• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      多策略人工蜂群算法在梯級水電站優(yōu)化調(diào)度中的應(yīng)用

      2019-06-24 02:36謝海華孫輝龔文引
      南水北調(diào)與水利科技 2019年2期

      謝海華 孫輝 龔文引

      摘要:梯級水電站優(yōu)化調(diào)度問題的準(zhǔn)確、快速求解,是水利學(xué)科領(lǐng)域需解決的基本問題。針對該問題,提出了一種新的多策略人工蜂群算法。為更好地平衡算法的全局搜索與局部搜索能力,新算法在兩個具有代表性的解搜索策略基礎(chǔ)上,對其融合構(gòu)成新的搜索策略,同時保留了原有的兩個解搜索策略。新算法的三個候選解搜索策略,增強(qiáng)了對各類優(yōu)化問題求解的適應(yīng)性。為驗(yàn)證新算法的適應(yīng)性及可行性,不僅在經(jīng)典的基準(zhǔn)測試函數(shù)中對其進(jìn)行測試,并且將其應(yīng)用于梯級水電站優(yōu)化調(diào)度問題。實(shí)驗(yàn)結(jié)果表明,新算法具有適應(yīng)性強(qiáng)、收斂速度快等優(yōu)點(diǎn)。

      關(guān)鍵詞:梯級水電站;優(yōu)化調(diào)度;人工蜂群算法;收斂速度;多策略

      中圖分類號:TV11文獻(xiàn)標(biāo)志碼:A

      Abstract:To accurately and quickly solve the optimal operation problem of cascade hydro-power stations is a challenge in the field of water conservancy.A new multi-strategy artificial bee colony algorithm was proposed in this study.In order to better balance the global search and local search capabilities of the algorithms,two representative solution search strategies were used in this new algorithm,and they were combined to form a new search strategy while retaining the original two solution search strategies.Therefore,the new algorithm contained three candidate solution search strategies in the process of searching new solutions,which was convenient to strengthen the adaptability to various optimization problems.The adaptability and feasibility of the new algorithm were tested in the classic benchmark function and applied to the optimal operation of cascade hydro-power stations.Experimental results showed that the new algorithm had the advantages of stronger adaptability and faster convergence speed.

      Key words:cascade hydro-power stations;optimal dispatch;artificial bee colony algorithm;rate of convergence;multi-strategy

      梯級水電站的優(yōu)化調(diào)度,是一個高維、多約束、非線性問題。解決該問題的核心是建立準(zhǔn)確反應(yīng)實(shí)際優(yōu)化調(diào)度問題的模型和采用適當(dāng)?shù)那蠼夥椒╗1]。目前,優(yōu)化調(diào)度的數(shù)學(xué)模型相對成熟,但對于多約束條件下,快速及準(zhǔn)確求解是該問題的難點(diǎn)所在。傳統(tǒng)方法和群智能方法是解決優(yōu)化調(diào)度問題的主要方法[2-3],其中傳統(tǒng)方法包括:線性規(guī)劃(Linear Programming,LP)[4]、非線性規(guī)劃(Nonlinear Programming,NLP)[5]、動態(tài)規(guī)劃(Dynamic Programming,DP)[6]和大系統(tǒng)法(Large-scale System,LS)[7];群智能方法包括:人工蜂群(Artificial Bee Colony,ABC)算法[8]、蟻群算法(Ant Colony Optimization,ACO)[9]、遺傳算法(Genetic Algorithm,GA)[10]、粒子群算法(Particle Swarm Optimization,PSO)[11]等。傳統(tǒng)方法能有效解決單庫水電站調(diào)度問題,但對于梯級水電站的優(yōu)化調(diào)度問題,不僅方法復(fù)雜且存在“維數(shù)災(zāi)”、易陷入局部最優(yōu)等缺點(diǎn)。相比傳統(tǒng)方法,群智能算法具有實(shí)現(xiàn)簡單、求解速度快等優(yōu)點(diǎn)[12]。

      2005年,土耳其學(xué)者karaboga為解決多變量函數(shù)問題,提出了ABC算法,其具有收斂速度快、參數(shù)少、魯棒性強(qiáng)等優(yōu)點(diǎn),并廣泛應(yīng)用至各行業(yè),如機(jī)器人路徑優(yōu)化[13-14]和圖像處理[15]等。相比其他群智能算法,ABC算法對維度不敏感(問題維度的高低不影響ABC算法性能)是它的一個顯著特點(diǎn)。故本文采用ABC算法求解高維的梯級水庫優(yōu)化調(diào)度問題。遵循著“算法沒有最好”的理念,ABC算法亦存在缺點(diǎn),如全局搜索與局部搜索之間的平衡性較差。針對該問題,眾多的研究者提出了許多改進(jìn)方案。較經(jīng)典的有Zhu[16]等人提出的GABC、Gao[17]等人提出的MABC、Kiran[18]等人提出的ABCVSS,其中,Zhu等人針對ABC算法局部搜索能力弱的缺點(diǎn),將全局最優(yōu)引入到解搜索策略中;Gao等人針對ABC算法全局搜索與局部搜索能力平衡性差的缺點(diǎn),通過引入控制參數(shù),以達(dá)到目的;Kiran等人為豐富解搜索策略,構(gòu)成了解搜索策略池,以適應(yīng)多種類型優(yōu)化問題。

      目前的研究表明,更好地平衡ABC算法的全局搜索與局部搜索能力,可有效改善算法的總體性能。為此本文提出了一種新的多策略人工蜂群算法(Multi-strategy Artificial bee colony,MsABC)算法。

      [6] YOUNG G K.Finding reservoir operating rules[J].Journal of the Hydraulics Division,1967,93(6):297-322.

      [7] ARVANITIDIS N V,ROSING J.Optimal operation of multireservoir systems using a composite representation[J].IEEE Transactions on Power Apparatus & Systems,1970,PAS-89(2):327 -335.

      [8] KARABOGA D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[M].Erciyes University:Kayseri,Turkey,2005.

      [9] DORIGO M,CARO G D.Ant colony optimization:a new meta-heuristic[J].Proceedings of the Congress on Evolutionary Computation,1999,2(4):1470-1477.

      [10] GOLDBERG D E.Genetic algorithm in search[Z].Addison-Wesley,Reading,1989.

      [11] KENNEDY J,EBERHART R.Particle swarm optimization[C].IEEE International Conference on Neural Networks,1995.Proceedings.IEEE,2002,4:1942-1948.

      [12] 焦鈺,王建群,賈洋洋.基于狼群算法的水電站優(yōu)化調(diào)度模型參數(shù)優(yōu)選[J].南水北調(diào)與水利科技,2017,15(2):58-64.(JIAO Y,WANG J Q,JIA Y Y.Parameter analysis of wolf pack search algorithm applied to optimal operation of hydropower station[J].South-to-North Water Transfers and Water Science & Technology,2017,15(2):58-64.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk 2017.02.009.

      [13] 黎竹娟.人工蜂群算法在移動機(jī)器人路徑規(guī)劃中的應(yīng)用[J].計(jì)算機(jī)仿真,2012,29(12):247-250.(LI Z J.Application of artificial bee colony algorithm in path planning of mobile robot[J].Computer Simulation,2012,29(12):247-250.(in Chinese))

      [14] 譚玉新,楊維,徐子睿.面向煤礦井下局部復(fù)雜空間的機(jī)器人三維路徑規(guī)劃方法[J].煤炭學(xué)報,2017,42(6):1634-1642.(TAN Y X,YANG W,XU Z R.Three-dimensional path planning method for robot in underground local complex space[J].Journal of China Coal Society,2017,42(6):1634-1642.(in Chinese)) DOI:10.13225/j.cnki.jccs.2016.1047

      [15] 肖永豪.蜂群算法及在圖像處理中的應(yīng)用研究[D].廣州:華南理工大學(xué),2011.(XIAO Y H.Study on artificial bee colony algorithm and its application in image processing[D].Guangzhou:South China University of Technology,2011.(in Chinese))

      [16] ZHU G,KWONG S.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics & Computation,2010,217(7):3166-3173.

      [17] GAO W,LIU S.A modified artificial bee colony algorithm[J].Computers & Operations Research,2012,39(3):687-697.

      [18] KIRAN M S,HAKLI H,GUNDUZ M,et al.Artificial bee colony algorithm with variable search strategy for continuous optimization[J].Information Sciences,2015,300:140-157.DOI:10.1016/j.ins.2014.12.043.

      [19] GAO W,LIU S,HUANG L.A novel artificial bee colony algorithm based on modified search equation and orthogonal learning[J].IEEE Transactions on Cybernetics,2013,43(3):1011.

      [20] CUI L,ZHANG K,LI G.et al.Modified Gbest-guided artificial bee colony algorithm with new probability model[J].Soft Compute.2018(22):2217-2243.DOI:10.1109/TSMCB.2012.2222373.

      [21] 王坤.改進(jìn)人工蜂群算法在梯級水庫群優(yōu)化調(diào)度中的應(yīng)用[D].南昌:南昌工程學(xué)院,2017.(WANG K.The application of artificial bee colony algorithm in optimal operation of cascade reservoirs is improved[D].Nanchang:Nanchang Institute of Technology,2017.(in Chinese))

      [22] KARABOGA D,GORKEMLI B.A quick artificial bee colony (qABC) algorithm and its performance on optimization problems[J].Applied Soft Computing,2014,23(5):227-238.DOI:10.1016/j.asoc.2014.06.035.

      [23] 成鵬飛,方國華,黃顯峰.基于改進(jìn)人工蜂群算法的水電站水庫優(yōu)化調(diào)度研究[J].中國農(nóng)村水利水電,2013(4):109-112.(CHENG P F,F(xiàn)ANG G H,HUANG X F.Optimal operation of hydropower station reservoir based on improved bee colony algorithm[J].China Rural Water and Hydropower,2013(4):109-112.(in Chinese))

      [24] 李文莉,李郁俠,任平安.基于云變異人工蜂群算法的梯級水庫群優(yōu)化調(diào)度[J].水力發(fā)電學(xué)報,2014,33(1):37-42.(LI W L,LI Y X,REN P A.Optimal operation of cascade reservoirs based on cloud variation-artificial bee colony algorithm[J].Journal of Hydroelectric Engineering,2014,33(1):37-42.(in Chinese))

      乐都县| 屏南县| 阿城市| 梁平县| 九江县| 邓州市| 和政县| 新津县| 胶州市| 巩义市| 武陟县| 高雄县| 康定县| 万年县| 墨竹工卡县| 城市| 龙山县| 阳城县| 调兵山市| 门头沟区| 周至县| 甘肃省| 泾阳县| 关岭| 六盘水市| 娄底市| 嘉禾县| 阿拉善左旗| 漳浦县| 全州县| 白城市| 吕梁市| 石屏县| 温州市| 白银市| 松阳县| 沅陵县| 民丰县| 大兴区| 阳东县| 屯门区|