7%和54.0%,使中度鹽漬土MWD、GMD和0.25分別增加31.0%、31.9%和31.4%。
表1 不同鹽漬土的基本理化性質(zhì)Table 1 Soil physical and chemical properties of different salinized soils
注:同列中不同字母代表差異達(dá)顯著性水平(<0.05)。砂粒,>0.05 mm;粉粒,0.002~0.05 mm;黏粒,<0.002 mm。LCK,輕度鹽漬土(秸稈不還田);LS,輕度鹽漬土+秸稈;MCK,中度鹽漬土(秸稈不還田);MS,中度鹽漬土+秸稈;HCK,重度鹽漬土,下同。
Note: Different letters in the same column indicate the significant difference at 5% level. Sand, >0.05 mm; silt, 0.002-0.05 mm; clay, <0.002 mm. LCK, light-salinized soil without straw returning; LS, light-salinized soil with straw returning; MCK, moderate-salinized soil without straw returning; MS, moderate-salinized soil with straw returning; HCK, highly-salinized soil. The same below.
表2 不同鹽漬土水穩(wěn)性團(tuán)聚體組成及穩(wěn)定性Table 2 Soil water-stable aggregate composition and stability in different salinized soils
Note:MWD, mean weight diameter; GMD, geometric mean diameter;0.25, the content of >0.25 mm macro-aggregates.
對比同一處理的不同團(tuán)聚體粒級,各處理均以<0.053 mm粒級的SOC含量最低;LCK和LS處理以0.25~2 mm大團(tuán)聚體的SOC含量最高;MCK和MS處理隨土壤團(tuán)聚體粒級增大,SOC含量也逐漸增加;HCK土壤以0.053~0.25 mm粒級的SOC含量最高(圖1)。對比不同鹽漬化程度的土壤,0.25~2 mm大團(tuán)聚體粒級和<0.053 mm粉黏粒粒級SOC含量隨鹽漬化程度增加而降低,>2 mm團(tuán)聚體SOC含量LCK和MCK分別比HCK高23.9%和33.5%。秸稈還田顯著增加多個(gè)團(tuán)聚體粒級的SOC含量,使輕度鹽漬土<0.053、0.053~0.25和>2 mm粒級SOC含量分別增加22.7%、29.1%和21.9%,以0.053~0.25 mm粒級提高最多;隨粒級增大,秸稈還田使中度鹽漬土各粒級SOC含量分別增加15.8%、16.1%、56.1%和36.8%,以0.25~2 mm粒級提高最多(圖1)。
各處理不同團(tuán)聚體粒級對SOC的貢獻(xiàn)率均表現(xiàn)為隨粒級增大而降低(圖2),<0.053 mm粒級對各鹽漬土SOC的貢獻(xiàn)率最大,介于46.0%~66.0%之間,這與該粒級在團(tuán)聚體組成中所占比例較高有關(guān)。對比不同鹽漬化程度的土壤,0.25~2 mm團(tuán)聚體對SOC的貢獻(xiàn)率表現(xiàn)為LCK ≥MCK>HCK,>2 mm和0.053~0.25 mm團(tuán)聚體對SOC的貢獻(xiàn)率在3種鹽漬土間無顯著差異,<0.053 mm粒級對SOC的貢獻(xiàn)率以HCK最高、MS最低。秸稈還田使輕度和中度鹽漬土<0.053 mm粒級對SOC的貢獻(xiàn)率分別降低18.3%和21.5%,同時(shí)使其他各級團(tuán)聚體對SOC的貢獻(xiàn)率有增加的趨勢,其中輕度鹽漬土以0.053~0.25 mm粒級增加效果最明顯,增幅為33.2%,中度鹽漬土以0.25~2 mm粒級增加效果最明顯,增幅為58.7%。
注:同一粒級團(tuán)聚體柱上不同字母代表處理間差異達(dá)顯著性水平(P<0.05),下同。
圖2 不同鹽漬土各團(tuán)聚體組分有機(jī)碳(SOC)對全土有機(jī)碳的貢獻(xiàn)率
各處理不同粒級團(tuán)聚體中的TN含量以<0.053 mm粒級最低,LCK、MS以0.25~2 mm大團(tuán)聚體的TN含量最高;LS、MCK以0.053~0.25 mm微團(tuán)聚體的TN含量最高(圖3)。對比3種不同鹽漬化程度的土壤,>2 mm和0.25~2 mm團(tuán)聚體TN含量均隨鹽漬化程度的增加而降低,中度鹽漬土0.053~0.25 mm微團(tuán)聚體TN含量最高而<0.053 mm粒級TN含量最低。輕度鹽漬土秸稈還田顯著降低>2 mm和0.25~2 mm團(tuán)聚體TN含量,降低幅度分別為18.4%和21.2%,使0.053~0.25 mm微團(tuán)聚體TN含量增加了28.8%;中度鹽漬土秸稈還田則顯著降低0.053~0.25 mm微團(tuán)聚體TN含量,降低幅度達(dá)62.1%,同時(shí)使<0.053 mm粒級TN含量增加1.1倍。
圖3 不同鹽漬土水穩(wěn)性團(tuán)聚體中土壤全氮(TN)含量
鹽漬土不同水穩(wěn)性團(tuán)聚體TN的貢獻(xiàn)率表現(xiàn)出與SOC不同的規(guī)律(圖4):除HCK外,對全土TN貢獻(xiàn)率最大的粒級均不是<0.053 mm,其中LCK、LS、MCK處理TN的貢獻(xiàn)率以0.053~0.25 mm最大,分別為39.9%、53.2%和54.7%,MS處理TN的貢獻(xiàn)率以0.25~2 mm最大,為32.7%。對比3種鹽漬土,0.25~2 mm團(tuán)聚體TN的貢獻(xiàn)率表現(xiàn)為LCK≥MCK>HCK,0.053~0.25 mm團(tuán)聚體TN的貢獻(xiàn)率表現(xiàn)為MCK>LCK>HCK,而<0.053 mm粒級TN貢獻(xiàn)率的變化規(guī)律正好相反。輕度鹽漬土秸稈還田使0.053~0.25 mm團(tuán)聚體TN的貢獻(xiàn)率增加33.6%,使<0.053 mm粒級TN的貢獻(xiàn)率降低43.9%;中度鹽漬土秸稈還田則表現(xiàn)出完全相反的規(guī)律,使0.053~0.25 mm團(tuán)聚體TN的貢獻(xiàn)率降低50.9%,而<0.053 mm粒級TN的貢獻(xiàn)率提高0.9倍。
圖4 不同鹽漬土各團(tuán)聚體組分全氮對全土全氮的貢獻(xiàn)率
作物產(chǎn)量數(shù)據(jù)表明,輕度鹽漬土5個(gè)生長季小麥、玉米產(chǎn)量均顯著高于中度鹽漬土(<0.05),秸稈還田處理的作物產(chǎn)量整體上高于秸稈不還田處理(表3)。秸稈還田后的第一個(gè)生長季(2014-2015冬小麥生長季),輕度鹽漬土和中度鹽漬土冬小麥產(chǎn)量均略有降低,但之后4個(gè)生長季秸稈還田處理的作物產(chǎn)量相對秸稈不還田處理均有不同程度增加,其中輕度鹽漬土2016年小麥季增產(chǎn)4.56%、玉米季增產(chǎn)6.62%,中度鹽漬土2017年小麥季增產(chǎn)13.47%,增產(chǎn)效果均達(dá)到了顯著性水平(<0.05)。就5個(gè)生長季總體而言,秸稈還田使輕度鹽漬土和中度鹽漬土作物產(chǎn)量分別增加3.22%和3.48%。
表3 不同處理下的小麥-玉米產(chǎn)量(2015年6月-2017年6月)Table 3 Yield of wheat and corn under different treatments (June 2015-June 2017)
本研究結(jié)果表明,輕度(LCK)和中度鹽漬土(MCK)的MWD、GMD及0.25整體高于重度鹽漬土(HCK)(表2)。土壤鹽分含量對團(tuán)聚體組成和穩(wěn)定性的影響可能通過直接和間接兩個(gè)方面體現(xiàn):直接影響體現(xiàn)在土壤中一價(jià)陽離子如Na+、K+等的增加會直接降低土壤膠粒的凝聚性,不利于土壤微團(tuán)聚體的形成;間接影響體現(xiàn)在土壤鹽分含量可能通過影響土壤有機(jī)物質(zhì)積累、微生物群落結(jié)構(gòu)及活性等影響土壤團(tuán)聚體組成及穩(wěn)定性[17-18]。有機(jī)物質(zhì)如腐殖質(zhì)、微生物分泌物、真菌菌絲等是土壤團(tuán)聚體形成的重要膠結(jié)劑,但前人研究表明土壤鹽分含量增加會減少微生物量、降低真菌細(xì)菌比、與土壤有機(jī)質(zhì)含量下降密切相關(guān)[19-20],均對土壤顆粒的膠結(jié)復(fù)合有負(fù)面影響。在較低鹽分含量下,鹽漬化程度增加對團(tuán)聚體穩(wěn)定性的負(fù)面效應(yīng)表現(xiàn)不明顯,主要體現(xiàn)在輕度鹽漬土MWD、GMD及0.25未高于中度鹽漬土(表2)。本研究結(jié)果表明鹽分含量對團(tuán)聚體組成及穩(wěn)定性的影響可能存在一個(gè)臨界值,大于該值鹽分含量通過其直接影響對土壤團(tuán)聚體組成及穩(wěn)定性起主導(dǎo)作用,小于該值鹽分含量對土壤團(tuán)聚體組成及穩(wěn)定性影響不大,有機(jī)物質(zhì)含量、耕作管理措施等可能是主要影響因素,有關(guān)該臨界值的數(shù)值或范圍有待進(jìn)一步探索。
本試驗(yàn)中,對<2 mm水穩(wěn)性團(tuán)聚體,輕度鹽漬土團(tuán)聚體碳含量隨團(tuán)聚體粒級增大而增大,中度鹽漬土團(tuán)聚體碳含量在不同粒級間變化不大,重度鹽漬土團(tuán)聚體碳含量以0.053~0.25 mm粒級最高,意味著不同鹽漬土有機(jī)碳穩(wěn)定機(jī)制可能不同。隨團(tuán)聚體粒級的降低,3種鹽漬土團(tuán)聚體碳的分配比例均逐漸增加,這與前人對砂姜黑土[10]、黑土[11]、紫色土[12]、黑壚土[21]等的研究結(jié)果不一致。前人研究多表明團(tuán)聚體有機(jī)碳對總有機(jī)碳的貢獻(xiàn)率以0.25~2 mm大團(tuán)聚體最高,本研究中土壤顆粒組成以粉粒為主而黏粒含量較低,不利于微團(tuán)聚體和大團(tuán)聚體形成,<0.053 mm粉黏粒在團(tuán)聚體組成中所占比例較高,徐國鑫等[12]在質(zhì)地較輕的紫色土上發(fā)現(xiàn)<0.053 mm粉黏粒對總有機(jī)碳的貢獻(xiàn)率僅次于0.25~2 mm大團(tuán)聚體也與此有關(guān)。各團(tuán)聚體粒級中有機(jī)碳的分配比例在輕度和中度鹽漬土間無顯著差異,輕度和中度鹽漬土0.25~2 mm大團(tuán)聚體中有機(jī)碳的分配比例顯著高于重度鹽漬土,<0.053 mm粉黏粒中有機(jī)碳的分配比例分別比重度鹽漬土低2.22%和7.44%,說明與鹽分含量對團(tuán)聚體穩(wěn)定性的影響一致,鹽分含量對團(tuán)聚體碳分布的影響可能也存在一個(gè)臨界值。
劉震等[22]的研究表明,氮素在黑土和紅壤上均主要儲存于<53m微團(tuán)聚體中,而本研究則發(fā)現(xiàn)鹽化潮土上氮素在<53m粒級的全氮含量最低(圖3),輕度和中度鹽漬土上氮素主要儲存于0.053~0.25 mm微團(tuán)聚體中(圖4),印證了不同土壤的氮素儲存庫不同這一結(jié)論。鹽漬化程度對團(tuán)聚體氮含量和氮分布有顯著影響:>2和0.25~2 mm團(tuán)聚體氮含量均隨鹽漬化程度的增加而降低,土壤鹽分含量與0.25~2 mm大團(tuán)聚體和0.053~0.25 mm小團(tuán)聚體對全氮的貢獻(xiàn)率成極顯著或顯著負(fù)相關(guān),與<0.053 mm粉黏粒對全氮的貢獻(xiàn)率成極顯著正相關(guān)(表4),說明鹽分含量過高會降低土壤中氮素的物理化學(xué)穩(wěn)定性,這與Ardón等[23]對濱海濕地生態(tài)系統(tǒng)的研究發(fā)現(xiàn)鹽分含量增加會導(dǎo)致土壤及水體NH4+濃度增加、生態(tài)系統(tǒng)活性氮輸出量增加一致。
表4 團(tuán)聚體碳氮貢獻(xiàn)率與土壤主要性質(zhì)的相關(guān)系數(shù) (n=15)Table 4 Pearson correlation coefficients between contribution rate of soil aggregates to SOC, TN and soil properties (n=15)
秸稈還田使輕度和中度鹽漬土中<0.053 mm粉黏粒所占比例顯著降低,水穩(wěn)性大團(tuán)聚體(0.25~2 mm)和微團(tuán)聚體(0.053~0.25 mm)所占比例明顯增加(表2)。而解鈺等[13]發(fā)現(xiàn)秸稈施用有助于水稻土0.25~2 mm團(tuán)聚體的形成,減少0.053~0.25 mm和<0.053 mm團(tuán)聚體的含量。本研究對<0.053 mm粉黏粒含量的降低效應(yīng)與其一致,但對0.053~0.25 mm微團(tuán)聚體的作用與其相反,與本研究中鹽漬土團(tuán)聚化程度較低有關(guān),<0.053 mm粉黏粒占比>50%,土壤顆粒多以單粒形式存在,秸稈還田優(yōu)先使單粒黏結(jié)形成復(fù)粒。輕度和中度鹽漬土秸稈還田均對土壤水穩(wěn)性團(tuán)聚體的穩(wěn)定性起到明顯的改善作用,表現(xiàn)在秸稈還田使2種土壤MWD、GMD和0.25均顯著增加(表2),主要是因?yàn)橐环矫娼斩捲诜纸鈺r(shí)產(chǎn)生可產(chǎn)生多糖膠、脂肪等中間產(chǎn)物,同時(shí)有利于土壤腐殖質(zhì)等重要有機(jī)膠結(jié)物質(zhì)的形成[10,12];另一方面秸稈還田能提高微生物活性和促進(jìn)真菌菌群生長,微生物分泌物、真菌菌絲也可使土壤顆粒膠結(jié)復(fù)合[24]。此外,本研究中秸稈還田對輕度鹽漬土MWD、GMD和0.25的增加幅度較中度鹽漬土大(表2),可能與微生物數(shù)量和活性易受鹽分狀況影響[18],導(dǎo)致中度鹽漬土秸稈分解轉(zhuǎn)化相對較慢有關(guān)。
小麥、玉米秸稈通常含碳40%以上,秸稈還田可以提高土壤有機(jī)碳輸入量,減少土壤原有有機(jī)碳分解,增加土壤有機(jī)碳儲量[25]。本研究結(jié)果表明,秸稈還田使輕度和中度鹽漬土總有機(jī)碳含量均顯著提高,輕度鹽漬土以0.053~0.25 mm粒級提高最多,提高比例達(dá)29.1%,中度鹽漬土以0.25~2 mm粒級提高最多,提高比例達(dá)56.1%(圖1);與此相對應(yīng),秸稈還田顯著降低鹽漬土團(tuán)聚體碳在<0.053 mm粒級的分配比例,使輕度鹽漬土團(tuán)聚體碳在0.053~0.25 mm粒級的分配比例和中度鹽漬土團(tuán)聚體碳在0.25~2 mm粒級的分配比例分別提高33.2%和58.7%。這意味著秸稈還田條件下,輕度鹽漬土和中度鹽漬土團(tuán)聚體的形成機(jī)制可能不同:輕度鹽漬土團(tuán)聚體碳含量及分配比例在0.053~0.25 mm粒級增幅最大,顯示其團(tuán)聚體形成更符合Tisdall等[1]“多級團(tuán)聚理論”,即土壤膠粒相互凝聚形成微凝聚體,單粒、微凝聚體通過各種黏結(jié)作用逐級形成復(fù)粒、微團(tuán)聚體和大團(tuán)聚體,本研究中供試土壤機(jī)械組成以粉粒為主,膠體特性相對較弱,添加秸稈等有機(jī)物料后優(yōu)先形成微團(tuán)聚體;中度鹽漬土團(tuán)聚體碳含量及分配比例在0.25~2 mm粒級增幅最大,意味著其團(tuán)聚體形成更符合Elliott等[26]“大團(tuán)聚體核心理論”,即有機(jī)物料添加后大團(tuán)聚體首先形成,小團(tuán)聚體再形成于有機(jī)物質(zhì)周圍,或隨著有機(jī)物質(zhì)分解,大團(tuán)聚體破碎為小團(tuán)聚體。鹽分含量可能調(diào)控著兩種機(jī)制的作用大小,中度鹽漬土Na+、K+等一價(jià)陽離子含量過多,降低土壤膠體的凝聚性,不利于土壤顆粒的多級凝聚,“大團(tuán)聚體核心理論”占優(yōu)勢。
秸稈還田條件下團(tuán)聚體氮的分布特征也進(jìn)一步印證了上述對團(tuán)聚體形成機(jī)制的推測。由于團(tuán)聚體形成所需有機(jī)膠結(jié)物質(zhì)的轉(zhuǎn)化合成均需微生物參與,而秸稈本身C/N較高,團(tuán)聚體儲存有機(jī)碳過程中也會吸持一定的氮素,當(dāng)土壤中無機(jī)氮含量不足,微生物可能會加快對其他粒級團(tuán)聚體中原有有機(jī)物質(zhì)(C/N相對較低)的分解[27],造成其他粒級團(tuán)聚體氮含量下降。本研究結(jié)果顯示,輕度鹽漬土秸稈還田使0.053~0.25 mm微團(tuán)聚體全氮含量和氮分配比例分別增加28.8%和33.6%,同時(shí)使其他級別團(tuán)聚體氮含量降低,中度鹽漬土秸稈還田使0.25~2 mm大團(tuán)聚體全氮含量和氮分配比例分別增加4.2%和40.2%,同時(shí)使0.053~0.25 mm微團(tuán)聚體全氮含量顯著降低,進(jìn)一步證實(shí)了上述推測。
本研究和前人研究均表明秸稈還田能夠有效改善土壤理化性狀。白偉等[28]對遼北典型棕壤的研究結(jié)果表明,秸稈還田可以顯著增加土壤含水量、降低土壤容重、調(diào)節(jié)土壤三相比;楊東等[29]對濱海鹽漬土的研究也表明,秸稈還田增加了土壤儲水量,有效抑制了土壤鹽分表聚,保墑增產(chǎn)效果明顯。本研究表明秸稈還田對輕度和中度鹽漬土團(tuán)聚體的穩(wěn)定性均起到了明顯的改善作用(表2),這與田慎重等[9]和徐國鑫等[12]的研究結(jié)果一致。此外,秸稈還田在提高土壤有機(jī)質(zhì)含量方面效果顯著[10,12,30-32],并可在一定程度上增加土壤活性有機(jī)碳含量,但秸稈直接還田有可能導(dǎo)致土壤有機(jī)碳中活性有機(jī)碳的比例增加,不利于碳的固定和保存[30],利于土壤固碳的秸稈還田模式還應(yīng)進(jìn)一步探索。
本研究中小麥-玉米秸稈還田表現(xiàn)出一定的增產(chǎn)效果,但第1個(gè)生長季輕度和中度鹽漬土秸稈還田均出現(xiàn)作物減產(chǎn)現(xiàn)象,這與叢萍等[32]秸稈還田前期的研究結(jié)果一致,可能一方面是由于秸稈的添加影響了微生物群落結(jié)構(gòu)[33],微生物和植物出現(xiàn)了“爭氮”現(xiàn)象,不利于作物生長,另一方面未經(jīng)腐解的秸稈在還田初期可能會影響種子出苗,從而影響作物產(chǎn)量。秸稈還田使輕度鹽漬土和中度鹽漬土5個(gè)生長季作物產(chǎn)量平均分別增加3.22%和3.48%,與其能有效改善土壤理化性狀有關(guān)。本研究重點(diǎn)關(guān)注了秸稈還田對土壤團(tuán)聚體性質(zhì)的改良效果和對作物的增產(chǎn)效果,下一步研究還應(yīng)結(jié)合秸稈還田機(jī)具作業(yè)的效率、成本等相關(guān)數(shù)據(jù),進(jìn)一步探討秸稈還田工程的適用性。
通過研究鹽漬化程度和3年連續(xù)秸稈還田對團(tuán)聚體組成及碳、氮分布的影響,主要結(jié)論如下:
1)鹽漬化程度對團(tuán)聚體組成和穩(wěn)定性的影響可能存在一個(gè)閾值,鹽漬化程度增加對團(tuán)聚體穩(wěn)定性的負(fù)面效應(yīng)在較低鹽分含量下表現(xiàn)不明顯。輕度和中度鹽漬土0.25~2 mm大團(tuán)聚體中有機(jī)碳的分配比例顯著高于重度鹽漬土;土壤鹽分含量與0.25~2 mm大團(tuán)聚體和0.053~0.25 mm小團(tuán)聚體中全氮的分配比例成顯著負(fù)相關(guān),與<0.053 mm粉黏粒中全氮的分配比例成顯著正相關(guān)。
2)秸稈還田對輕度和中度鹽漬土團(tuán)聚體的穩(wěn)定性均起到了明顯的改善作用;各團(tuán)聚體粒級中,秸稈還田使輕度鹽漬土0.053~0.25 mm粒級有機(jī)碳、全氮及其分配比例提高最多,使中度鹽漬土0.25~2 mm粒級有機(jī)碳及其分配比例提高最多。
3)不同鹽漬土秸稈還田對土壤團(tuán)聚體碳、氮分布的影響明顯不同,可能與鹽分含量影響團(tuán)聚體形成機(jī)制有關(guān)。未來研究應(yīng)更多關(guān)注秸稈、肥料等外源物質(zhì)在土壤團(tuán)聚體中分配規(guī)律并探明團(tuán)聚體碳固持、養(yǎng)分固持的微生物參與策略。
4)秸稈還田使輕度鹽漬土和中度鹽漬土5個(gè)生長季作物產(chǎn)量平均分別增加3.22%和3.48%。秸稈還田在改善鹽漬土團(tuán)聚體穩(wěn)定性、協(xié)調(diào)團(tuán)聚體碳氮分布、提高作物產(chǎn)量方面有一定效果。從農(nóng)業(yè)工程效果角度,下一步研究還應(yīng)結(jié)合秸稈還田機(jī)具作業(yè)的效率、成本等,探討團(tuán)聚體變化的價(jià)值以及還田工程的適用性。
[1] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163.
[2] 竇森,李凱,關(guān)松. 土壤團(tuán)聚體中有機(jī)質(zhì)研究進(jìn)展[J]. 土壤學(xué)報(bào),2011,48(2):412-418.
Dou Sen, Li Kai, Guan Song. A review on organic matter in soil aggregates[J]. Acta Pedologica Sinica, 2011, 48(2): 412-418. (in Chinese with English abstract)
[3] Sarker J R, Singh B P, Cowie A L, et al. Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues[J]. Soil Biology & Biochemistry, 2018, 116: 22-38.
[4] Paul B K, Vanlauwe B, Ayuke F, et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity[J]. Agriculture, Ecosystems & Environment, 2013, 164(1): 14-22.
[5] 江春玉,劉萍,劉明,等. 不同肥力紅壤水稻土根際團(tuán)聚體組成和碳氮分布動態(tài)[J]. 土壤學(xué)報(bào),2017,54(1):138-149.
Jiang Chunyu, Liu Ping, Liu Ming, et al. Dynamics of aggregates composition and C, N distribution in rhizosphere of rice plants in red paddy soils different in soil fertility[J]. Acta Pedologica Sinica, 2017, 54(1): 138-149. (in Chinese with English abstract)
[6] Monreal C M, Schulten H R, Kodama H. Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol[J]. Canadian Journal of Soil Science, 1997, 77(3): 379-388.
[7] Tejada M, Garcia C, Gonzalez J L, et al. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil[J]. Soil Biology & Biochemistry, 2006, 38: 1413-1421.
[8] Xie Wenjun, Wu Lanfang, Zhang Yanpeng, et al. Effects of straw application on coastal saline topsoil salinity and wheat yield trend[J]. Soil & Tillage Research, 2017, 169: 1-6.
[9] 田慎重,王瑜,李娜,等. 耕作方式和秸稈還田對華北地區(qū)農(nóng)田土壤水穩(wěn)性團(tuán)聚體分布及穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào),2013,33(22):7116-7124.
Tian Shenzhong, Wang Yu, Li Na, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116-7124. (in Chinese with English abstract)
[10] 侯曉娜,李慧,朱劉兵,等. 生物炭與秸稈添加對砂姜黑土團(tuán)聚體組成和有機(jī)碳分布的影響[J]. 中國農(nóng)業(yè)科學(xué),2015,48(4):705-712.
Hou Xiaona, Li Hui, Zhu Liubing, et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica, 2015, 48(4): 705-712. (in Chinese with English abstract)
[11] 關(guān)松,竇森,胡永哲,等. 添加玉米秸稈對黑土團(tuán)聚體碳氮分布的影響[J]. 水土保持學(xué)報(bào),2010,24(4):187-191.
Guan Song, Dou Sen, Hu Yongzhe, et al. Effects of application of corn stalk on distribution of C and N in black soil aggregates[J]. Journal of Soil and Water Conservation, 2010, 24(4): 187-191. (in Chinese with English abstract)
[12] 徐國鑫,王子芳,高明,等. 秸稈與生物炭還田對土壤團(tuán)聚體及固碳特征的影響[J]. 環(huán)境科學(xué),2018,39(1):355-362.
Xu Guoxin, Wang Zifang, Gao Ming, et al. Effects of straw and biochar return in soil and soil aggregate and carbon sequestration[J]. Environmental Science, 2018, 39(1): 355-362. (in Chinese with English abstract)
[13] 解鈺,朱同彬. 氮肥和秸稈用量對水稻—小麥輪作體系土壤團(tuán)聚體組分及碳氮分布的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2015,43(5):310-314.
[14] 張玥琦,孫雪,張國顯,等. 稻草與生石灰添加介導(dǎo)的溫室內(nèi)土壤團(tuán)聚體穩(wěn)定性及碳分布特性[J]. 水土保持學(xué)報(bào),2018,32(3):199-204,211.
Zhang Yueqi, Sun Xue, Zhang Guoxian, et al. Soil aggregation and total carbon distribution in soil amended with straw and lime of greenhouse[J]. Journal of Soil and Water Conservation, 2018, 32(3): 199-204, 211. (in Chinese with English abstract)
[15] Cambardella A C, Elliott T E. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1993, 57: 1071-1076.
[16] Elliott E T. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-633.
[17] Rengasamy P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany, 2006, 57: 1017-1023.
[18] Singh K. Microbial and enzyme activities of saline and sodic soils[J]. Land Degradation & Development, 2016, 27: 706-718.
[19] 周玲玲,孟亞利,王友華,等. 鹽脅迫對棉田土壤微生物數(shù)量與酶活性的影響[J]. 水土保持學(xué)報(bào),2010,24(2):241-246.
Zhou Lingling, Meng Yali, Wang Youhua, et al. Effects of salinity stress on cotton field soil microbe quantity and soil enzyme activity[J]. Journal of Soil and Water Conservation, 2010, 24(2): 241-246. (in Chinese with English abstract)
[20] Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review[J]. Soil Biology & Biochemistry, 2015, 81: 108-123.
[21] 米會珍,朱利霞,沈玉芳,等. 生物炭對旱作農(nóng)田土壤有機(jī)碳及氮素在團(tuán)聚體中分布的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(8):1550-1556.
Mi Huizhen, Zhu Lixia, Shen Yufang, et al. Biochar effects on organic carbon and nitrogen in soil aggregates in semiarid farmland[J]. Journal of Agro-Environment Science, 2015, 34(8): 1550-1556. (in Chinese with English abstract)
[22] 劉震,徐明崗,段英華,等. 長期不同施肥下黑土和紅壤團(tuán)聚體氮庫分布特征[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2013,19(6):1386-1392.
Liu Zhen, Xu Minggang, Duan Yinghua, et al. Distribution of nitrogen in aggregates of black soil and red soil under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1386-1392. (in Chinese with English abstract)
[23] Ardón M, Morse J L, Colman B P, et al. Drought-induced saltwater incursion leads to increased wetland nitrogen export[J]. Global Change Biology, 2013, 19(10): 2976-2985.
[24] Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology & Biochemistry, 1996, 28: 665-676.
[25] 張鵬,李涵,賈志寬,等. 秸稈還田對寧南旱區(qū)土壤有機(jī)碳含量及土壤碳礦化的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(12):2518-2525.
Zhang Peng, Li Han, Jia Zhikuan, et al. Effects of straw returning on soil organic carbon and carbon mineralization in semi-arid areas of Southern Ningxia, China[J]. Journal of Agro-Environment Science, 2011, 30(12): 2518-2525. (in Chinese with English abstract)
[26] Elliott E T, Coleman D C. Let the soil work for us[J]. Ecology Bulletin, 1988, 39: 23-32.
[27] Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: A question of microbial competition?[J] Soil Biology & Biochemistry, 2003, 35: 837-843.
[28] 白偉,安景文,張立禎,等. 秸稈還田配施氮肥改善土壤理化性狀提高春玉米產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):168-176.
Bai Wei, An Jingwen, Zhang Lizhen, et al. Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 168-176. (in Chinese with English abstract)
[29] 楊東,李新舉,孔欣欣. 不同秸稈還田方式對濱海鹽漬土水鹽運(yùn)動的影響[J]. 水土保持研究,2017,24(6):74-78.
Yang Dong, Li Xinju, Kong Xinxin. Effects of different straw returning modes on the water and salt movement in the coastal saline soil[J]. Research of Soil and Water Conservation, 2017, 24(6): 74-78. (in Chinese with English abstract)
[30] 李新華,郭洪海,朱振林,等. 不同秸稈還田模式對土壤有機(jī)碳及其活性組分的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):130-135.
Li Xinhua, Guo Honghai, Zhu Zhenlin, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 130-135. (in Chinese with English abstract)
[31] 田慎重,郭洪海,董曉霞,等. 耕作方式轉(zhuǎn)變和秸稈還田對土壤活性有機(jī)碳的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊2):39-45.
Tian Shenzhong, Guo Honghai, Dong Xiaoxia, et al. Effect of tillage method change and straw return on soil labile organic carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 39-45. (in Chinese with English abstract)
[32] 叢萍,李玉義,高志娟,等. 秸稈顆?;吡窟€田快速提高土壤有機(jī)碳含量及小麥玉米產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):148-156.
Cong Ping, Li Yuyi, Gao Zhijuan, et al. High dosage of pelletized straw returning rapidly improving soil organic carbon content and wheat-maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 148-156. (in Chinese with English abstract)
[33] Chen Z, Wang H, Liu X, e al. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system[J]. Soil & Tillage Research, 2017, 165: 121-127.
Effects of straw returning on saline soil aggregate stability and its carbon, nitrogen contents
Wang Hui, He Wei, Duan Fujian, Hu Guoqing, Lou Yanhong, Song Fupeng, Zhuge Yuping※
(271018)
Soil aggregate is the physical foundation of soil fertility and straw returning is widely recognized as an effective method to facilitate soil aggregate formation and stabilization. However, it is still unclear what effects of straw returning might have on soil aggregate composition and its carbon (C) as well as nitrogen (N) distribution in saline soils. In this study, taking the typical salinized fluvo-aquic soil of the Yellow River Delta as research object, we analyzed the water-stable aggregate composition, stability and the organic carbon (SOC), total nitrogen (TN) content of each aggregate in soils under three salinization degrees (light, moderate, highly) and after 3-year straw returning. Results showed that the proportions of 0.25-2 mm and 0.053-0.25 mm aggregates in highly-salinized soil were significantly lower than that in light-salinized soil and moderate-salinized soil (< 0.05). The soil total salt content was negatively correlated with the contribution rates of 0.25-2 mm aggregates to SOC and TN, while it was negatively correlated with the contribution rates of 0.053-0.25 mm aggregates to TN. Straw returning induced a 47.6%, 39.7% and 54.0% increase in mean weight diameter (MWD), geometric mean diameter (GMD) and the content of macro-aggregates (0.25) respectively for light-salinized soil, and a 31.0%, 31.9% and 31.4% increase in the corresponding indexes for moderate-salinized soil, respectively. For bulk soil, straw returning increased SOC and TN contents by 20.2% and 20.0% respectively for light-salinized soil, and increased SOC content by 35.2% for moderate-salinized soil. For SOC content in soil water-stable aggregates, straw returning for light-salinized soil increased SOC content by 22.7%, 29.1% and 21.9% in <0.053 mm, 0.053-0.25 mm and >2 mm aggregates, respectively, while increased that by 15.8%, 16.1%, 56.1% and 36.8% respectively for moderate-salinized soil with increasing particle size of soil aggregates. For SOC distribution in soil aggregates, the proportion of SOC in <0.053 mm aggregates decreased by 18.3% and 21.5% for light- and moderate-salinized soils, respectively, after 3-year straw returning; 0.053-0.25 mm aggregates of light-salinized soil had the highest increase (by 33.2%) in the contribution rate to SOC, while 0.25-2 mm aggregates of moderate-salinized soil had the highest increase (by 58.7%) in that among all aggregates. For TN content in soil water-stable aggregates, straw returning for light-salinized soil induced a 18.4% and 21.2% decrease in TN content in >2 mm aggregates and 0.25-2 mm aggregates respectively, and led to a 28.8% increase in TN content in 0.053-0.25 mm micro-aggregates. However, straw returning in moderate-salinized soil significantly decreased by 62.1% of the TN content in 0.053-0.25 mm micro-aggregates and increased by 1.1 times that in <0.053 mm aggregates. For TN distribution in soil aggregates, the contribution rate of <0.053 mm aggregates to TN decreased by 43.9% and that of 0.053-0.25 mm aggregates increased by 33.6% for light-salinized soil, while the contribution rate of <0.053 mm aggregates to TN increased by 0.9 times and that of 0.053-0.25 mm aggregates decreased by 50.9% for moderate-salinized soil. Overall, straw returning significantly improved the soil aggregate stability under light- and moderate-salinized soils, but it showed different effects on soil aggregate C, N distribution in different salinized soils, which might be attributed to the distinct formation mechanisms of soil aggregate under different salt contents.
soils; organic carbon; aggregates; straw; total nitrogen; salinized fluvo-aquic soil
王 會,何 偉,段福建,胡國慶,婁燕宏,宋付朋,諸葛玉平. 秸稈還田對鹽漬土團(tuán)聚體穩(wěn)定性及碳氮含量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):124-131. doi:10.11975/j.issn.1002-6819.2019.04.015 http://www.tcsae.org
Wang Hui, He Wei, Duan Fujian, Hu Guoqing, Lou Yanhong, Song Fupeng, Zhuge Yuping. Effects of straw returning on saline soil aggregate stability and its carbon, nitrogen contents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 124-131. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.04.015 http://www.tcsae.org
2018-07-21
2019-02-10
山東省自然科學(xué)基金(ZR2017BD012,ZR2016DQ05);山東省重大科技創(chuàng)新工程項(xiàng)目(2017CXGC0301);中國博士后科學(xué)基金(2018M632702,2016M602169)
王 會,博士,講師,主要從事土壤質(zhì)量提升、土壤碳氮循環(huán)及環(huán)境效應(yīng)方面研究。Email:huiwang@sdau.edu.cn
諸葛玉平,教授,博士生導(dǎo)師,主要從事退化土壤修復(fù)、土壤生態(tài)過程與機(jī)理等方面研究。Email:zhugeyp@sdau.edu.cn
10.11975/j.issn.1002-6819.2019.04.015
S156.4
A
1002-6819(2019)-04-0124-08