• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in the neurons

    2019-04-13 01:14:48ZuoxianXiang向左鮮ChuanxiangTang唐傳祥andLixinYan顏立新
    Chinese Physics B 2019年4期

    Zuoxian Xiang(向左鮮),Chuanxiang Tang(唐傳祥),and Lixin Yan(顏立新)

    Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    1.Introduction

    Quantum theory is one of the greatest discoveries of the twentieth century. In recent years,quantum effects in biological systems have been discovered in several areas,including olfaction,[1,2]avian magnetoreception,[3,4]photosynthesis,[5–9]quantum entanglement in living bacteria,[10]and so on.[11]Theoretical study of quantum effect in bio-systems and its possible relevance to explaining the functional properties of these systems are also drawing rapid attention,such as consciousness in the brain.

    How to explain consciousness? Classical or quantum? It is so mysterious and researchers have proposed many models.[12–24]Some studies suggested that the quantum effect might play an important role in the functioning of the brain.[16–24]Penrose and Hameroff proposed the orchestrated objective reduction(Orch OR)model,which suggests that microtubules(MTs)in neurons act as a quantum computer,[18–20,24]Fisher proposed that quantum entanglement may exist between two neurons.[23]

    Decoherence is an important phenomenon in quantum information.The“warm,wet,and noisy”environment might destroy the quantum state,[26–29]thus the decoherence time scale τ is an important parameter to the quantum model.

    To study the decoherence process in MTs,researchers determined this parameter according to different mechanisms of decoherence,including quantum gravity,[18]cavity quantum electrodynamics(QED)model,[25,26]and single ion-MT interactions;these results are listed in Table 1 and the value of decoherence time varies greatly.

    Table 1.Decoherence time scales and their mechanisms.

    Decoherence mainly derives from the interaction between quantum systems and the environment.There are 4 basic interactions that have been discovered in nature;in the range of molecule interactions,the main interaction between environment and tubulin dimers is electromagnetic interaction.In this paper,a model based on the electromagnetic interaction Hamiltonian between microtubules and plasmon in the neurons is proposed.Previous studies considered the effect of a single ion on the decoherence process in MTs;however,cells are known to contain different kinds of ions that have different charges and masses,i.e.,some ions have positive charge,whereas others have negative charge.Over a long time scale,cells can be considered to be electrically neutral;however,this is not true over very short time scales.Therefore,the decoherence rates cannot be calculated only considering the effect of a single ion since decoherence is a result of the interaction between tubulin dimers and cellular fluid environment.In this paper,the interaction Hamiltonian is constructed by using the second quantization method,and the decoherence time is estimated according to the interaction Hamiltonian.

    This article is organized as follows.Section 2 includes the introduction for decoherence mechanisms in our model,as well as the total Hamiltonian of tubulin dimers and cell fluid environment;the decoherence timescale τ are computed and howτ changes with environment parameters will be discussed.In Section 3,other mechanisms of decoherence will be discussed,and some important formulas and their derivations are given in the appendix.

    2.Decoherence rates

    In this section,the decohenrence mechanisms in MTs will be discussed.MT is a hollow cylinder with an outer diameter of 24 nm and an inner diameter of 15 nm.The basic unit of MT is tubulin dimer which has two subunits(denoted by α and β);all of the tubulin dimers form MT crystal lattice by helical encircle.The tubulin dimers have different kinds of conformational states which are regarded as quantum bit in Orch model,and MTs can store information owing to different combinations of these conformational states.Electron transition in each tubulin dimer could change the conformational states,and the MT is a polar molecule and has intrinsic electric dipole moment(Fig.1).[25]

    Fig.1.The structure diagram of MTs.

    2.1.Mechanisms of decoherence

    The cellular fluid is considered to have both positive and negative charges(similar to plasma),and thus two basic and very important parameters are used to describe the it,namely Debye length λDand plasma frequency ωp;these two parameters will be discussed compendiously and their range will be given.

    The Debye length λDrepresents the space scale when the plasma is kept as a neutral state and is determined by

    where nk,0is the average density of the k-th kind of ion,qkis the quantity of charge,ε=80ε0is the dielectric constant of water,kBis the Boltzmann constant,and T is the temperature of the cellular fluid.For physiological Ringer solution,λD~0.7 nm,[29]and in the following calculation,the value of λDis set to be around 0.7 nm.

    The surface of tubulin dimers have net charge,[30]so a counterion layer will be formed because of the Debye shielding.The thickness of the counterions is approximately λD,as shown in Fig.2.The counterions could shield the interaction between MTs and the environment,as shown in Appendix C,the coupling coefficient is decreased if the shielding effect is considered.

    Fig.2.Schematic diagram of counterion layer with a thickness of λD.

    The second parameter is called plasma frequency,which describes the collective oscillations of ions and is determined by

    For typical parameters in a cell,[29][K+]in=400 mmol/L,[Na+]in=50 mmol/L[Cl?]in=52 mmol/L,ωp≈ 0.6 THz.Therefore,in the following calculation,the value of ωpis set to be around 0.6 THz.

    When the plasmon is in an excited state,the electric neutrality is destroyed,and some net charges appear.The net charges can interact with the dipole in the tubulin dimmers,as shown in Fig.3.As shown in Appendix A,the local ion density fluctuation could excite ion density waves.There are different ion density waves,but the only one called plasma oscillation could be coupled with MTs,and the dispersion relation of plasma oscillation is

    where β is the average value of ion thermal velocity,which has the same order of magnitude as the thermal velocity.

    The total Hamiltonian of the MT-environmental systems can be derived as follows:whereis the Hamiltonian of the excited systems in the MTs,is the Hamiltonian of the plasmons in the cellular fluid environment,andrepresents the interaction between the MTs and cellular aqueous environment caused by the interactions between the dipole and net charges.is the reason for decoherence;if=0,the decoherence time is τ=∞.

    Fig.3.Schematic diagram of the coupling between tubulin dimers and the cellular fluid environment.

    As shown in Fig.3,the interaction Hamiltonian between a single tubulin dimer with the electric dipole moment pand the cellular fluid environment can be shown as follows:

    2.2.Computation method of decoherence timescale

    Now,the total Hamiltonian equation(4)will be derived;some basic assumption or approximation is listed below,and will be discussed in Section 3 and appendix.

    (i)Water is treated as an medium with a dielectric constant ε=80ε0,and detailed interaction of ion-water molecules and MT-water molecules is ignored.

    (ii)Due to the Debye shielding,plasma oscillations could only be excited above the Debye length,that is to say,the wave numberk has an upper limit of k=kD=2π/λD;in our calculation,we consider k will decay rapidly as a small quantity for the short wavelength modes.

    (iii)Random phase approximation(RPA)for many particles system,In equilibrium state or near equilibrium state,as the position of particles is random,∑iexp(ik ·ri)=0 unless k=0.

    (iv)The tubulin dimers are seen as a mass point with electric dipole moment p.

    As introduced in Subsection 2.1,the tubulin dimers have different conformational states,denoted by|ki,and let?c?k,?ckbe the creation operator and annihilation operator of the quantum state|ki,so the Hamiltonian of tubulin dimers can be expressed by

    The detailed calculation ofwill be given in Appendix A and Appendix B,and the total Hamiltonian of the MTs and cellular environment can be expressed as follows:

    where ω(k)=is the dispersion relation of plasma oscillation,(k)and(k)are the creation operator and annihilation operator of plasma oscillations,respectively,and the coupling coefficient μn,kis given by

    Equation(8)is given in Appendix C,and pnis the electric dipole moment in state|ni.

    Next,Tolkunov’s model is used,[31,32]which describes the interaction between the spin system and Boson thermal reservoir.In 2-level approximation,the Hamiltonian equation(7)of our model is the same with that of Tolkunov’s in form,so the non-diagonal elements of density matrix will also change with time in the same way

    Here,and the integral region is 0

    where

    Obviously,G(t)>0.In the quantum information theory,the decoherence process is reflected in the damping of the nondiagonal element of the density matrix,so we define decoherence timeτas the timescale when qn(t)decays into qn(0)/e,namely

    Equations(11)and(12)could be used to compute decoherence time.

    2.3.Typical order of magnitude of decoherence timescale

    In this section, the typical value of decoherence time scale will be estimated by Eqs.(11)and(12).The parameters in Eq.(10)are chosen as follows:

    pn=3×10?28C·m is the electric dipole moment of tubulin dimer.[25]

    ε=80ε0is the dielectric constant of water.[29]

    λD~0.7 nm,ωp=0.6 THz;these two basic plasma parameters have been discussed in Subsection 2.1.

    T=310 K is the environment temperature.

    β=300 m/s since it has the same order of magnitude with the thermal velocity.

    kB=1.38×10?23J/K is the Boltzmann’s constant.

    =1.0546×10?34J·s is the Planck’s constant.

    The function G(t)can be computed in a numerical method(Fig.4).Set G(τ)=1 and the decoherence time could be easily obtained

    The decoherence timescale is about 10 fs.

    Fig.4.Schematic diagram of how to compute the decoherence time by the exponential factor G(t).

    2.4.The dependence of decoherence time with other parameters

    Decoherence time may change with other parameters;how these parameters affect the decoherence time will be studied in this section.As discussed in Subsection 2.3,the typical time scale for decoherence is T0=10 fs.So set T0=10 fs as the time unit,six dimensionless physical quantities are shown below

    Then equations(11)and(12)become

    The typical values of these parameters are given in Subsection 2.3;in this section,their values are given in a wide range as follows:

    Here,some values may never be reached,such as T=900 K,ε=240ε0,and so on;but the purpose in this model is to analyze how the decoherence time changes with physical parameter,so the parameter distribution is in a very wide range.

    Case 1: Decoherence time changes with plasma frequency ωp

    As shown in Fig.5,decoherence remains almost unchanged when the plasma frequency changes.

    Fig.5.Decoherence time changes with plasma frequency ωpwhen other parameters are consistent with those in Subsection 2.3.

    Case 2:Decoherence time changes with average thermal velocity β

    As shown in Fig.6,decoherence remains almost unchanged when the average thermal velocity β changes,similar to Case 1.

    Fig.6.Decoherence time changes with average thermal velocity β when other parameters are consistent with those in Subsection 2.3.

    Case 3:Decoherence time changes with Debye length λD

    In Fig.7,the decoherence time increases with Debye length;since the plasma oscillation modes could only be excited when k<2π/λD,a larger Debye length means that fewer modes will be excited,so the number of the modes interacting with MTs will decrease,and the decoherence time will increase.

    Fig.7.Decoherence time changes with Debye length λDwhen other parameters are consistent with those in Subsection 2.3.

    Use τ=CλsDto fit the curve in Fig.7(or equivalently lnτ=slnλD+lnC),the power exponent s and linearly dependent coefficient for lnτ,lnλDare

    Doing the same work to other parameters and we find that τ=CλsDcould fit the relationship between τ,λD,so we can approximately consider that

    Case 4:Decoherence time changes with dielectric constant of water

    In Fig.8,the decoherence time increases with dielectric constant of water,and the reason is obvious.According to Eq.(5),a larger dielectric constant means the weaker interaction between MTs and environment.

    Fig.8.Decoherence time changes with dielectric constant of water when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 5:Decoherence time changes with dipole moment of tubulin dimer pn

    In Fig.9,we show the decoherence time decreases as the dipole moment of tubulin dimer increases;according to Eq.(5),the increase of the dipole moment will enhance the interaction between MTs and environment,and then the decoherence time will decrease.

    Fig.9.Decoherence time changes with dipole moment of tubulin dimer pn when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 6: Decoherence time changes with environment temperature T

    In Fig.10,the decoherence time decreases as the environment temperature increases,and it is also easy to understand.The higher temperature means that more oscillation modes will be excited,and this will have a greater impact on the MTs,so the decoherence time decreases.

    Fig.10.Decoherence time changes with environment temperature T when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    According to Eqs.(16)–(19),the decoherence time could be approximately expressed as Since the decoherence time relies less on ωp, β,then equation(20)will be changed into:

    In fact,equation(21)could be proved,since the plasma frequency

    THz,the decoherence time τ~10 fs–100 fs,and the temperature T ~ 100 K.Therefore,

    Under the condition of Eq.(22),equation(12)could be approximately expressed as

    Then the decoherence time satisfies

    Equation(24)could be used for calculating the decoherence time only under the condition of Eq.(22).However,equation(24)is useful for various actual parameters.

    3.Conclusion and outlook

    If the Orch OR model can be verified both in theory and experiment,the influence will be inestimable;however,the conformational state is affected by the “warm and wet”cellular environment,and the decoherence time is a very important parameter.

    In this paper,the decoherence time scale is even smaller than 0.1 ps.This timescale is so short that quantum state will be destroyed by the cell solution environment soon.This model only considers the coupling between the tubulin dimers and ions in the cellular fluid system,treating the water as a medium and overlooking the interactions of MTs-water molecules;water molecules may shield some interactions of ion-MTs,and the interaction of water-ions and water-MTs may have influence on the decoherence process.[32,33]According to Eq.(24),if the interaction strength a√ttenuates to ε(0<ε<1),the decoherence will increase to 1/ε than before;an enough decoherence requires ε?1 and the strength of shielding by water molecules needs to be measured by experiment.

    Other mechanism for decoherence that is not considered is the coherent pumping of the system via the environment.[21]According to Fro¨hlich’s theory,if a system is strongly coupled to its environment via some degrees of freedom,and a coherent pumping source exists in environment,it might inhibit other degrees of freedom known as coherent oscillations.[35,36]Such oscillations might increase the decoherence time.Guanosine triphosphate(GTP)hydrolyzation in the cells might act as a pumping source.This mechanism was not considered in this paper.

    Decoherence is an important phenomenon in quantum information.Decoherence mainly comes from the interaction of quantum systems with the environment.In the range of molecule interactions,the main interaction between environment and tubulin dimers is the electromagnetic interaction;the electromagnetic field comes from ions and thermal radiation of the environment.However,in this model,the thermal radiation is ignored,and in the range of room temperature,the thermal frequency spectrum mainly concentrates in the range of THz band.The water molecules in the cell environment could strongly absorb the THz photon and the model only takes into account the electromagnetic field from ions.Besides,if the thermal radiation is considered,the decoherence time would be smaller than the result given before,and it will not change the conclusion.

    This model needs to be verified both experimentally and theoretically. This model may offer a helpful theoretical framework to compute the decoherence time in quantum biosystems,even though the environment of biological system is different.However,the electromagnetic interaction is essential in the scale of molecules,so this modelcould be used for reference when dealing with the interaction between the ions in cell environment and dipoles of bio-molecules.The direct experiment to verify this model is hard to be carried out at this time,but with the development of ultrafast biophysics,quantum information,quantum optics,and imaging technology,[37–41]the experiment could be carried out in the future.

    Appendix A:Dispersion relation of ion density wave

    In Appendix A,the dispersion relation of ion density wave is derived by fluid theory.Note that ni,mi,vi,qirepresent the particle number density,ion mass,the macro velocity,and electric charge of the i-th ion. E is the space electric field,βiis used to represent the ion thermal velocity,and?mβ2i?niis the thermodynamic pressure of the i-th ion.Then according to fluid theory

    In order to deduce intrinsic oscillation mode and its dispersion relation,linearization is done for Eq.(A1).For arbitrary physical quantity A,it is divided into two parts

    Now,let us compute the eigenmode with intrinsic wavelength and frequency.Set?A=?A0exp[i(k·r?ωt)].Then the operator?/?t= ?iω,? =ik,and equation(A3)changes to

    According to Eq.(A4),the eigen-equation is

    Or equivalent in matrix form where ?l,k=(ω2?k2β2l)δkl?hnliqlqk/εml,and?=(?1,?2,...,?M)T.Set f(ω,k)=det?(ω,k),equation(A6)must have untrivial solution to ensure eigenmode exits,so the dispersion relation is determined by

    Set ql=(?1)υlZle,where Zlis the valence state of ions,e.g.,for Na+and Cl?,Zl=1,and for Ca2+,Zl=2,and υlrepresents the sign of ion charge,and

    In long-wavelength limit kβl/ω ?1,then

    whereis the plasma frequency,is the average thermal velocity of all ions,and cj(j=2,3,...,M)is the M?1 roots of the following equation

    So M kinds of waves are obtained,and their dispersion relation is

    The ion charged density is

    Use Eqs.(A11)and(A6),under the condition of longwavelength approximation,only when ω2=ω2p+β2k2,ρ 6=0;otherwise ρ =0.That is to say,ω2= ω2p+β2k2represents ion charged density wave,and can be coupled with MTs by dipole–charge interactions as shown in Fig.2.Other M ?1 kinds of waves could not couple with MTs under the condition of long-wavelength approximation.

    Finally,diagonalize matrix ?

    Set P(k)=P(0)+O(k2)and define another variable ρ=(ρ1,ρ2,...,ρM)T,which is determined by

    The transformation between n and ρ is

    Then

    Compare Eqs.(A16)and(A11),then

    So eρ1could also be used to represent net charge density of ions,and equations(A15)and(A17)will be used in Appendix B.

    Appendix B:Second quantization of environment Hamiltonian Heand interaction Hamiltonian Hin

    In the coordinate representation,the Hamiltonian Heof cellular environment can be shown as follows:

    where rk,irepresents the position of the k-th kind of ions that have been numbered i,φ,A are scalar potential and vector potential,respectively,and pk,j=?k,jis the canonical momentum.The first term represents the kinetic energy of the ions,and the second term represents the field energy.

    The potentials φ,A are not unique.For two different potentials(φ,A),(φ0,A0),if they satisfy

    the two potentials will have the same field E, B as follows:

    We use an approach similar to the David Bohm’s electron gas model and define the Hamiltonian Eq.(B1)in another manner;[33]the second term is derived from the interactions between ions and the energy stored in the field.Therefore,equation(B1)can be written in an equivalent way as follows:

    First,set ξ =Rφdt so that φ0=0,then E = ??A/?t, B =?×A.ExpandAin Fourier series exp(ik·r)

    whereek=k/k is an unit vector parallel to the direction of the wave propagation,ekμ(μ =1,2)is another two-unit vector which is perpendicular to ek,and ek1⊥ek2.SoAkandA⊥represent longitudinal wave and transverse wave,respectively.Their electric field and magnetic field are

    where p(?k)=˙q(k),Pμ(?k)=˙Qμ(k).Aand Eare real and can be ensured as follows:

    Use Eqs.(B5)and(B6)as well as the commutative relation[^p,A]=?i??·A,the Hamiltonian equation(B4)will become

    where

    Now,use Eq.(B5),then we have

    where nlis the number of l-th kind of ions in a unit volume.The random phase approximation(RPA)makes the second term inconsiderably smaller than the first termtherefore

    Similarly,

    Use Eqs.(B6a)and(B6b),then we obtain

    means the kinetic energy,and it can be divide it into two parts

    The first term is the macroscopical translational energy,and the second term means the thermodynamic energy.

    The second term in Eq.(B14)can be changed into

    Now,use Eq.(A15)and ignore the cross term ρiρj(i6=j),then

    As discussed in Appendix A,eρ1represents net charge density of ions,so use Gauss’s theorem in k-space

    Use Eqs.(B8)–(B17),then the total Hamiltonian is expressed by

    where the first term means ion sound wave,the second term means interaction between ions and fields and it is neglected for the reason that each ion has a random phase(random phase approximation or RPA),?21(k)= ω2p+c2k2is the dispersion relation of electromagnetic wave in plasma,and ?22(k)=ω2p+β2k2is the dispersion relation of charged density wave or plasma oscillation.

    At last,using second quantization method,define(k),(k)as the creation operator and annihilation operator of electromagnetic wave,respectively,and(k)and ?a(k)as the creation operator and annihilation operator of the plasma oscillations,respectively,and we can obtain

    Andsatisfy the commutation relation

    Use Eqs.(B19)and(B20)and the random phase approximation,the Hamiltonian equation(B18)will become

    where

    In long-wavelength limit,β2k2/ω2p?1,so

    This is the dispersion relation of ion charged density wave as shown in Appendix A.

    In Eq.(B21),only the 3rd term could be coupled with MTs by dipole–charge interactions(as seen in Eq.(B17),ρ(k)is only related to p(k)instead of Pμ(k)),so this model only considers the 3rd term which is named

    namely,the coupling between MTs and cellular environment via interactions between plasma oscillations and dipoles.The interaction Hamiltonian for a single dipole with the cellular environment is determined by Eq.(5).Thus,after Fourier transformation,equation(5)becomes

    According to Eqs.(B17)and(B19b),then

    the MT’s dipole p can be written as follows:

    Here, pn=hn|? p|ni is the observed value of pin state|ni.In Eq.(B27),the the cross term pm,n?c?m?cnwas neglected,use Eqs.(B25)–(B27),then the coupling Hamiltonian can be written as follows:

    where

    The Hn,kmeans the interaction between MTs and cellular fluid environment mentioned later,and it is then used to compute decoherence time,and λn,kis the coupling coefficient.The method for computing the coupling coefficient λn,kwill be introduced in Appendix C.

    Appendix C:Computation of coupling coefficient λn,k

    The coupling coefficient λn,kis expressed as follows:

    where pnis a constant vector;for a certaink,the z axis is set to be parallel tok.In the spherical coordinate frame,k·r =krcosθ,and the volume element dr =r2sinθdθd?;thus, pncan be expressed as follows:

    Thus,

    When the variable ? is integrated in the interval[0,2π],thenpzcosθ exp(ikrcosθ)sinθdrdθd?

    where

    Compute Eq.(C5),then A=0 and

    Here, pz= pn·k/k;generally,in the actual situation,plasma oscillations will be excited only when the wavelength is larger than the Debye length λD.Therefore,only k<2π/λDcould be used to refer to the excited state.The integral in Eq.(C1)in the space|r|> λDbecause a shielding layer charge appears on the surface of MTs with a thickness λD,as shown in Fig.2.The shielding layer charge is stable and cannot excite plasma oscillations;therefore,in Eq.(C6),rmin=λDand rmax=∞.Hence,

    Define b(k)= ?ia(k)as new creation operator and annihilation operator,then the total Hamiltonian is

    where

    and we have obtained Eqs.(7)and(8).

    [1]Turin L 1996 Chem.Senses 21 773

    [2]Franco M I and Siddiqi O 2011 Proc.Natl.Acad.Sci.USA 108 3797

    [3]Ritz T,Adem S and Schulten K 2000 Biophys.J.78 707

    [4]Hiscock H G,Worster S,Kattnig D R,Steers C,Jin Y,Manolopoulos D E,Mouritsen H and Hore P J 2016 Proc.Natl.Acad.Sci.USA 113 201600341

    [5]Gregory S E,Tessa R C,Elizabeth L R,Tae-Kyu A,Toma′s M,Yuan-Chung C,Robert E B and Graham R F 2007 Nature 446 782

    [6]Romero E,Augulis R,Novoderezhkin V I,Ferretti M,Thieme J,Zigmantas D and Van Grondelle R 2014 Nat.Phys.10 676

    [7]Levi F,Mostarda S,Rao F and Mintert F 2015 Rep.Prog.Phys.78 082001

    [8]Novelli F,Nazir A,Richards G H,Roozbeh A,Wilk K E,Curmi P M and Davis J A 2015 J.Phys.Chem.Lett.6 4573

    [9]Sarovar M,Ishizaki A,Fleming G and Whaley B 2010 Nat.Phys.3 462

    [10]Marletto C,Coles D,Farrow T and Vedral V 2018 J.Phys.Commun.2 101001

    [11]Mesquita M V,VasconcellosR,Luzzi R and Mascarenhas S 2005 Int.J.Quantum Chem.102 1116

    [12]Jackendoff R 1987 Consciousness and the Computational Mind(Cambridge:The MIT Press)pp.275–280

    [13]Tononi G,Boly M,Massimini M and Koch C 2016 Nat.Rev.Neurosci.17 450

    [14]Crick F and Koch C 2003 Nat.Neurosci.6 119

    [15]Edelman G M 2003 Proc.Natl.Acad.Sci.USA 100 5520

    [16]Jahn R G and Dunne B J 2007 Found.Phys.3 306

    [17]Mershin A,Sanabria H,Miller J H,Nawarathna D,Skoulakis E M,Mavromatos N E,Kolomenskii A A,Schuessler H A,Luduena R F and Nanopoulos D V 2006 The Emerging Physics of Consciousness(Berlin:Springer)pp.95–170

    [18]Hameroff S and Penrose R 2014 Phys.Life Rev.11 39

    [19]Hameroff S and Penrose R 2014 Phys.Life Rev.11 94

    [20]Hameroff S R and Penrose R 2017 Biophysics of Consciousness:A Foundational Approach(Singapore:World Scientific)pp.517–599

    [21]Craddock T J A and Tuszynski J A 2010 J.Biol.Phys.36 53

    [22]Craddock T J,Priel A and Tuszynski J A 2014 J.Integr.Neurosci.13 293

    [23]Fisher M 2015 Ann.Phys.61 593

    [24]Hameroff S R 2007 Cogn.Sci.31 1035

    [25]Mavromatos N E,Mershin A and Nanopoulos D V 2002 Int.J.Mod.Phys.B 16 3623

    [26]Mavromatos N 1999 Bioelectrochemistry Bioenergetics 48 273

    [27]Tegmark M 2000 Phys.Rev.E 61 4194

    [28]Hagan S,Hameroff S R and Tuszy′nski J A 2002 Phys.Rev.E 65 061901

    [29]Nelson P 2007 Biological Physics(New York:WH Freeman)p.416

    [30]Priel A,Tuszynski J A and Woolf N J 2005 Eur.Biophys.J.Biophys.Lett.35 40

    [31]Privman V and Tolkunov D 2005 Quantum Information and Computation III(Bellingham:The International Society for Optics and Photonics),pp.187–195

    [32]Tolkunov D,Privman V and Aravind P K 2005 Phy.Rev.A 71 060308

    [33]Craddock T J,Friesen D,Mane J,Hameroff S and Tuszynski J A 2014 J.R.Soc.Interface 11 20140677

    [34]Chen Y,Okur H I,Gomopoulos N,Macias-Romero C,Cremer P S,Petersen P B,Tocci G,Wilkins D M,Liang C and Ceriotti M 2016 Sci.Adv.2 e1501891

    [35]Fr?hlich H 1968 Int.J.Quantum Chem.2 641

    [36]Wu T M and Austin S J 1981 J.Biol.Phys.9 97

    [37]Bohm D and Pines D 1953 Phy.Rev.92 609

    [38]Yin C C and Biophysics D O 2018 Chin.Phys.B 27 058703

    [39]Zheng C J,Jia T Q,Zhao H,Xia Y J,Zhang S A and Sun Z R 2018 Chin.Phys.B 27 057802

    [40]Wade C G,ˇSibali′c N,de Melo N R,Kondo J M,Adams C S and Weatherill K J 2017 Nat.Photon.11 40

    [41]Trocha P,Karpov M,Ganin D,Pfeiffer M H,Kordts A,Wolf S,Krockenberger J,Marin-Palomo P,Weimann C and Randel S 2018 Science 359 887

    久久 成人 亚洲| 巨乳人妻的诱惑在线观看| 国产精品国产高清国产av| 亚洲国产中文字幕在线视频| 成人国语在线视频| 国产精品偷伦视频观看了| 日韩大码丰满熟妇| 久久精品国产亚洲av高清一级| 免费高清在线观看日韩| 99在线人妻在线中文字幕| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三卡| 国产野战对白在线观看| 91成人精品电影| 色哟哟哟哟哟哟| 亚洲一区二区三区不卡视频| 久久 成人 亚洲| 国产成人av激情在线播放| 亚洲第一欧美日韩一区二区三区| 久久久久九九精品影院| 久久精品成人免费网站| 国产欧美日韩一区二区精品| 一二三四社区在线视频社区8| 亚洲欧美日韩无卡精品| 久久精品91蜜桃| 激情视频va一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产片内射在线| 欧洲精品卡2卡3卡4卡5卡区| 国产97色在线日韩免费| 亚洲一卡2卡3卡4卡5卡精品中文| 日日干狠狠操夜夜爽| 成在线人永久免费视频| 亚洲精品粉嫩美女一区| 欧美老熟妇乱子伦牲交| 欧美日韩福利视频一区二区| 日韩欧美免费精品| 黄色视频不卡| 国产精品二区激情视频| 久久精品aⅴ一区二区三区四区| 神马国产精品三级电影在线观看 | 国产成人免费无遮挡视频| 午夜久久久在线观看| 欧美丝袜亚洲另类 | 又大又爽又粗| 免费人成视频x8x8入口观看| 99国产综合亚洲精品| 91麻豆精品激情在线观看国产 | 久久久久国产一级毛片高清牌| 亚洲欧美激情综合另类| 日本一区二区免费在线视频| 在线观看免费日韩欧美大片| 免费看十八禁软件| 欧美在线一区亚洲| 高清黄色对白视频在线免费看| 亚洲av第一区精品v没综合| 日本a在线网址| 日本免费a在线| 精品免费久久久久久久清纯| 嫩草影院精品99| 男女之事视频高清在线观看| 日本免费a在线| 日韩欧美免费精品| 露出奶头的视频| 国产欧美日韩精品亚洲av| av有码第一页| 俄罗斯特黄特色一大片| 亚洲av电影在线进入| 精品久久久久久久毛片微露脸| 亚洲av成人av| 免费高清视频大片| 午夜免费观看网址| 18禁国产床啪视频网站| 黄片小视频在线播放| 在线永久观看黄色视频| 精品国产一区二区三区四区第35| avwww免费| 精品乱码久久久久久99久播| 亚洲成av片中文字幕在线观看| 亚洲av美国av| 美女高潮喷水抽搐中文字幕| 长腿黑丝高跟| 91精品三级在线观看| 黄色视频不卡| 大陆偷拍与自拍| 久久久精品欧美日韩精品| 日韩欧美免费精品| 国内毛片毛片毛片毛片毛片| 欧美日韩乱码在线| 欧美成人性av电影在线观看| 十八禁人妻一区二区| 十八禁人妻一区二区| 两性夫妻黄色片| 午夜老司机福利片| 十分钟在线观看高清视频www| 操出白浆在线播放| 老司机午夜十八禁免费视频| 十分钟在线观看高清视频www| 成人三级做爰电影| 高清av免费在线| 久久久久精品国产欧美久久久| 最新美女视频免费是黄的| 国产成人av激情在线播放| 9191精品国产免费久久| 色婷婷久久久亚洲欧美| 曰老女人黄片| 国产视频一区二区在线看| 亚洲成人免费电影在线观看| 亚洲精品成人av观看孕妇| 12—13女人毛片做爰片一| 91字幕亚洲| av天堂在线播放| 国产免费av片在线观看野外av| 两个人免费观看高清视频| 国产xxxxx性猛交| 色在线成人网| 女人高潮潮喷娇喘18禁视频| 国产三级在线视频| 天天躁夜夜躁狠狠躁躁| 精品电影一区二区在线| 亚洲精品中文字幕在线视频| 成人国产一区最新在线观看| 国产99白浆流出| 妹子高潮喷水视频| 99久久人妻综合| 久久国产精品男人的天堂亚洲| 国产欧美日韩一区二区三| 88av欧美| 欧美午夜高清在线| 国产一区在线观看成人免费| av欧美777| 欧美午夜高清在线| 亚洲精品一二三| 在线天堂中文资源库| 国产av精品麻豆| 黄色视频,在线免费观看| 午夜福利免费观看在线| 在线看a的网站| 成年人黄色毛片网站| 国产极品粉嫩免费观看在线| 极品人妻少妇av视频| 亚洲国产中文字幕在线视频| 黄色a级毛片大全视频| 亚洲av片天天在线观看| 欧美日韩国产mv在线观看视频| 免费日韩欧美在线观看| 不卡一级毛片| 成人av一区二区三区在线看| 国产野战对白在线观看| 另类亚洲欧美激情| 国产免费现黄频在线看| 黄频高清免费视频| 久久亚洲真实| 真人一进一出gif抽搐免费| 欧美精品一区二区免费开放| 十分钟在线观看高清视频www| 欧洲精品卡2卡3卡4卡5卡区| 可以在线观看毛片的网站| 麻豆一二三区av精品| 欧美精品亚洲一区二区| 男人舔女人的私密视频| 搡老岳熟女国产| 国产精品香港三级国产av潘金莲| 国产成年人精品一区二区 | 女人被狂操c到高潮| av天堂久久9| 精品久久久精品久久久| 精品福利观看| 老司机靠b影院| 99久久人妻综合| 午夜a级毛片| 亚洲精品粉嫩美女一区| 精品免费久久久久久久清纯| 国产精品偷伦视频观看了| 欧美中文日本在线观看视频| xxx96com| 一本大道久久a久久精品| 国产亚洲精品久久久久久毛片| 亚洲av成人不卡在线观看播放网| 丁香欧美五月| 男女床上黄色一级片免费看| 大陆偷拍与自拍| 日韩人妻精品一区2区三区| 欧美乱妇无乱码| 可以免费在线观看a视频的电影网站| 丰满迷人的少妇在线观看| 一级毛片高清免费大全| 久久精品亚洲精品国产色婷小说| 亚洲五月色婷婷综合| 亚洲欧美日韩无卡精品| 亚洲精品美女久久av网站| cao死你这个sao货| 免费在线观看亚洲国产| 91大片在线观看| 欧美乱码精品一区二区三区| 欧美成人午夜精品| 日韩成人在线观看一区二区三区| 在线免费观看的www视频| 极品教师在线免费播放| 欧美日韩福利视频一区二区| 久久影院123| 757午夜福利合集在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久欧美精品欧美久久欧美| 亚洲美女黄片视频| 日本黄色日本黄色录像| 亚洲黑人精品在线| 国产成人一区二区三区免费视频网站| 国产区一区二久久| 国产aⅴ精品一区二区三区波| 男男h啪啪无遮挡| 亚洲三区欧美一区| av视频免费观看在线观看| 在线天堂中文资源库| 视频在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 国产精品永久免费网站| 久久精品国产综合久久久| 日韩中文字幕欧美一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 成年人免费黄色播放视频| 十八禁人妻一区二区| 性欧美人与动物交配| 欧美人与性动交α欧美软件| 亚洲成人久久性| 欧美av亚洲av综合av国产av| 国产精品九九99| 最近最新免费中文字幕在线| 亚洲欧美激情综合另类| 黄色怎么调成土黄色| 老司机亚洲免费影院| 国产av在哪里看| 视频区欧美日本亚洲| 一级,二级,三级黄色视频| 女人被狂操c到高潮| 日日夜夜操网爽| 侵犯人妻中文字幕一二三四区| 日韩欧美国产一区二区入口| 日本 av在线| 在线天堂中文资源库| 这个男人来自地球电影免费观看| 老司机午夜福利在线观看视频| 99久久国产精品久久久| 中文字幕最新亚洲高清| 欧美国产精品va在线观看不卡| 日韩免费av在线播放| 人人妻人人爽人人添夜夜欢视频| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 一级毛片女人18水好多| 麻豆成人av在线观看| 国产一区在线观看成人免费| 91成年电影在线观看| 国产精品偷伦视频观看了| 成人18禁在线播放| 成人永久免费在线观看视频| 国产欧美日韩一区二区三区在线| 少妇被粗大的猛进出69影院| 中文字幕人妻丝袜制服| 黄色片一级片一级黄色片| 久久久久久久久免费视频了| 九色亚洲精品在线播放| 村上凉子中文字幕在线| 美女高潮到喷水免费观看| 中亚洲国语对白在线视频| 精品无人区乱码1区二区| 久久青草综合色| 黑人巨大精品欧美一区二区mp4| 男人舔女人下体高潮全视频| 69av精品久久久久久| 国产区一区二久久| 真人做人爱边吃奶动态| 身体一侧抽搐| 精品一区二区免费观看| 女人十人毛片免费观看3o分钟| 久久久久性生活片| 亚洲中文日韩欧美视频| 麻豆久久精品国产亚洲av| 少妇人妻一区二区三区视频| 中文字幕熟女人妻在线| 日韩 亚洲 欧美在线| 欧美国产日韩亚洲一区| 亚洲va日本ⅴa欧美va伊人久久| 自拍偷自拍亚洲精品老妇| 女生性感内裤真人,穿戴方法视频| 能在线免费观看的黄片| 日日夜夜操网爽| 日本黄大片高清| 十八禁网站免费在线| 99riav亚洲国产免费| 免费黄网站久久成人精品 | 久久久久久久午夜电影| 久久久久九九精品影院| 直男gayav资源| 亚洲专区国产一区二区| 久久亚洲精品不卡| 日韩av在线大香蕉| 亚洲男人的天堂狠狠| 国产白丝娇喘喷水9色精品| 午夜福利欧美成人| 亚洲国产精品成人综合色| 成年女人毛片免费观看观看9| av专区在线播放| 免费在线观看影片大全网站| 99热只有精品国产| 国产亚洲av嫩草精品影院| 在线播放国产精品三级| 九九在线视频观看精品| 色吧在线观看| 国产亚洲精品久久久com| 夜夜躁狠狠躁天天躁| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 1024手机看黄色片| 日韩大尺度精品在线看网址| 亚洲av二区三区四区| 亚洲激情在线av| 亚洲成av人片免费观看| 午夜视频国产福利| 每晚都被弄得嗷嗷叫到高潮| 一个人免费在线观看的高清视频| 欧美丝袜亚洲另类 | 午夜日韩欧美国产| 久久人人精品亚洲av| 久久久久久大精品| 国产69精品久久久久777片| 免费看光身美女| www日本黄色视频网| 嫩草影院入口| 日韩欧美在线二视频| 亚洲av二区三区四区| 亚洲激情在线av| 18美女黄网站色大片免费观看| 直男gayav资源| 麻豆成人av在线观看| 深夜精品福利| 国产美女午夜福利| 午夜日韩欧美国产| 精品人妻视频免费看| 99国产精品一区二区蜜桃av| 又爽又黄a免费视频| 全区人妻精品视频| 长腿黑丝高跟| 欧美xxxx性猛交bbbb| 中文资源天堂在线| 日本黄大片高清| 日韩精品中文字幕看吧| 久久久久久久亚洲中文字幕 | 大型黄色视频在线免费观看| 黄色配什么色好看| 热99re8久久精品国产| 在线a可以看的网站| 蜜桃亚洲精品一区二区三区| 日本一本二区三区精品| 午夜福利在线观看免费完整高清在 | 特大巨黑吊av在线直播| 婷婷亚洲欧美| 88av欧美| 免费在线观看亚洲国产| 99久久九九国产精品国产免费| 国产精品久久久久久精品电影| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 九九在线视频观看精品| 成人特级av手机在线观看| 男人狂女人下面高潮的视频| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久| 中文字幕精品亚洲无线码一区| 婷婷亚洲欧美| 国产欧美日韩精品亚洲av| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 色噜噜av男人的天堂激情| 成年人黄色毛片网站| 欧美高清成人免费视频www| 色噜噜av男人的天堂激情| 亚洲av免费高清在线观看| 亚洲中文日韩欧美视频| 色在线成人网| 日韩高清综合在线| 日韩欧美在线乱码| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 久久精品国产亚洲av香蕉五月| 精品人妻熟女av久视频| 欧美乱色亚洲激情| 国产免费av片在线观看野外av| 精品人妻熟女av久视频| 欧美绝顶高潮抽搐喷水| 一二三四社区在线视频社区8| 午夜激情欧美在线| 精品福利观看| 亚洲无线在线观看| 99热这里只有精品一区| 三级国产精品欧美在线观看| 免费大片18禁| 午夜精品一区二区三区免费看| www日本黄色视频网| 久9热在线精品视频| 老司机深夜福利视频在线观看| 色吧在线观看| 亚洲成a人片在线一区二区| 精品不卡国产一区二区三区| 90打野战视频偷拍视频| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻偷拍中文字幕| 欧美zozozo另类| 精品久久久久久久人妻蜜臀av| 亚洲美女视频黄频| 国产中年淑女户外野战色| 久久国产精品影院| 久久久久久久午夜电影| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 久久午夜福利片| 午夜日韩欧美国产| 国产欧美日韩一区二区三| 日本撒尿小便嘘嘘汇集6| 久久国产精品影院| 亚洲最大成人av| 一本精品99久久精品77| 国产av在哪里看| 日本一二三区视频观看| 18+在线观看网站| 97超视频在线观看视频| 一级av片app| 国产乱人视频| 性插视频无遮挡在线免费观看| 午夜视频国产福利| 国产高清激情床上av| 99在线视频只有这里精品首页| 日韩国内少妇激情av| 亚洲内射少妇av| 亚洲男人的天堂狠狠| 久久精品人妻少妇| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 国产精品,欧美在线| 一级黄片播放器| 熟女电影av网| 最近中文字幕高清免费大全6 | 男人的好看免费观看在线视频| 亚洲无线观看免费| 国产国拍精品亚洲av在线观看| 免费黄网站久久成人精品 | 麻豆成人午夜福利视频| 午夜日韩欧美国产| 亚洲美女视频黄频| 在线看三级毛片| 人妻夜夜爽99麻豆av| 俄罗斯特黄特色一大片| 最近最新中文字幕大全电影3| 亚洲美女黄片视频| 好男人在线观看高清免费视频| 国产黄片美女视频| or卡值多少钱| 精品久久久久久久久久免费视频| 五月伊人婷婷丁香| 一进一出抽搐动态| 国语自产精品视频在线第100页| 噜噜噜噜噜久久久久久91| 国产大屁股一区二区在线视频| 又粗又爽又猛毛片免费看| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 久久国产精品人妻蜜桃| 国产精品人妻久久久久久| 97超视频在线观看视频| 中文字幕免费在线视频6| 久久人人精品亚洲av| 真人一进一出gif抽搐免费| 波野结衣二区三区在线| 一个人免费在线观看的高清视频| 高清在线国产一区| 日本与韩国留学比较| 久久九九热精品免费| 成年版毛片免费区| 在线观看美女被高潮喷水网站 | 午夜福利在线观看免费完整高清在 | 国产高清激情床上av| 欧美黄色淫秽网站| 每晚都被弄得嗷嗷叫到高潮| 日韩高清综合在线| 老熟妇乱子伦视频在线观看| 国产精品爽爽va在线观看网站| 淫妇啪啪啪对白视频| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 免费在线观看影片大全网站| 俺也久久电影网| 国产黄片美女视频| 免费在线观看亚洲国产| 日韩欧美 国产精品| 午夜福利在线观看吧| 成年版毛片免费区| 久久6这里有精品| 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 国产色爽女视频免费观看| 99久久精品热视频| 如何舔出高潮| 久久欧美精品欧美久久欧美| 少妇人妻精品综合一区二区 | 日韩精品中文字幕看吧| 中文字幕熟女人妻在线| 免费在线观看日本一区| 国产精品av视频在线免费观看| 免费看日本二区| 欧美日本亚洲视频在线播放| 午夜激情欧美在线| 成人av一区二区三区在线看| 久久九九热精品免费| 久久国产精品影院| 欧美成人a在线观看| 黄色一级大片看看| 偷拍熟女少妇极品色| 韩国av一区二区三区四区| 久久久久久国产a免费观看| 中文字幕久久专区| 97超视频在线观看视频| 亚洲不卡免费看| 日本 av在线| 亚洲男人的天堂狠狠| 成人三级黄色视频| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 欧美色视频一区免费| 婷婷精品国产亚洲av| 欧美zozozo另类| 日韩国内少妇激情av| 精品免费久久久久久久清纯| 在线十欧美十亚洲十日本专区| 国产伦人伦偷精品视频| 成人精品一区二区免费| 天堂√8在线中文| 亚洲在线自拍视频| 十八禁网站免费在线| 脱女人内裤的视频| 长腿黑丝高跟| 欧美最黄视频在线播放免费| 一二三四社区在线视频社区8| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 一本精品99久久精品77| 国产精品久久久久久精品电影| 中文字幕免费在线视频6| 国产一区二区在线观看日韩| 成人亚洲精品av一区二区| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 91av网一区二区| 亚洲第一欧美日韩一区二区三区| 亚洲成人精品中文字幕电影| 国产成人欧美在线观看| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 精品久久久久久久久亚洲 | 成熟少妇高潮喷水视频| 久久精品国产自在天天线| 欧美成人免费av一区二区三区| 美女大奶头视频| 亚洲av不卡在线观看| 亚洲片人在线观看| 国产成人啪精品午夜网站| 久久久成人免费电影| 一本精品99久久精品77| 亚洲av免费在线观看| 免费人成在线观看视频色| 亚洲国产欧美人成| 色综合婷婷激情| 亚洲无线在线观看| 在线观看舔阴道视频| 欧美日韩乱码在线| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 天天一区二区日本电影三级| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 久久久色成人| 大型黄色视频在线免费观看| 热99re8久久精品国产| 国产男靠女视频免费网站| 欧美中文日本在线观看视频| 日韩中字成人| 久久久久精品国产欧美久久久| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 我要看日韩黄色一级片| 国产伦在线观看视频一区| 一夜夜www| 国产乱人伦免费视频| 性色avwww在线观看| 国产午夜福利久久久久久| 国产成人av教育| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 久久久成人免费电影| 精品一区二区三区av网在线观看| 长腿黑丝高跟| 免费av观看视频| 精品免费久久久久久久清纯| 精品福利观看| 免费观看的影片在线观看| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 少妇人妻一区二区三区视频| 国产精品久久电影中文字幕| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 国产精品日韩av在线免费观看| 人人妻人人看人人澡| 国产黄色小视频在线观看| 婷婷亚洲欧美|