• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials?

    2019-06-18 05:42:40HaoLu陸浩JunyangWang汪君洋BonanLiu劉柏男GengChu褚賡GeZhou周格FeiLuo羅飛JieyunZheng鄭杰允XiqianYu禹習(xí)謙andHongLi李泓
    Chinese Physics B 2019年6期

    Hao Lu(陸浩),Junyang Wang(汪君洋),Bonan Liu(劉柏男),Geng Chu(褚賡),Ge Zhou(周格),Fei Luo(羅飛),Jieyun Zheng(鄭杰允),Xiqian Yu(禹習(xí)謙),?,and Hong Li(李泓),?

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences(CAS),Beijing 100049,China

    3CAS Research Group on High Energy Density Lithium Batteries for EV,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    4Key Laboratory of Green Process Engineering,State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    5Tianmulake Excellent Anode Materials Co.,Ltd.,Changzhou 213300,China

    Keywords:lithium-ion battery,silicon monoxide,carbon coating,anode material

    1.Introduction

    Rechargeable lithium-ion batteries(LIBs)have been widely applied as predominant power sources in portable electronic devices,electric vehicles(EV),and electricity storage systems.With the rapid development of emerging electric vehicle markets,the increasing demands for high energy and power density,long-term cyclic stability,and low-cost have been critical challenges for lithium-ion batteries.[1-3]Among all the anode materials for LIBs that have been developed until now,silicon(Si)is considered as the most promising anode material for next generation high-energy-density LIBs owing to its high specific capacity(~ 4200 mAh·g-1)and low operating voltage for Li+insertion/extraction(<0.5 V versus Li+/Li).[4,5]However,there are two major drawbacks for the Si anode that hinder its commercial application:(i)the low intrinsic electric conductivity,and(ii)the severe volume swelling(>400%)during repeated Li-Si alloying/dealloying process.The drastic volume change leads to severe pulverization of the electrode,continuous formation of unstable solid electrolyte interphase(SEI)over recurrent charge/discharge cycles,and thus rapid decay of specific capacity.[6,7]Many strategies-such as employing nanocrystallized Si,forming composites with other phases,and surface coating with carbon-have been applied to achieve better electrochemical performance of Si anodes.[8-14]However,the long-term cycling stability of Si anode materials is still not yet able to meet the strict requirements for practical applications.

    As an alternative material among the Si-based anode materials,silicon monoxide(SiO)has been attracting growing attention in recent years because of its high reversible specific capacity(~ 2400 mAh·g-1)and stable cycling performance.The structural model of amorphous SiO is still ambiguous,with amorphous Si and SiO2clusters surrounded by Si-suboxide matrix as one plausible model.[15-17]This unique microstructure of SiO can effectively alleviate the large volume change of SiO electrodes during cycling,comparing with Si anodes.More speci fically,during the first lithiation pro-cess,Li reacts with SiO2to produce Li2O and LixSiOy(mainly Li4SiO4).Such compounds can act as buffer skeleton and relieve the severe volume change of SiO electrodes caused by further lithiation reaction,reducing the pulverization of SiO electrodes and the electrical disconnection with current collectors,and thus improve the cyclic performance of SiO.

    Nevertheless,SiO anode materials still suffer from relatively large volume change(~200%)during Li+insertion/extraction and low initial coulombic efficiency(ICE),due to the poor intrinsic electrical conductivity and the irreversible reactionbetweenLi+andSiO2clusters.Toresolvetheseproblems,several methods including element doping(e.g.,boron,titanium,and tungsten),construction of SiO/C composites,and surface coating(e.g.,carbon,TiO2,and Fe3O4)have been conducted to further improve the performance of SiO.[18-24]Among these strategies,surface coating with carbonaceous materials(e.g.,graphite,amorphous carbon,carbon nano fiber,carbon nanotubes,graphene,and reduced graphene oxide)has been widely employed in industrial production due to its lowcost and remarkable improvements in performance.For example,Wang et al.synthesized a carbon coated SiO nanocomposite with a core-shell structure via a solution route,which exhibits a high reversible specific capacity of~ 800 mAh·g-1at the 50th cycle and excellent rate performance.[25]Lee et al.reported that a nitrogen-doped carbon coated micro-sized SiO anode delivers a reversible capacity of 955 mAh·g-1after 200 cycles at a current density of 1500 mA·g-1,whereas only 545 mAh·g-1for bare SiO.[26]Carbon coating on SiO surface can greatly improve the electrical conductivity,effectively reduce the polarization,and relieve the severe volume change of SiO electrode,thus significantly enhance its cycling stability and rate capability.To achieve an excellent comprehensive performance,the carbon content in the surface coating layers needs to be further controlled to maintain the high capacity,initial coulombic efficiency,and cycle stability.

    In this work,the micro-sized SiO@C with carbon coating layer of different thicknesses were controllably synthesized via a simple pitch pyrolysis reaction method.The effect of carbon content on the electrochemical performances of SiO@C was investigated.The SiO@C/graphite(SiO@C/G)composites with the target capacity of 600 mAh·g-1were further synthesized by a ball-milling process.The SiO@C/G composite anodes exhibit a high reversible capacity and improved cycling performance in half cells as well as full cells with LiNi0.5Co0.2Mn0.3O2(NCM)as cathode material.

    2.Experiment

    2.1.Fabrication of SiO@C/G composites

    Silicon monoxide(Tianmulake Excellent Anode Materials Co.,Ltd.)was selected as the raw material to prepare the SiO@C composites via a simple pitch pyrolysis method.Firstly,SiO powder with an average particle size of 4μm-6μm was mixed with petroleum pitch,then the above mixture was heat-treated at a temperature of 300°C for 2 h and then 900°C for 2 h at a heating rate of 10°C·min-1in Ar atmosphere to obtain SiO@C composites.By the above process,SiO@C composites with different carbon coating contents(5 wt%,10 wt%,15 wt%,and 35 wt%)were synthesized at different mass ratios of SiO powders and petroleum pitch,which were labeled as SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.

    SiO@C/G composites were prepared to match the capacity of the cathode material.Graphite(Tianmulake Excellent Anode Materials Co.,Ltd.)was added to maintain the total capacity of SiO@C/G at 600 mAh·g-1.These mixtures were ball-milled for 5 h to obtain the final SiO@C/G composite materials(labeled as SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35).The amount of graphite of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 is 75.6 wt%,73.8 wt%,71.0 wt%,and 63.6 wt%,respectively.

    2.2.Characterizations

    The phase purity of aforementioned composite materials was characterized by an x-ray diffractometer(D8 Bruker)with Cu Kα radiation in the 2θ range of 10°-80°.The morphologies were investigated by scanning electron microscope(SEM,Hitachi-S4800)and transmission electron microscopy(TEM,FEI Tecnai G2 F20).Raman spectra were obtained by a Raman spectrometer(JY-HR800)using a 532-nm laser as a light source.The content of carbon was analyzed by carbon and sulphur analyzer(Yronh,CS-320).The tap density was measured by tapping apparatus(BNST,FZS4-4B).The specific surface areas of SiO@C samples were measured with the Brunauere-Emmete-Teller(BET)method by nitrogen adsorption isotherms collected at 77 K(Quantachrome,NOVA4200e).

    2.3.Electrochemical characterizations

    To make the electrode,the active material,carbon black,and water-soluble binder were mixed in a weight ratio of 93:2:5 in distilled water.The binder consisted of sodium carboxymethyl cellulose(CMC)and water system styrene butadiene rubber emulsion(SBR)water solutions in a weight ratio of 2:3.The slurry was deposited on copper foil using a blade and dried at 80°C in vacuum for 10 h.The mass loading of active materials was about 5 mg·cm-2.

    Coin-type cells were assembled in an argon- filled glovebox using Celgard 2500 as a separator,1-mol·L-1LiPF6in ethylene carbonate(EC)/diethyl carbonate(DEC)(1:1,v/v)as an electrolyte,and Li foil as a counter electrode.The charge/discharge tests were carried out using a Land battery test system(CT2001 A,Land)in a voltage range of 0.005 V-2.0 V at 0.1 A·g-1.Electrochemical impedance spectroscopy(EIS)was measured at anopen-circuit voltage inthe frequency range of 100 kHz and 10 mHz on an electrochemical station(CHI600E).

    Full cell electrochemical performance was evaluated in 2.5-Ah pouch cells using LiNi0.5Co0.2Mn0.3O2as cathodes and SiO@C/G composites as anodes.Both cathode and anode electrodes were fabricated in a pilot line(Tianmulake Excellent Anode Materials Co.,Ltd.).The electrolyte solution was 1-mol·L-1LiPF6in EC:DEC:DMC(1:1:1 in volume ratio).The full cells were charged and discharged in the voltage range of 2.75 V-4.2 V at various C-rates(1 C=677 mA·g-1).

    3.Results and discussion

    The synthesis process for micro-sized SiO@C/G composites is schematically illustrated in Fig.1.The micro-sized SiO@C samples with carbon coating layer of different thicknesses are first synthesized through a simple pitch pyrolysis reaction method.Then,the as-prepared SiO@C samples are mixed with graphite powders via a mechanical milling process to obtain the SiO@C/G composites.The carbon content of SiO@C samples are analyzed by carbon and sulphur analyzer.The actual carbon content for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples are 5.3%,9.8%,15.8%,and 35.1%,respectively,which are well consistent with the designed values.With the increase in carbon content,the tap densities and the specific surface areas of SiO@C samples remain almost unchanged(Table 1),indicating a similar particle size and surface morphology.

    Fig.1.Schematic illustration of the preparation process of micro-sized SiO@C/G composites.

    Table 1.The carbon content,tap density,and specific surface area of as-prepared SiO@C samples.

    Phase composition and crystallinities of the pristine SiO and SiO@C samples are characterized by x-ray diffraction(XRD).For all diffraction patterns,as shown in Fig.2(a),they are composed of a hump and several relatively sharp diffraction peaks.The hump located in the 2θ range of 20°-30°is corresponding to a typical amorphous phase of SiO2,and the sharp diffraction peaks at 28.4°,47.3°,and 56.1°can be assigned to the crystalline phase of Si.The occurrence of the diffraction peaks of Si crystalline in the XRD patterns of SiO@C samples is due to a partial thermal disproportionation reaction of SiO during the pyrolysis process(Fig.1).The intensities of Si diffraction peaks are almost identical for all SiO@C samples,indicating that there is no signi ficant difference in Si content for all SiO@C samples.Figure 2(b)shows the Raman spectra of the as-prepared SiO@C samples.The peaks located at around 520 cm-1and 980 cm-1correspond to Si crystalline phase,which is in accordance with the XRD results.The peaks located at~1340 cm-1and~1575 cm-1correspond to the disordered(D)bands and graphene(G)bands of carbon,respectively,and the peak intensity ratio can be used to describe the extent of graphitization.The Raman spectra results demonstrate the existence of amorphous carbon(ID/IGratio is~1.57)for the SiO@C samples.

    Fig.2.(a)XRD patterns and(b)Raman spectra of the SiO@C samples.

    SEM and high-resolution transmission electron microscopy(HRTEM)measurements are carried out to investigate the morphology and microstructure of the as-prepared SiO@C samples.As shown in Fig.3,the pristine SiO and as-prepared SiO@C samples have similar particle size with an average diameter of 4μm-6μm.The surface of SiO particles becomes smoother after carbon coating,contrasting the coarse surface of the pristine SiO particle(Figs.3(a)-3(f)).The uniform carbon coating is further con firmed by HRTEM.It can be clearly observed from Figs.3(g)-3(j)that the surface of SiO@C particles is uniformly coated by a dense amorphous carbon layer.With the increase in carbon content,the thickness of coating layer increases from 10.6 nm for SiO@C-5 to 23.8 nm,36.8 nm,and 81.0 nm for SiO@C-10,SiO@C-15,and SiO@C-35 samples,respectively.Such a dense carbon coating layer can enhance the electric conductivity of SiO electrode during lithium intercalation/de-intercalation,leading to the improvement of the electrochemical performance of SiO.

    To evaluate the electrochemical performances of asprepared SiO@C samples,galvanostatic charge-discharge tests are performed by using a coin-type half-cell. Figure4(a)shows the charge/discharge voltage profiles of SiO@C electrodes at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V.The initial charge capacities are 1708.9 mAh·g-1,1634.2 mAh·g-1,1500.4 mAh·g-1,and 1151.5 mAh·g-1for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).As for the charge specific capacity of soft carbon is just about 250 mAh·g-1,the composite with a higher carbon amount will have a lower initial charge specific capacity.The cycling performance and corresponding coulombic efficiency(CE)of the SiO@C samples are shown in Figs.4(b)and 4(c).It can be seen that the cycling stability and coulombic efficiency of SiO@C gradually improve with the increase of carbon content. The discharge capacity retention after 20 cycles is 54.1%,59.4%,65.3%,and 87.2%for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively(Table 2).The reasons for such improvements can be explained as follows:i)The carbon coating layer greatly enhances the electric conductivity and then effectively reduces the polarization of SiO electrodes;and ii)the carbon layer can function as a buffer layer to relieve the large volume swelling of SiO.

    Fig.3.(a)and(b)SEM images of pristine SiO;(c)-(f)SEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35;(g)-(j)HRTEM images of SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35 samples.

    Fig.4.(a)and(d)The initial charge/discharge curves,(b)and(e)discharge capacity retention,and(c)and(f)the corresponding coulombic efficiencies of SiO@C and SiO@C/G composites,respectively.

    Table 2.The electrochemical performance of SiO@C samples and SiO@C/G composites in half cells.

    SiO@C/G composites are prepared to further improve the long-term cycle stability of SiO@C.To match the capacity of positive electrode materials,the initial charge capacity of SiO@C/G composites is designed to 600 mAh·g-1(the highest charge capacity of commercial silicon-based anodes)by introducing different mass ratios of graphite powders.The galvanostatic charge-discharge tests of SiO@C/G composites are performed at a current density of 0.1 A·g-1in the voltage range of 0.005 V-2.0 V in coin-type half-cell firstly.The electrochemistry performances are displayed and summarized in Fig.4 and Table 2.The initial charge capacities of SiO@C/G-5,SiO@C/G-10,SiO@C/G-15,and SiO@C/G-35 are 596.2 mAh·g-1,592.6 mAh·g-1,598.0 mAh·g-1,and 601.0 mAh·g-1,respectively,which are in good accordance with the designed value of 600 mAh·g-1.All the SiO@C/G composites show higher initial coulombic efficiency and better cycling performance than the SiO@C samples, illustrating that the introduction of graphite is bene ficial to further improve the long-term cycling life of SiO@C.Among all SiO@C/G composites,the SiO@C/G-15 sample exhibits the best capacity retention of 80.4%after 50 cycles,while for SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35,the capacity retention is 66.7%,71.9%,and 76.4%,respectively.The capacity retention of SiO@C/G-35 is slightly poorer than that of SiO@C/G-15 because a smaller amount of graphite is added(lower capacity of SiO@C).

    Fig.5.Charge/discharge pro files of SiO@C/G||NCM full cell(a)at 2nd cycle and(b)at 100th cycle,the corresponding differential capacity(dQ/dV)plots(c)at 2nd cycle and(d)at 100th cycle,the cyclic performance of full cells(e)at 25 °C and(f)45 °C,and(g)the rate performance of the full cells.

    To evaluate the feasibility of the SiO@C/G composite anodes for practical application,2.5-Ah pouch-type full cells are assembled with the as-synthesized SiO@C/G composites as anodes and the commercially available LiNi0.5Co0.2Mn0.3O2as the cathodes.Figures 5(a)and 5(b)show the chargedischarge curves of the SiO@C/G‖NCM full cells at the 2nd and 100th cycles,respectively.The full cell with SiO@C/G-15 exhibits the highest discharge capacity of 2212.9 mAh·g-1after 100 cycles. The corresponding differential capacity(dQ/dV)plots of SiO@C/G||NCM full cells exhibit similar peak features at 2nd cycle(Fig.5(c))and at 100th cycle(Fig.5(d)).The intense peak between 3.95 V and 4.1 V is ascribed to the delithiation of graphite.This peak in SiO@C/G-15 remains in the highest voltage range after 100 cycles,indicating that the polarization of SiO@C/G-15 electrode is minimal among the SiO@C/G composite electrodes.It is expected that the polarization caused by electronic conductivity is negligible due to the introduction of graphite and the measurement of dQ/dV at such a low rate of 0.02 C.Therefore,it can be further inferred that the SiO@C/G-15 maintains better ionic conductivity than other SiO@C/G composites during cycling.As shown in Figs.5(e)and 5(f),the full cells with SiO@C/G-15 exhibit the best capacity retention of 90.7%and 90.1%at 25°C and 45°C,respectively(Table 3).Thus,stable cycling is achieved with SiO@C/G-15 composite electrodes in full cells even at a high temperature of 45°C.The rate capabilities of full cells at different current densities are exhibited in Fig.5(g).The charge capacity gradually decreases with the increases of rate from 0.5 C to 5 C.A notable drop of the charge capacity occurs at a high rate of 10 C.

    Table 3.The electrochemical performance of SiO@C/G||NCM full cells.

    Fig.6.SEMimagesof(a)and(e)SiO@C/G-5,(b)and(f)SiO@C/G-10,(c)and(g)SiO@C/G-15,(d)and(h)SiO@C/G-35composite electrodes collected in full cells after 2 cycles,and(i)and(m)SiO@C/G-5,(j)and(n)SiO@C/G-10,(k)and(o)SiO@C/G-15,(l)and(p)SiO@C/G-35 composite electrodes after 100 cycles.

    The morphology of the SiO@C/G electrodes after 2nd cycle and 100th cycle in full cells is investigated by SEM(Fig.6).It can be seen that there is no particle pulverization and fracture in the SiO@C/G composite electrodes,even after 100 cycles,indicating that the carbon coating layer and graphite skeleton play a signi ficant role in buffering the volume swelling of SiO particles and enhancing the mechanical stability of SiO electrodes.Figures 6(a)-6(h)show the sur-face morphology of SiO@C/G composite electrodes after two cycles.It is obvious that the particle surface of the SiO@C/G composites,especiallySiO@C/G-5,iscoveredbyarough film(Fig.6(e)),which can be ascribed to the solid-electrolyte interphase(SEI) film.After 100 cycles,the thickness of SEI increases on the surface of SiO@C/G particles(Figs.6(i)-6(p)).It can be clearly observed in Fig.6(m)that the SiO@C/G-5 particle is almost completely covered by a thick SEI film.In contrast,no signi ficant changes of surface morphology can be observed on SiO@C/G-15 after cycling compared with SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35.These results suggest that a carbon coating layer with moderate thickness will be propitious to effectively form a stable SEI film and maintain a high ionic conductivity for the SiO@C/G composite,thus enhancing its long-term cycling stability.

    To further understand the difference in the electrochemical performance of SiO@C/G composites,electrochemical impedance spectroscopy measurements are performed with full cells.As shown in Figs.7(a)and 7(b),the Nyquist plots consist of a small intercept at high frequency region(corresponding to the ohmic resistance,Ro),several semicircles at the medium frequency region(corresponding to the interface resistance and charge transfer resistance,RSEIand Rct),and a sloping straight line at the low frequency region(corresponding to the Warburg impedance,W).Figures 7(c)and 7(d)show the EIS fitting results of full cells after 2nd and 100th cycles.SiO@C/G-15 exhibits the minimum RSEIand Rctthan those of SiO@C/G-5,SiO@C/G-10,and SiO@C/G-35 after the 2nd and 100th cycles,implying that better ionic conductivity can be maintained in the SiO@C/G-15 electrode after cycling,which is consistent with the variation of delithiation peak voltage of graphite derived from dQ/dV plots in Figs.5(c)and 5(d).In contrast,the SiO@C/G-5 electrode displays significantly larger RSEIand Rctafter 100 cycles due to the increase in SEI thickness,which can be inferred from the SEM results as shown in Fig.6(m).These results suggest that a moderate carbon coating layer can effectively stabilize the solid/liquid interfaces between the SiO@C/G composite electrode and electrolyte and maintain better ionic conductivity during cycling,thus greatly improving the long-term cycling stability.

    Fig.7.The Nyquist plots and corresponding fitting parameters of SiO@C/G‖NCM full cells after(a)and(c)2nd,and(b)and(d)100th cycles.The inserts are the corresponding equivalent circuits.

    4.Conclusions

    In summary,the micro-sized SiO@C/G composites with different thicknesses of carbon coating layers have been controllably synthesized via a pitch pyrolysis reaction method followed by a ball-milling process.Uniform amorphous carbon coating on SiO particle with thicknesses of 11.9 nm,21.6 nm,36.8 nm,and 81.0 nm is achieved,for SiO@C-5,SiO@C-10,SiO@C-15,and SiO@C-35,respectively.The capacity retention and coulombic efficiency of SiO@C samples are gradually improved with the increase of carbon content.For practical application,SiO@C/G composites have been fabricated with the target overall capacity of 600 mAh·g-1.Among all the SiO@C/G composites,the SiO@C/G-15 composite electrode exhibits a high initial coulombic efficiency of 84.5%and an outstanding capacity retention of 90.7%at room temperature and 90.1%at high temperature of 45°C after 100 cycles in full cells with NCM as cathode.Therefore,a carbon coating layer with a moderate thickness will be propitious for SiO@C/G composites to effectively form a stable SEI film and maintain a high ionic conductivity during cycling,thus enhancing the long-term cycling stability.The new insights into SiO@C/G composites presented in this work will promote the commercialized application of SiO anode materials.

    久99久视频精品免费| av.在线天堂| 欧美日本亚洲视频在线播放| a级毛片免费高清观看在线播放| 午夜福利视频1000在线观看| 精品久久久久久久久久久久久| 91精品一卡2卡3卡4卡| 欧美日韩综合久久久久久| 人人妻人人澡欧美一区二区| 激情 狠狠 欧美| 成人av在线播放网站| 99久久人妻综合| 国产成人freesex在线| 边亲边吃奶的免费视频| 长腿黑丝高跟| 欧美xxxx性猛交bbbb| 精品国内亚洲2022精品成人| 欧美精品一区二区大全| 色哟哟·www| 99久久精品国产国产毛片| 国产精品永久免费网站| 精品不卡国产一区二区三区| 亚州av有码| 中国美女看黄片| 欧美极品一区二区三区四区| 亚洲国产精品合色在线| 黄片wwwwww| 国产精品爽爽va在线观看网站| 久99久视频精品免费| 青春草视频在线免费观看| 熟女电影av网| 又粗又硬又长又爽又黄的视频 | 亚洲无线观看免费| 美女大奶头视频| 久久久精品94久久精品| 青春草国产在线视频 | 国产伦精品一区二区三区视频9| 亚洲综合色惰| 激情 狠狠 欧美| 日日摸夜夜添夜夜爱| 男女视频在线观看网站免费| 久久国内精品自在自线图片| 在线免费观看不下载黄p国产| 男人狂女人下面高潮的视频| 真实男女啪啪啪动态图| 午夜免费男女啪啪视频观看| 99久久九九国产精品国产免费| 亚洲电影在线观看av| av天堂在线播放| 色综合亚洲欧美另类图片| 色哟哟·www| 欧美在线一区亚洲| 好男人在线观看高清免费视频| 蜜桃亚洲精品一区二区三区| 岛国毛片在线播放| 日韩中字成人| 成人无遮挡网站| 99久久人妻综合| 欧美最新免费一区二区三区| 色吧在线观看| 国产精品一区www在线观看| 成人综合一区亚洲| 亚洲av中文av极速乱| a级毛片a级免费在线| 国产成人aa在线观看| 成人欧美大片| 欧美精品一区二区大全| 免费大片18禁| 别揉我奶头 嗯啊视频| 网址你懂的国产日韩在线| 亚洲自拍偷在线| 日韩成人av中文字幕在线观看| 欧美丝袜亚洲另类| 看片在线看免费视频| 搞女人的毛片| eeuss影院久久| 免费电影在线观看免费观看| 插阴视频在线观看视频| 日韩欧美国产在线观看| 蜜臀久久99精品久久宅男| 淫秽高清视频在线观看| 国产精品久久久久久久久免| 人体艺术视频欧美日本| 久久久久久国产a免费观看| 精品人妻熟女av久视频| 亚洲无线观看免费| 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 99久久精品一区二区三区| 又粗又爽又猛毛片免费看| 久久久久久大精品| 极品教师在线视频| 欧美日韩一区二区视频在线观看视频在线 | 97在线视频观看| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区 | 男女视频在线观看网站免费| 成人综合一区亚洲| 国产精品无大码| 最近中文字幕高清免费大全6| 成熟少妇高潮喷水视频| 你懂的网址亚洲精品在线观看 | 国产片特级美女逼逼视频| 大又大粗又爽又黄少妇毛片口| 国产免费一级a男人的天堂| 一级毛片电影观看 | 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品久久久久久| 久久精品影院6| 久久精品夜色国产| 婷婷亚洲欧美| 国产精品一及| 99在线视频只有这里精品首页| 赤兔流量卡办理| 亚洲乱码一区二区免费版| 哪里可以看免费的av片| 色哟哟·www| av.在线天堂| 日韩人妻高清精品专区| 久久久久久国产a免费观看| 卡戴珊不雅视频在线播放| 久久九九热精品免费| 国产69精品久久久久777片| 欧美一级a爱片免费观看看| 国产黄片美女视频| 中文欧美无线码| 亚洲av成人av| 97热精品久久久久久| 蜜桃亚洲精品一区二区三区| 人人妻人人看人人澡| 亚洲一区二区三区色噜噜| 日韩精品有码人妻一区| 最近视频中文字幕2019在线8| 99久久精品国产国产毛片| 国内久久婷婷六月综合欲色啪| 国产探花极品一区二区| 在线免费观看的www视频| 一级二级三级毛片免费看| 亚洲国产精品成人久久小说 | 国产亚洲91精品色在线| 精品人妻熟女av久视频| 亚洲欧美日韩高清在线视频| 国产 一区精品| 麻豆国产97在线/欧美| 午夜免费激情av| 国产av麻豆久久久久久久| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 一本久久精品| 精品少妇黑人巨大在线播放 | 久久久久九九精品影院| 18+在线观看网站| 五月伊人婷婷丁香| 欧美色视频一区免费| 亚洲精华国产精华液的使用体验 | av在线老鸭窝| 一区二区三区高清视频在线| 高清日韩中文字幕在线| 中文精品一卡2卡3卡4更新| 九九在线视频观看精品| 亚洲中文字幕一区二区三区有码在线看| 婷婷色综合大香蕉| 一级二级三级毛片免费看| 精品人妻熟女av久视频| 国产在线精品亚洲第一网站| 亚洲av二区三区四区| 国产精品无大码| or卡值多少钱| 三级毛片av免费| 欧美最黄视频在线播放免费| 全区人妻精品视频| 99久久精品热视频| 91久久精品国产一区二区成人| 午夜福利成人在线免费观看| 国产高潮美女av| 观看美女的网站| 国产av一区在线观看免费| 午夜福利高清视频| 最后的刺客免费高清国语| 高清毛片免费看| 国产精品国产高清国产av| 免费观看a级毛片全部| 一级毛片久久久久久久久女| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 一个人观看的视频www高清免费观看| 国产成人a区在线观看| 欧美又色又爽又黄视频| 亚洲精品国产av成人精品| 赤兔流量卡办理| 午夜a级毛片| 午夜爱爱视频在线播放| 天天一区二区日本电影三级| 亚洲欧洲日产国产| 日韩欧美国产在线观看| 日韩精品青青久久久久久| 成人午夜高清在线视频| 亚洲av中文字字幕乱码综合| 国产精品免费一区二区三区在线| 男人狂女人下面高潮的视频| 中文字幕av成人在线电影| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 久久精品夜夜夜夜夜久久蜜豆| www.av在线官网国产| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 国产成人午夜福利电影在线观看| 爱豆传媒免费全集在线观看| 如何舔出高潮| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 国产白丝娇喘喷水9色精品| 成年女人永久免费观看视频| 亚洲第一电影网av| 深夜a级毛片| 男人的好看免费观看在线视频| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av香蕉五月| 国产人妻一区二区三区在| 久久精品国产亚洲av涩爱 | 中文在线观看免费www的网站| 欧美又色又爽又黄视频| 给我免费播放毛片高清在线观看| h日本视频在线播放| 国产精品三级大全| 中文字幕人妻熟人妻熟丝袜美| 蜜臀久久99精品久久宅男| 午夜老司机福利剧场| 中文字幕av在线有码专区| 久久婷婷人人爽人人干人人爱| 午夜激情欧美在线| 国产精品一区二区性色av| 一区二区三区四区激情视频 | 观看美女的网站| 亚洲欧美日韩高清在线视频| 久久久久久久久大av| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 六月丁香七月| www.av在线官网国产| 国产精品日韩av在线免费观看| 在线播放国产精品三级| 亚洲精品成人久久久久久| 成人av在线播放网站| 欧美+日韩+精品| 久久精品国产亚洲av香蕉五月| 免费不卡的大黄色大毛片视频在线观看 | 五月伊人婷婷丁香| 一边亲一边摸免费视频| 日日干狠狠操夜夜爽| 成人性生交大片免费视频hd| 日韩一区二区视频免费看| 亚洲精品日韩在线中文字幕 | 亚洲av中文字字幕乱码综合| 2022亚洲国产成人精品| а√天堂www在线а√下载| 精品99又大又爽又粗少妇毛片| 亚洲av二区三区四区| 亚洲精品色激情综合| 精品人妻熟女av久视频| 97超碰精品成人国产| 18禁黄网站禁片免费观看直播| 亚洲高清免费不卡视频| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 国产av在哪里看| 久久久久网色| 亚洲成人av在线免费| 免费大片18禁| 亚洲成av人片在线播放无| 99热只有精品国产| 国产综合懂色| 久久久久久伊人网av| 性欧美人与动物交配| 欧美一区二区精品小视频在线| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 亚洲熟妇中文字幕五十中出| 久久久久久久亚洲中文字幕| 亚洲av男天堂| 久久精品国产亚洲av天美| 村上凉子中文字幕在线| 青春草国产在线视频 | 97热精品久久久久久| 亚洲在久久综合| 九九热线精品视视频播放| 久久久精品大字幕| 五月玫瑰六月丁香| 亚洲在线自拍视频| 爱豆传媒免费全集在线观看| 真实男女啪啪啪动态图| 我的女老师完整版在线观看| 国产精品一区www在线观看| av在线亚洲专区| 亚洲在线自拍视频| 久久久精品大字幕| 国内精品美女久久久久久| 有码 亚洲区| 成人鲁丝片一二三区免费| 成年版毛片免费区| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区 | 变态另类成人亚洲欧美熟女| 又粗又硬又长又爽又黄的视频 | 亚洲,欧美,日韩| 国产伦精品一区二区三区视频9| 麻豆成人午夜福利视频| 亚洲性久久影院| 免费av毛片视频| 热99re8久久精品国产| 黄色配什么色好看| 亚洲av男天堂| 亚洲久久久久久中文字幕| 亚洲欧美精品专区久久| 成人鲁丝片一二三区免费| 神马国产精品三级电影在线观看| 国产精品嫩草影院av在线观看| av福利片在线观看| 夜夜爽天天搞| 国产毛片a区久久久久| 欧美一区二区亚洲| 久久久久免费精品人妻一区二区| 青春草亚洲视频在线观看| 成人欧美大片| 一级毛片电影观看 | 亚洲,欧美,日韩| 中文字幕熟女人妻在线| 联通29元200g的流量卡| 蜜臀久久99精品久久宅男| 亚洲内射少妇av| 久久亚洲精品不卡| 午夜老司机福利剧场| 久久久久久久久中文| av国产免费在线观看| 一本一本综合久久| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| 在现免费观看毛片| 国产成人一区二区在线| 久久中文看片网| 人妻久久中文字幕网| 男人狂女人下面高潮的视频| 看免费成人av毛片| 国产精品,欧美在线| 男人狂女人下面高潮的视频| 小说图片视频综合网站| 久久人人爽人人爽人人片va| 美女高潮的动态| 99久久九九国产精品国产免费| 少妇的逼好多水| 如何舔出高潮| 欧美一区二区精品小视频在线| 亚洲欧美日韩卡通动漫| 免费观看精品视频网站| 精华霜和精华液先用哪个| 国产精品嫩草影院av在线观看| 国产探花极品一区二区| av又黄又爽大尺度在线免费看 | 久久久久久久午夜电影| 亚洲国产精品久久男人天堂| 日产精品乱码卡一卡2卡三| 亚洲精品久久国产高清桃花| 国产精品不卡视频一区二区| 99久久中文字幕三级久久日本| 成人鲁丝片一二三区免费| 国产精品一区二区性色av| 色播亚洲综合网| 97超碰精品成人国产| 久久99热这里只有精品18| 夜夜夜夜夜久久久久| 国产午夜精品久久久久久一区二区三区| 成年免费大片在线观看| 精品久久久久久久久亚洲| 成人亚洲精品av一区二区| 男人舔女人下体高潮全视频| 高清在线视频一区二区三区 | 国产精品一区二区三区四区久久| 国产探花在线观看一区二区| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 国产精品精品国产色婷婷| 亚洲性久久影院| 搡老妇女老女人老熟妇| 国产黄片美女视频| 免费观看的影片在线观看| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| 欧美+亚洲+日韩+国产| 久久人人爽人人片av| 亚洲精品自拍成人| 性欧美人与动物交配| 国产一区二区三区av在线 | 亚洲精品色激情综合| 国内精品久久久久精免费| 九色成人免费人妻av| 国产伦精品一区二区三区四那| 亚洲无线在线观看| 欧美日韩国产亚洲二区| 国产黄色小视频在线观看| www.av在线官网国产| 天天躁日日操中文字幕| 午夜福利在线观看免费完整高清在 | 免费av观看视频| 舔av片在线| 亚洲无线观看免费| 两个人视频免费观看高清| 日本熟妇午夜| 免费人成视频x8x8入口观看| 三级经典国产精品| 午夜免费激情av| 国产免费一级a男人的天堂| 国产精品嫩草影院av在线观看| 欧美一区二区精品小视频在线| 少妇人妻精品综合一区二区 | av女优亚洲男人天堂| 午夜福利高清视频| 又爽又黄无遮挡网站| 亚洲一区二区三区色噜噜| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说 | 高清在线视频一区二区三区 | 久久久久久大精品| 日本熟妇午夜| 99riav亚洲国产免费| 三级国产精品欧美在线观看| 国产人妻一区二区三区在| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 亚洲一级一片aⅴ在线观看| 亚洲在线观看片| 精品久久国产蜜桃| 波多野结衣巨乳人妻| 青青草视频在线视频观看| 婷婷亚洲欧美| 亚洲av免费高清在线观看| 久久久久网色| 国产精品一区二区性色av| 午夜激情福利司机影院| 精品久久久久久久久亚洲| 亚洲国产精品国产精品| 亚洲内射少妇av| 亚洲国产日韩欧美精品在线观看| 色播亚洲综合网| 国产精品久久久久久久电影| 51国产日韩欧美| 亚洲自拍偷在线| 免费黄网站久久成人精品| 日韩欧美三级三区| 青春草视频在线免费观看| 在线免费观看的www视频| 桃色一区二区三区在线观看| 九九爱精品视频在线观看| 亚洲精品自拍成人| 国产精华一区二区三区| 免费av不卡在线播放| 91在线精品国自产拍蜜月| 日韩欧美在线乱码| 亚洲国产欧美人成| 国产又黄又爽又无遮挡在线| 亚洲精品成人久久久久久| 中文字幕精品亚洲无线码一区| 国产女主播在线喷水免费视频网站 | 成年av动漫网址| 精华霜和精华液先用哪个| 免费看av在线观看网站| 亚洲精品亚洲一区二区| 熟女人妻精品中文字幕| 国产一级毛片七仙女欲春2| 国产精华一区二区三区| 欧美区成人在线视频| 亚洲婷婷狠狠爱综合网| 国产精品1区2区在线观看.| 成人午夜高清在线视频| 国产精品乱码一区二三区的特点| 18禁在线播放成人免费| 久久久欧美国产精品| 久久久久久国产a免费观看| 亚洲丝袜综合中文字幕| 床上黄色一级片| 免费人成在线观看视频色| 国产成人精品婷婷| 亚洲av成人精品一区久久| 我的女老师完整版在线观看| 久久精品国产亚洲av天美| 波多野结衣高清作品| 亚洲国产日韩欧美精品在线观看| 午夜福利在线观看吧| 天天躁夜夜躁狠狠久久av| 特大巨黑吊av在线直播| 国产亚洲91精品色在线| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 国产三级在线视频| 老女人水多毛片| 噜噜噜噜噜久久久久久91| 国语自产精品视频在线第100页| 国产片特级美女逼逼视频| 国产一区二区三区av在线 | 色综合站精品国产| 久久久久久久久久久免费av| 久久久国产成人免费| 亚洲精品日韩av片在线观看| av在线老鸭窝| 亚洲av一区综合| 高清午夜精品一区二区三区 | 男女做爰动态图高潮gif福利片| 精品久久久久久成人av| 久久99热这里只有精品18| 亚洲在线自拍视频| 国产黄色小视频在线观看| 少妇高潮的动态图| 中国美女看黄片| 国产精品1区2区在线观看.| 国产精品美女特级片免费视频播放器| avwww免费| 麻豆一二三区av精品| 亚洲aⅴ乱码一区二区在线播放| 免费观看在线日韩| 性欧美人与动物交配| 在线免费观看的www视频| 久久久久免费精品人妻一区二区| 午夜免费激情av| 最好的美女福利视频网| 久久久a久久爽久久v久久| 18禁在线播放成人免费| av.在线天堂| 啦啦啦啦在线视频资源| 亚洲精品色激情综合| 欧美人与善性xxx| 精品久久久久久久末码| 91午夜精品亚洲一区二区三区| 校园春色视频在线观看| 九色成人免费人妻av| 国产精品一区二区三区四区免费观看| 午夜爱爱视频在线播放| 国产高清激情床上av| 赤兔流量卡办理| 好男人视频免费观看在线| 国产精品久久久久久亚洲av鲁大| 日韩欧美国产在线观看| 一级毛片久久久久久久久女| 国产一级毛片七仙女欲春2| 中出人妻视频一区二区| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 亚洲人与动物交配视频| 久久久成人免费电影| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 最好的美女福利视频网| 精品久久久久久久久久免费视频| 最近中文字幕高清免费大全6| 麻豆久久精品国产亚洲av| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 国产精品1区2区在线观看.| 一级黄片播放器| 国产私拍福利视频在线观看| 特级一级黄色大片| 简卡轻食公司| 久久亚洲精品不卡| 91精品一卡2卡3卡4卡| 国产精华一区二区三区| 婷婷色综合大香蕉| 看片在线看免费视频| 一边摸一边抽搐一进一小说| 亚洲欧美精品专区久久| 亚洲三级黄色毛片| 欧美在线一区亚洲| 久久久午夜欧美精品| 真实男女啪啪啪动态图| 69人妻影院| 日韩一本色道免费dvd| 99久久成人亚洲精品观看| 乱人视频在线观看| 色哟哟哟哟哟哟| 内地一区二区视频在线| 91久久精品国产一区二区三区| 插逼视频在线观看| 又爽又黄无遮挡网站| 亚洲内射少妇av| 国产高清不卡午夜福利| 久久午夜福利片| 精品一区二区三区人妻视频| 人妻久久中文字幕网| 成年女人永久免费观看视频| 在线观看免费视频日本深夜| 干丝袜人妻中文字幕| 亚洲熟妇中文字幕五十中出| 亚洲av二区三区四区| 麻豆av噜噜一区二区三区| АⅤ资源中文在线天堂| 婷婷精品国产亚洲av| 久久精品国产亚洲网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩欧美三级三区| www.av在线官网国产| 99热6这里只有精品| 精品午夜福利在线看| 白带黄色成豆腐渣| 久久99热6这里只有精品| 国产精品人妻久久久影院| 看十八女毛片水多多多| a级毛色黄片| 九色成人免费人妻av| 色综合色国产| 欧美色欧美亚洲另类二区| 久久人人爽人人爽人人片va| 九色成人免费人妻av| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看|