程樹(shù)斌 張春會(huì) 關(guān)彤軍 戴凌云 趙彥輝 馬志中
摘要:為分析理論解析法求解種植土-碎石綠化帶雨水入滲問(wèn)題的合理性,建立了非飽和種植土-碎石綠化帶雨水入滲的有限元模型,模型上邊界設(shè)置儲(chǔ)水表皮,模擬雨水入滲和積蓄,下邊界為飽和排水,模型兩側(cè)不透水。首先,利用有限元模型模擬了均勻降雨條件下的雨水入滲特征,與理論解析解對(duì)比,驗(yàn)證了模型的正確性。然后,利用有限元模型計(jì)算石家莊市2年重現(xiàn)期3 h設(shè)計(jì)暴雨雨型條件下種植土的雨水入滲,地表開(kāi)始積水時(shí)間、降雨結(jié)束后積水深度、雨量徑流系數(shù)分別為075 h,13.6 cm和0.24,均勻降雨理論解析解計(jì)算結(jié)果分別為0.72 h,14.4 cm和0.17,兩種方法計(jì)算結(jié)果相差不多。再次,利用有限元模型計(jì)算了下邊界孔壓變化、上邊界孔壓變化條件下的種植土地表開(kāi)始積水時(shí)間,結(jié)果表明隨著下邊界孔壓降低,地表開(kāi)始積水時(shí)間延長(zhǎng),隨著上邊界孔壓降低,地表開(kāi)始積水時(shí)間延長(zhǎng),當(dāng)下邊界孔壓為0 kPa時(shí),初始上邊界孔壓分別為-6 kPa和-12 kPa,地表開(kāi)始積水時(shí)間分別為45 min和50 min,地表開(kāi)始積水時(shí)間有一定差異;當(dāng)初始上邊界為-6 kPa,下邊界分別為0 kPa,-1 kPa,-2 kPa和-3 kPa時(shí),地表開(kāi)始積水時(shí)間分別為45 min,45 min,46 min和47 min,下邊界條件對(duì)地表開(kāi)始積水時(shí)間影響較小。地基土滲透系數(shù)為6.5×10-9 m/s,地基土孔隙水壓力分別為0 kPa,-4.5 kPa,-9 kPa,-13.5 kPa和-18 kPa,利用有限元模型求解獲得種植土地表開(kāi)始積水時(shí)間分別為54 min,54 min,55 min,55 min和56 min,地表積水深度分別為11.9 cm,11.7 cm,11.5 cm,11.4 cm和11.3 cm,隨著地基土孔隙水壓力降低,種植土地表開(kāi)始積水時(shí)間略有延長(zhǎng),種植土地表積水深度略有降低,總體上地基土孔隙水壓力對(duì)種植土地表積水時(shí)間和積水深度影響不大。地基土孔隙水壓力0 kPa,滲透系數(shù)分別為6.5×10-9 m/s和6.5×10-7 m/s,利用有限元模型計(jì)算獲得種植土地表開(kāi)始積水時(shí)間均為54 min,積水深度均為119 cm,地基土滲透系數(shù)對(duì)種植土地表積水時(shí)間和積水深度基本無(wú)影響。從上述研究結(jié)果可以看出,可以使用平均降雨強(qiáng)度和理論解析法計(jì)算地表開(kāi)始積水時(shí)間和積水深度;下邊界條件對(duì)地表開(kāi)始積水時(shí)間和積水深度影響不大;地基土的飽水滲透系數(shù)、地基土的初始含水率對(duì)地表積水開(kāi)始時(shí)間和地表積水深度影響不大;使用理論解析解求解種植土-碎石綠化帶雨水入滲問(wèn)題是合理的。
關(guān)鍵詞:城市給水排水工程;種植土-碎石綠化帶;有限元模型;邊界條件;雨型
中圖分類(lèi)號(hào):TU443文獻(xiàn)標(biāo)志碼:A
CHENG Shubin, ZHANG Chunhui, GUAN Tongjun, et al.Numerical modeling to rainfall infiltration into planting-soil-crushed-stone green belt[J].Journal of Hebei University of Science and Technology,2019,40(1):79-85.Numerical modeling to rainfall infiltration into
planting-soil-crushed-stone green belt
CHENG Shubin1,2, ZHANG Chunhui2,3, GUAN Tongjun2, DAI Lingyun3, ZHAO Yanhui2, MA Zhizhong2
(1.Shijiazhuang Municipal Construction Management Office, Shijiazhuang, Hebei 050000, China; 2.Shijiazhuang Municipal Design & Research Co., Ltd., Shijiazhuang, Hebei 050000, China;3.School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)
Abstract:To verify the rationality of the theoretical analytical method to solve the rainfall infiltration into planting-soil-crushed-stone green belt, the finite element model of the rainfall infiltration into unsaturated planting soil is established. The water storage skin is used to model the infiltration and accumulation of rainwater on the upper boundary of the model. The lower boundary is saturated and drained, and the both sides of the model are impervious. Firstly, the infiltration characteristics of road rainwater under uniform rainfall conditions are modeled by the finite element model. Compared with the theoretical analytical solution, the finite element model is proved to be right. Secondly, the infiltration of road rainwater into planted soils is calculated by the finite element model under the condition of 2-year recurrence period and 3-hour design rainstorm of Shijiazhuang city. The beginning time of the surface water, the rainwater depth of stopping rainfall and the coefficient of rainfall runoff are 0.75 h, 13.6 cm and 0.24, respectively. The analytical results of uniform rainfall method are 0.72 h, 14.4 cm and 017, respectively. The results of the both methods are basically identical. Thirdly, the finite element model is employed to calculate the beginning time of the surface water under the condition of different pore pressure at the lower boundary and upper boundary. The results show that with the pore pressure descending at the lower boundary, the beginning time of the surface water rises up. With the pore pressure dropping at the upper boundary, the beginning time of the surface water increases. When the pore water pressure is 0 kPa at the lower boundary and the initial pore water pressure at the upper boundary are -6 and -12 kPa, the beginning time of the surface water are 45 and 50 min, respectively. Obviously the beginning time of the surface water is different. When the initial pore water pressure is -6 kPa at the upper boundary and the pore water pressure at the lower boundary are 0, -1, -2 and -3 kPa, the beginning time of the surface water are 45, 45, 46 and 47 min, respectively. The lower boundary condition has little effects on the beginning time of the surface water. When the permeability coefficient is 6.5×10-9 m/s and the pore water pressure of ground soil are 0, -4.5, -9, -13.5 and-18 kPa, the finite element model is used and the beginning time of the surface water are 54, 54, 55, 55 and 56 min, respectively. Correspondingly the surface water depths are 11.9, 11.7, 11.5, 11.4 and 11.3 cm, respectively. With the pore water pressure in ground soil decreases, the beginning time of the surface water slightly increases, and the surface water depth descends. As a whole, the pore water pressure in ground soil has little effect on the beginning time and the depth of the surface water. When the pore water pressure in ground soil is 0 kPa and the permeability coefficients are 6.5×10-9 and 6.5×10-7 m/s, the beginning time and the depth of the surface water by the finite element model are 54 and 11.9 cm, respectively. The permeability coefficient of the ground soil has little effect. Based on above analysis, our main conclusions are: Uniform rainfall intensity and theoretical analytical method can be used to calculate the beginning time and the depth of the surface water. The lower boundary condition has little effects on the beginning time of the surface water and water depth. The saturated permeability coefficient and the initial water content of the ground soil have no significant influence on the beginning time of the surface water and water depth. It is recommended to employ the analytical solution to analyze the rainwater infiltration in to planting-soil-crushed-stone green belt.
Keywords:city water supply and sewage engineering; planting-soil-crushed-stone green belt; finite element model; boundary conditions; rainfall pattern
河北科技大學(xué)學(xué)報(bào)2019年第1期程樹(shù)斌,等:種植土-碎石綠化帶雨水入滲的數(shù)值分析為改善城市生態(tài)環(huán)境,減輕城市熱島效應(yīng)和內(nèi)澇災(zāi)害,2014年住房和城鄉(xiāng)建設(shè)部發(fā)布了《海綿城市建設(shè)技術(shù)指南》[1],鼓勵(lì)中國(guó)各個(gè)城市建設(shè)海綿城市。2015年,遷安[2]、鎮(zhèn)江[3]、南寧[4]等16個(gè)城市入選海綿城市建設(shè)試點(diǎn)城市。海綿城市建設(shè)技術(shù)已為國(guó)內(nèi)外學(xué)者廣泛關(guān)注。在海綿城市建設(shè)技術(shù)方面,美國(guó)率先提出了低影響開(kāi)發(fā)的概念(low influence development),隨后一些國(guó)外學(xué)者先后研究了低影響開(kāi)發(fā)建設(shè)技術(shù)[5-8]。中國(guó)學(xué)者也先后對(duì)透水路面、植草溝、雨水花園、生物滯留帶、下凹式綠地等海綿城市結(jié)構(gòu)設(shè)施開(kāi)展了研究[9-14]。近些年,隨著海綿城市建設(shè)工程的實(shí)踐還出現(xiàn)了許多新的海綿城市結(jié)構(gòu)和海綿道路結(jié)構(gòu),種植土綠化帶就是其中一種。種植土綠化帶海綿道路結(jié)構(gòu)的工作原理為[20]機(jī)動(dòng)車(chē)道為不透水瀝青路面,雨水沿橫坡匯流至下凹綠化帶內(nèi),經(jīng)種植土入滲至碎石儲(chǔ)層內(nèi),再逐漸入滲至地基土內(nèi)。程樹(shù)斌等[20]取種植土為研究對(duì)象,將種植土綠化帶雨水入滲視作非飽和一維問(wèn)題,假設(shè)降雨均勻,下邊界為飽和排水邊界,進(jìn)而利用拉普拉斯變化給出了種植土雨水入滲的計(jì)算方法。程樹(shù)斌等給出的理論解為[20]K=qB-(qB-eαψ0)e-z-4(qB-qA)e(L-z)/2e-t/4M,(1)式中,M=∑∞n=1sin(λnz)sin(λnL)e-λ2nt1+(L/2)+2λ2nL;λn為如下超越方程的正值解,即tan(λL)+2λ=0;K為相對(duì)滲透系數(shù),K=K0(Ψ)/Ks,K0(Ψ)為孔壓Ψ時(shí)非飽和土滲透系數(shù),Ks為飽和滲透系數(shù);qA=qA0/Ks;qB=qB0/Ks,qA0為初始條件調(diào)整降雨強(qiáng)度,qB0為種植土上邊界降雨強(qiáng)度;Ψ0為種植土下邊界孔壓,一般取為0;α為種植土孔壓與體積含水率之間負(fù)指數(shù)函數(shù)關(guān)系的擬合系數(shù);L,z和t分別為種植土無(wú)量綱厚度、坐標(biāo)和時(shí)間,具體表達(dá)式參考文獻(xiàn)[20]。
利用式(1)求解均勻降雨條件下種植土內(nèi)的孔壓演化,然后采用種植土孔壓曲線正、負(fù)孔壓包絡(luò)面積代數(shù)和為0的方法求得地表開(kāi)始積水時(shí)間(即種植土飽和的時(shí)間)[20],進(jìn)而可計(jì)算種植土綠化帶降雨歷時(shí)內(nèi)地表積水深度、雨量徑流系數(shù)、下凹綠地深度等設(shè)計(jì)參數(shù)。
然而,在利用公式(1)求解地表積水時(shí)間時(shí),尚有幾個(gè)疑問(wèn)需要厘清:
1)利用式(1)求解地表積水時(shí)間時(shí),假設(shè)降雨量在降雨歷時(shí)內(nèi)均勻分布,沒(méi)有考慮雨型的影響,然而實(shí)際降雨是非均勻的,這種假設(shè)是否對(duì)計(jì)算結(jié)果有影響?
2)種植土下邊界含水率是變化的,在分析中一般簡(jiǎn)化為飽和排水邊界,這是否對(duì)計(jì)算結(jié)果有影響?
3)式(1)求解中,僅研究了種植土,沒(méi)有考慮碎石層、地基土含水率和滲透系數(shù)的影響,這是否對(duì)計(jì)算結(jié)果有影響?
為了明晰上述問(wèn)題,本文在Geo-Studio2012[21]下建立了種植土綠化帶雨水入滲的有限元數(shù)值模型,分析了雨型、種植土下邊界條件和地基土特性對(duì)種植土綠化帶雨水入滲的影響。
1數(shù)值模擬
1.1種植土雨水入滲有限元模型
本文算例由石家莊市匯明路種植土綠化帶工程概化而成,其結(jié)構(gòu)如圖1所示。取種植土進(jìn)行研究。種植土縱向長(zhǎng)度遠(yuǎn)大于橫向,可視為平面應(yīng)變問(wèn)題。種植土寬度為2.4 m,厚度為0.6 m,種植土下邊界為飽和排水邊界,上邊界為流量邊界,其值為降雨強(qiáng)度。以種植土下邊界中心為原點(diǎn),向上為正,坐標(biāo)系如圖1所示。
種植土的初始條件如下:下邊界孔壓為0 kPa,上邊界孔壓為-6 kPa。左、右兩側(cè)均為不透水邊界。種植土的飽水滲透系數(shù)為1.0 cm/h (即2.78×10-6 m/s),飽和體積含水率為0.48,殘余體積含水率為0.11,α=0167 kPa-1(或0016 7 cm-1)。
為模擬雨水在地表的積蓄,在地表設(shè)置了儲(chǔ)水表皮[21]。
考慮機(jī)動(dòng)車(chē)道雨水匯集至種植土綠化帶,綠化帶等效降雨強(qiáng)度qe為[20]qe=q(1+ψeAy+A0Al)=qη,(2)式中:q為降雨強(qiáng)度;Ay為機(jī)動(dòng)車(chē)道寬度;Al為綠化帶凈寬,ψe為雨量徑流系數(shù);A0為綠化帶被混凝土占據(jù)的寬度。本文匯明路工程中,Ay=7.5 m,Al=2.4 m,A0=0.6 m,ψe=0.9,η=4.06。建立的數(shù)值模型如圖2所示。
1.2數(shù)值模型驗(yàn)證
為驗(yàn)證建立的數(shù)值模型的正確性,取如下降雨進(jìn)行分析:暴雨均勻持續(xù)24 h,總降雨量為55.7 mm,等效降雨強(qiáng)度qe=9.42 mm/h。利用2.1中的有限元模型求解。
另外,使用解析解式(1)進(jìn)行求解,λn值取12項(xiàng),分別為[20]1.836 6,4.815 8,7.917 1,11.040 8,14.172 4,17.307 6,20.444 8,23.583 1, 26.722 2,29.861,33.001 9,36.142 1。
種植土內(nèi)孔壓隨時(shí)間演化規(guī)律的有限元模型解和解析解結(jié)果如圖3所示。圖3中,T為實(shí)際入滲時(shí)間,Z*為真實(shí)豎向坐標(biāo),參考圖1。從圖3可以看出,本文數(shù)值解與解析解結(jié)果基本一致,這表明本文數(shù)值模型是正確的。
從圖3可以看出,在初始狀態(tài),種植土非飽和,土體內(nèi)孔壓為負(fù),從地表向下孔壓近似線性增加。隨著雨水入滲,近地表的孔壓增大。隨降雨時(shí)間增加,從地表向下孔壓不斷增加,并逐步趨于飽水。
1.3雨型對(duì)種植土地表開(kāi)始積水時(shí)間的影響
石家莊市2年重現(xiàn)期3h設(shè)計(jì)暴雨歷時(shí)曲線如圖4所示,其3 h累計(jì)降雨量為46.4 mm。
等效降雨強(qiáng)度是對(duì)圖4所示的設(shè)計(jì)暴雨歷時(shí)曲線增大4.06倍,結(jié)果如圖4所示,等效降雨量為188.4 mm。按圖4等效降雨強(qiáng)度歷時(shí)曲線進(jìn)行計(jì)算,獲得種植土內(nèi)孔壓演化如圖5所示。
從圖5可以看出,隨著降雨,種植土飽和度快速增長(zhǎng)。當(dāng)降雨45 min左右(約0.75 h),地表開(kāi)始積水,3 h降雨結(jié)束后,地表積水接近13.6 cm。若植物耐水濕時(shí)間為12 h,降雨結(jié)束后,還可允許入滲9.75 h,入滲雨水975 cm,因此下凹綠化帶深度不宜超過(guò)9 cm,以避免在這種降雨條件下綠化帶內(nèi)植物浸泡時(shí)間過(guò)長(zhǎng)而枯萎。
若積水深度為9 cm,則溢流4.6 cm,流量徑流系數(shù)為46/188.4=0.24。
利用公式(1),使用平均降雨強(qiáng)度計(jì)算,等效平均降雨強(qiáng)度為188.4/3=62.8 mm/h,其地表開(kāi)始積水時(shí)間為0.7 h,按植物耐水濕時(shí)間12 h考慮,下凹綠化帶深度可為9.7cm,取為9 cm。入滲雨量為62.8×0.7+2.3×10+10×9=156.96 mm,溢流31.4 mm,流量徑流系數(shù)為31.4/188.4=0.17。
對(duì)比有限元模型解和解析解可以看出,兩種方法得到的地表開(kāi)始積水時(shí)間和流量徑流系數(shù)相差不多,這表明雨型對(duì)解析解計(jì)算的地表開(kāi)始積水時(shí)間、降雨結(jié)束后積水深度、雨量徑流系數(shù)等的計(jì)算結(jié)果影響不大。
1.4下邊界條件對(duì)地表開(kāi)始積水時(shí)間的影響
使用理論解析解(即公式(1))計(jì)算中,一般將下邊界簡(jiǎn)化為飽和排水邊界,這種簡(jiǎn)化是否合理呢?
實(shí)際上,理論解析解中下邊界條件可根據(jù)下邊界含水率確定。然而,降雨入滲后下邊界較濕潤(rùn),甚至飽和。降雨停止,種植土內(nèi)水分也逐漸入滲,通過(guò)下邊界進(jìn)入碎石層,下邊界含水率仍然很大。若碎石層內(nèi)有積水,蒸發(fā)氣化也使得種植土下邊界含水率較高。因此,從定性上來(lái)看,將下邊界視作飽和排水邊界進(jìn)行計(jì)算有一定道理,計(jì)算結(jié)果稍有保守,下面進(jìn)行定量分析。
變化初始上邊界和下邊界條件,按表1所示6種工況,使用本文數(shù)值模型計(jì)算,獲得了上(初始)、下邊界為不同負(fù)孔隙水壓力(或含水率)情況下地表開(kāi)始積水時(shí)間,結(jié)果如表1所示。
從表1可見(jiàn),當(dāng)下邊界為飽和排水邊界(工況1和5)、初始上邊界條件不同時(shí),地表開(kāi)始積水時(shí)間分別為45 min和50 min,地表開(kāi)始積水時(shí)間有一定差異。當(dāng)初始上邊界條件相同(如工況1、工況2、工況3、工況4),下邊界條件改變時(shí),地表開(kāi)始積水時(shí)間在45~47 min之間,下邊界條件對(duì)地表開(kāi)始積水時(shí)間沒(méi)有顯著影響。
因此,在使用理論解析公式(1)計(jì)算地表開(kāi)始積水時(shí)間時(shí),種植土下邊界取為飽和排水邊界,對(duì)計(jì)算結(jié)果沒(méi)有顯著影響。
1.5地基土性質(zhì)對(duì)種植土地表開(kāi)始積水時(shí)間的影響
首先建立種植土-碎石層-地基土的海綿道路結(jié)構(gòu)雨水入滲模型。
種植土的物理及水力學(xué)特性參數(shù)如21和2.3所示。初始上邊界的孔壓為-12 kPa,上邊界條件為雨量邊界條件,其值為圖4所示的等效降雨強(qiáng)度。不指定下邊界條件,下邊界直接與碎石層相接。
碎石層厚度為0.75 m,孔隙度為0.4,飽和體積含水率為0.4,α=1.55 kPa-1,殘余體積含水率為0.08,飽和滲透系數(shù)為3×10-4 m/s。
碎石層下為地基土,地基土α為0.032 kPa-1。飽和體積含水率為0.43,殘余體積含水率為0.28。地基土的工況如下:初始孔隙水壓力分別為0,-4.5,-9,-13.5,-18 kPa,地基土的飽水滲透系數(shù)分別為6.5×10-9 m/s和1.0×10-6 m/s,共10種工況。
地基土計(jì)算區(qū)域尺寸為50 m×25 m,計(jì)算域足夠大。地基土除與碎石層接觸界面外的邊界均為不透水。種植土和碎石層位于地基土表面正中央。
利用建立的有限元模型進(jìn)行計(jì)算,獲得不同工況地表開(kāi)始積水時(shí)間和積水深度如表2所示。
從表2可以看出,滲透系數(shù)相同(如6.5×10-9 m/s)條件下,不同初始孔壓(或飽和度)地基土地表開(kāi)始積水時(shí)間在54~55 min之間,降雨結(jié)束后地表積水高度在11.3~11.9 cm之間,地基土初始孔壓對(duì)種植土地表開(kāi)始積水時(shí)間和降雨結(jié)束后的地表積水高度都影響微小。地基土的滲透系數(shù)增加100倍,若地基土初始孔壓相同,種植土地表開(kāi)始積水時(shí)間和降雨結(jié)束后的地表積水高度都基本沒(méi)有影響。
可見(jiàn),地基土的含水率(初始孔壓或飽和度)和地基土的飽水滲透系數(shù)對(duì)種植土地表開(kāi)始積水時(shí)間和降雨結(jié)束后積水高度基本無(wú)影響。
從前述數(shù)值模擬結(jié)果可以看出:使用平均降雨強(qiáng)度和理論解析公式(1)計(jì)算地表開(kāi)始積水時(shí)間和積水深度與考慮雨型的有限元計(jì)算結(jié)果差別不大;下邊界條件對(duì)地表開(kāi)始積水時(shí)間和積水深度影響不大;地基土的飽水滲透系數(shù)、地基土的初始含水率對(duì)地表積水開(kāi)始時(shí)間、地表積水深度影響不大。
可見(jiàn),使用理論解析公式(1)計(jì)算降雨條件下種植土的地表開(kāi)始積水時(shí)間是完全可行的。
2設(shè)計(jì)的計(jì)算方法
前述研究結(jié)果表明,使用理論解析公式(1)可以計(jì)算降雨條件下地表開(kāi)始積水時(shí)間,進(jìn)而可以計(jì)算種植土綠化帶工程中的一些關(guān)鍵設(shè)計(jì)參數(shù),具體實(shí)現(xiàn)過(guò)程如下:
1)將設(shè)計(jì)降雨雨型的降雨量在降雨歷時(shí)內(nèi)平均,作為設(shè)計(jì)降雨強(qiáng)度,然后利用公式(2)求解等效降雨強(qiáng)度qe;
2)利用理論解析公式(1)和等效降雨強(qiáng)度計(jì)算不同時(shí)間的種植土內(nèi)孔隙水壓力分布圖;
3)計(jì)算不同時(shí)間孔隙水壓力分布圖的面積代數(shù)和,當(dāng)分布圖的面積代數(shù)和為0時(shí),對(duì)應(yīng)的時(shí)刻即為地表開(kāi)始積水時(shí)間。若地表開(kāi)始積水時(shí)間為T(mén)0,穩(wěn)定入滲時(shí)間[20]為T(mén)1,則降雨結(jié)束時(shí)種植土入滲雨水的高度H0為H0=qeT0+KsT1。(3)若在降雨歷時(shí)內(nèi)不能入滲的雨水,全部通過(guò)徑流排走,則雨量徑流系數(shù)可以表示為λ=qe(T0+T1)-H0-H3qe(T0+T1)。(4)式中,H3為種植土下凹綠化帶深度。
若沒(méi)有雨水排走,則綠化帶需要下凹,以儲(chǔ)存來(lái)不及入滲的雨水。若綠化帶內(nèi)植物的耐水濕時(shí)間為T(mén)2,則下凹綠化帶設(shè)計(jì)深度為H3=(T2-T1)Ks。(5)
3結(jié)論
本文在GeoStudio2012中分別建立了種植土、種植土-碎石-地基土的綠化帶雨水入滲有限元模型,分析了雨型、種植土下邊界條件、地基土含水率和滲透性對(duì)地表開(kāi)始積水時(shí)間和積水深度的影響,獲得了如下結(jié)論:
1)使用平均降雨強(qiáng)度和理論解析公式(1)計(jì)算地表開(kāi)始積水時(shí)間和積水深度與考慮雨型的有限元計(jì)算結(jié)果差別不大。
2)下邊界條件對(duì)地表開(kāi)始積水時(shí)間和積水深度影響不大。
3)地基土的飽水滲透系數(shù)、地基土的初始含水率對(duì)地表積水開(kāi)始時(shí)間和地表積水深度影響不大。
4)可以利用理論解析公式(1)計(jì)算種植土的地表開(kāi)始積水時(shí)間。
5)式(3)—式(5)可用于計(jì)算雨量徑流系數(shù)、下凹綠化帶深度。
參考文獻(xiàn)/References:
[1]住房和城鄉(xiāng)建設(shè)部. 海綿城市建設(shè)技術(shù)指南[S].2014.
[2]王雪,嚴(yán)軍,俞仲春,等.遷安市既有小區(qū)廣場(chǎng)馨園海綿城市設(shè)計(jì)策略[J].中國(guó)給水排水,2018,34(8):1-4.
WANG Xue,YAN Jun,YU Zhongchun,et al. Design strategy of sponge city in Qian'an city: Taking the square Xinyuan as an example[J].China Water & Wastewater,2018,34(8):1-4.
[3]緒濤,周緒旭,張旭偉,等.鎮(zhèn)江海綿城市建設(shè)工程質(zhì)量監(jiān)督管理研究[J].工程質(zhì)量,2018,36(9):17-20.
XU Tao,ZHOU Xuxu,ZHANG Xuwei, et al.Research on the quality supervision and management of Zhenjiang sponge city construction[J].Construction Quality,2018,36(9):17-20.
[4]吳珊,彭定仕,蘇擁軍,等.海綿城市設(shè)計(jì)方案及模擬論證——以南寧心圩車(chē)輛段為例[J].水科學(xué)與工程技術(shù),2018(4):42-46
WU Shan,PENG Dingshi,SU Yongjun,et al.Sponge city design plan and simulation——taking Xinyu depot in Nanning for example[J].Water Sciences and Engineering Technology,2018(4):42-46.
[5]DREELIN E A, FOWLER L,CARROLL C R. A test of porous pavement effectiveness on clay soils during natural storm events[J]. Water Research,2006,40: 799-805.
[6]COLLINS K A,HUNT W F,HATHAWAY J M. Hydrologic comparison off our types of permeable pavement and standard asphalt in Eastern North Carolina[J]. Journal of Hydrologic Engineering ,2008,12(13): 1146-1157.
[7]DEBUSK K M,WYNN T M.Storm-water bioretention for runoff quality and quantity mitigation[J]. Journal of Environmental Engineering,2011,137(9) :800-808.
[8]LIN Chai, MASOUD K, BRANDON G, et al. Hydraulic performance of fully permeable highway shoulder for storm water runoff management[J]. Journal of Environmental Engineering, 2012,138(7):711-722.
[9]吳禮舟,張利民,黃潤(rùn)秋.成層非飽和土滲流的耦合解析解[J].巖土力學(xué),2011,32(8):2391-2396.
WU Lizhou, ZHANG Limin, HUANG Runqiu. Analytic solution to coupled seepage in layered unsaturated soils[J].Rock and Soil Mechanics, 2011,137(9) :800-808.
[10]宮永偉,戚海軍,李俊奇, 等.城市道路低影響開(kāi)發(fā)設(shè)計(jì)的雨洪滯蓄效果分析[J].中國(guó)給水排水,2014, 30(9): 151-158.
GONG Yongwei, QI Haijun, LI Junqi, et al. Retention and reduction of rainwater on urban roads based on low impact development[J]. China Water & Waste Water, 2014, 30(9):151-158.
[11]唐雙成,羅紈,賈忠華,等.填料及降雨特征對(duì)雨水花園削減徑流及實(shí)現(xiàn)海綿城市建設(shè)目標(biāo)的影響[J]. 水土保持學(xué)報(bào),2016,30(1):73-78.
TANG Shuangcheng, LUO Wan, JIA Zhonghua, et al. Effects of filler and rainfall characteristics on runoff reduction of rain garden and achieving the goal of sponge city construction[J].Journal of Soil and Water Conservation, 2016,30(1):73-78.
[12]顧天奇,張古陶,孫海洋,等.新建開(kāi)發(fā)區(qū)海綿城市實(shí)踐-以蘇州太湖新城市政道路生態(tài)雨水滲透及利用工程為例[J].中國(guó)市政工程,2016(2):30-32.
GU Tianqi, ZHANG Gutao, SUN Haiyang, et al. Sponge city practice in new-built development zone: taking municipal road ecological rainwater infiltration & recycling project in Suzhou Taihu new city as an example[J].China Municipal Engineering, 2016(2):30-32.
[13]車(chē)伍,趙楊,李俊奇,等. 海綿城市建設(shè)指南解讀之基本概念與綜合目標(biāo)[J].中國(guó)給水排水, 2015,31(8):1-5.
CHE Wu, ZHAO Yang, LI Junqi, et al. Explanation of sponge city development technical guide: Basic concepts and comprehensive goals[J]. China Water & Waste Water, 2015,31(8):1-5.
[14]]陳朗,麥天鵬,張騰璨.海綿城市工程措施在城市景觀廣場(chǎng)的綜合運(yùn)用[J].城市道橋與防洪,2018(9):70-72.
CHEN Lang,MAI Tianpeng, ZHANG Tengcan. Comprehensive application of sponge city engineering measures in urban landscape square[J].Urban Roads Bridges & Flood Control,2018(9):70-72.
[15]張亮.西北地區(qū)海綿城市建設(shè)路徑探索——以西咸新區(qū)為例[J].城市規(guī)劃,2016,40(3):108-112.
ZHANG Liang. Path of sponge city construction in northwestern China: An empirical study on Xixian new area[J].City Planning Review,2016,40(3):108-112.
[16]中華人民共和國(guó)國(guó)家標(biāo)準(zhǔn).建筑與小區(qū)雨水利用工程技術(shù)規(guī)范(GB50400—2006)[S].
[17]中華人民共和國(guó)行業(yè)標(biāo)準(zhǔn).透水瀝青路面技術(shù)規(guī)程(CJJ/T 190—2012)[S].
[18]中華人民共和國(guó)行業(yè)標(biāo)準(zhǔn).透水水泥混凝土路面技術(shù)規(guī)程(CJJ/T 135—2009)[S].
[19]中華人民共和國(guó)行業(yè)標(biāo)準(zhǔn).透水磚路面技術(shù)規(guī)程(CJJ/T 188—2012)[S].
[20]程樹(shù)斌,關(guān)彤軍,張春會(huì),等.海綿城市道路種植土-碎石綠化帶的雨水入滲[J].中外公路, 2018, ,38(2):13-19.
CHENG Shubin,GUAN Tongjun,ZHANG Chunhui, et al. Rainfall infiltration of road planting soil-green vegetative macadam belt in sponge city[J]Journal of China & Foreign Highway,2018,38(2):13-19.
[21]GEO-SLOPE International Ltd. Seepage Modeling with SEEP/W[EB/OL].http://www.lulu.com/gb/en/shop/geo-slope-international/seepage-modeling-with-seepw/paperback/product-21672549.html,2014-06-13.第40卷第1期河北科技大學(xué)學(xué)報(bào)Vol.40,No.1
2019年2月Journal of Hebei University of Science and TechnologyFeb. 2019