冀偉 孫斌 鄧露 趙彥華 藺鵬臻
摘? ?要:為精確計算鋼-混凝土連續(xù)組合梁的撓度,在綜合考慮鋼梁與混凝土板之間的滑移效應及組合梁剪切變形影響的基礎上,運用能量變分法推導出了鋼-混凝土組合梁撓度計算的平衡微分方程,并給出了相對應的邊界條件. 通過引入均布荷載作用下鋼-混凝土兩跨連續(xù)組合梁的邊界條件,求得了考慮滑移效應和剪切變形效應下組合梁的撓度計算公式,并對計算公式的正確性進行了驗證. 對鋼-混凝土連續(xù)組合梁撓度做進一步分析表明:滑移效應會降低鋼-混凝土連續(xù)組合梁的剛度,使組合梁產(chǎn)生附加撓度,并且會在中支點處引起梁負彎矩的增加,對混凝土板的受力產(chǎn)生不利影響. 層間滑移位移隨剪力連接件抗剪剛度的增大而減小,當剪力連接件抗剪剛度小于1 200 MPa時,層間滑移效應產(chǎn)生的附加撓度較大,對總撓度的影響也較大,應當考慮滑移效應對組合梁撓度的影響;當剪力連接件抗剪剛度大于1 200 MPa時,層間滑移效應產(chǎn)生的附加撓度較小,對總撓度的影響也較小,可以忽略滑移效應對組合梁撓度的影響.
關(guān)鍵詞:鋼-混凝土連續(xù)組合梁;剪切變形;層間滑移;抗剪剛度;撓度計算
中圖分類號:U448.21? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A
Abstract: To calculate the deflection of steel-concrete continuous composite girder accurately, the equilibrium differential equations and the corresponding boundary conditions for calculating the deflection of steel-concrete composite girder were derived by using the energy variational method. The influence of shear deformation of composite girder and the slip effect between steel girder and concrete slab were considered. By introducing the boundary conditions of two-span continuous steel-concrete composite girder under uniformly distributed load, the deflection calculation formula of the steel-concrete continuous composite girder was obtained. The correctness of the deflection calculation formula was also verified. A further analysis of the deflection of steel-concrete continuous composite beams shows that the slip effect reduces the stiffness of steel-concrete continuous composite girder, causes additional deflection, and increases the negative bending moment of the girder at the middle fulcrum, which adversely affects the stress of the concrete slabs. Slip displacement between layers decreases with the increase of shear stiffness of shear connectors. When the shear stiffness of shear connectors is less than 1200 MPa, the additional deflection caused by slip effect is larger, and the influence on the total deflection is greater. The influence of slip effect on the deflection of the composite girder should be considered. However, when the shear stiffness of shear connectors is greater than 1200 MPa, the additional deflection caused by slip effect is small and the influence on the total deflection is small. The influence of slip effect on the deflection of the composite girder can be ignored.
Key words: steel-concrete composite continuous girder;shear deformation;interlayer slipping;shear stiffness;deflection calculation
鋼-混凝土組合結(jié)構(gòu)通過抗剪連接件使鋼梁與混凝土板結(jié)合在一起協(xié)同工作,這種結(jié)構(gòu)克服了傳統(tǒng)鋼材在受壓時容易發(fā)生屈曲及混凝土結(jié)構(gòu)在受拉時易開裂的缺點,充分發(fā)揮了鋼材和混凝土材料各自的優(yōu)點[1]. 工程中的鋼-混組合梁通常采用栓釘剪力連接件,該剪力連接件可有效避免組合梁在荷載作用下混凝土板和鋼梁結(jié)合面的應力集中,但其變形也會引起鋼梁與混凝土板接觸面的相對滑移,降低組合梁的剛度,進而產(chǎn)生附加撓度[2-6]. 因此,鋼梁與混凝土板接觸面的滑移特性是鋼-混凝土組合梁的重點研究內(nèi)容之一.
國內(nèi)外學者已對鋼-混凝土組合梁的滑移特性展開了大量研究,其中Nguyen等[7]在考慮層間滑移與混凝土收縮、徐變效應的基礎上,基于矩陣位移法推導出了部分連接的鋼-混凝土組合梁撓度和彎矩的計算公式;Jo?觔o等[8]基于柔性剛度矩陣法對多層部分連接的簡支組合梁的層間滑移效應進行了分析; Uddin等[9]考慮材料非線性,針對部分連接的鋼-混凝土組合梁,提出了一種一維有限元分析模型,并對所得鋼-混凝土簡支組合梁的滑移位移及撓度進行了對比分析. 國內(nèi)學者周凌宇等[10]在考慮鋼-混凝土組合梁界面滑移、剪切變形的影響下,推導了部分連接的鋼-混凝土簡支組合梁的撓度計算公式,并對界面滑移特性進行了分析;聶建國等[11]通過將組合梁連接界面假想為剪切薄層,并在考慮鋼梁與混凝土板之間的相對滑移的基礎上,對四邊簡支組合板的彈性彎曲與穩(wěn)定性做出了分析;朱力等[12]依據(jù)虛功原理,利用位移法對鋼-混凝土組合梁的滑移及剪力滯后效應進行了分析.
綜上所述,國內(nèi)外學者針對簡支體系的鋼-混凝土組合梁滑移效應及撓度研究較多,并取得了一定的研究成果,但對連續(xù)體系的鋼-混凝土組合梁研究相對較少. 國內(nèi)外學者在研究方法上主要采用單元微元體的力學平衡和變形協(xié)調(diào)關(guān)系對鋼-混凝土組合梁滑移效應引起的附加彎矩及附加撓度進行理論推導,所得的撓度解析解待定系數(shù)較多,計算頗為復雜. 本文通過將滑移界面模擬為Goodman彈性夾層[10,13],綜合考慮由于剪力連接件變形引起的鋼梁與混凝土板接觸面滑移效應和鋼-混凝土組合梁的剪切變形影響,以滑移位移函數(shù)、平面彎曲角位移函數(shù)及剪切角位移函數(shù)為廣義函數(shù),運用能量變分原理推導鋼-混組合梁撓度計算的控制微分方程,推導過程較為簡潔. 通過引入均布荷載作用下鋼-混凝土兩跨連續(xù)組合梁的邊界條件,求得其撓度計算公式、滑移位移計算公式及滑移效應引起附加彎矩的計算公式,其中所得的撓度計算公式解待定系數(shù)較少,物理含義明確,計算簡單方便. 最后,分析研究了剪力連接件的抗剪剛度對滑移位移和總撓度的影響,所得結(jié)論可為實際工程中鋼-混凝土連續(xù)梁的撓度計算和研究提供理論依據(jù)和科學指導.
為了驗證本文有限元模型建立的正確性,首先以文獻[17]鋼-混凝土組合試驗梁試件E1和U3為例,兩試件鋼梁與混凝土翼板尺寸一樣,梁跨均為5 490 mm,混凝土翼板寬1 220 mm,厚152 mm,腹板厚度為10.2 mm,梁高為305 mm,頂?shù)滓戆鍖?52 mm,厚18.2 mm. 試件E1有φ12.7×50栓釘100個,U3有φ19×102栓釘56個,均呈兩個栓釘一排均勻布置在連接界面,混凝土泊松比為0.15. 試件E1抗剪剛度為ks=18.3 kN/mm2,混凝土翼板彈性模量為3.16×104 MPa,鋼梁彈性模量為2.05×104 MPa,承受荷載為跨中集中荷載196 kN. 試件U3抗剪剛度為7.6 kN/mm2,混凝土翼板彈性模量為3×104 MPa,鋼梁彈性模量為2.02×104 MPa,承受荷載為滿跨均布荷載32.13 kN/m.
根據(jù)文獻[18]介紹的有限元建模方法,運用ANSYS 15.0有限元建模軟件建立試件E1與U3有限元模型,其中混凝土板采用Solid45實體單元,鋼梁采用Shell43殼單元進行模擬,采用彈簧單元Combin39模擬層間栓釘連接,并對彈簧單元兩端節(jié)點進行自由度耦合,用于準確模擬鋼-混凝土組合梁的結(jié)構(gòu)特點,建立的試驗梁有限元模型如圖5所示. 鋼-混凝土組合梁有限元計算值與試驗實測值的對比結(jié)果見表1.
由表1可知兩試件跨中撓度的有限元值與實測值吻合較好,驗證了本文ANSYS有限元建模的可靠性.?鋼-混連續(xù)組合梁的算例驗證選取文獻[3]Dezi和Tarantino所研究的工字鋼-混凝土兩跨連續(xù)組合梁. 組合梁跨徑布置為2×25 m,結(jié)構(gòu)尺寸示意圖如圖6所示.
圖6中Oc、Os分別為混凝土板和鋼梁截面的形心,混凝土板為C30混凝土,彈性模量為3.0×104 MPa,截面面積為Ac =46 000 mm2,截面慣性矩為Ic =15.33×108 mm4,鋼梁彈性模量為2.1×105 MPa,截面面積為As =4 275 mm2,截面慣性矩為Is=15.949×109 mm4,剪力連接件抗剪剛度為ks=400 MPa. 組合梁承受的荷載為滿跨均布荷載,大小為64.56 kN/m.
采用ANSYS 15.0有限元軟件建立了鋼-混凝土兩跨連續(xù)組合梁的空間有限元模型,文獻[3]中栓釘連接件具體的布置形式未給出,有限元建模時采用雙排布置,軸向間距為1 m,建立的有限元模型如圖7所示.
為驗證本文所得工字鋼-混凝土兩跨連續(xù)組合梁撓度計算公式的正確性,采用以下方式進行驗證:1)考慮層間滑移效應(R)得到的撓度計算值與Nguyen[7]等人基于矩陣位移法計算結(jié)果對比;2)考慮剪切變形及滑移效應(Q+R)得到的撓度計算值與有限元值進行對比驗證(如圖8所示).
從圖8中可看出,本文考慮層間滑移效應(R)得到的撓度計算值與文獻[7]計算值吻合良好,變化趨勢一致,撓度偏差最大為2.3%;考慮剪切變形及滑移效應(Q+R)得到的撓度計算值與有限元值吻合良好,撓度偏差最大為3.3%. 基于以上分析可驗證本文所得鋼-混凝土連續(xù)組合梁撓度計算公式的正確性.
為分析剪切變形、層間滑移對工字鋼-混凝土兩跨連續(xù)組合梁撓度和彎矩的影響,進行以下3種情況下的撓度計算值對比:初等梁理論;考慮滑移變形(R);考慮剪切變形(Q)、層間滑移(R) (如圖9所示);同時考慮層間滑移會產(chǎn)生附加彎矩,而剪切變形不會引起附加彎矩,故假定混凝土不開裂的條件下,分析了初等梁理論計算所得彎矩和考慮層間滑移(R)附加彎矩兩種情況下的彎矩對比(如圖10所示).
從圖9中可看出,鋼-混凝土兩跨連續(xù)組合梁考慮層間滑移效應計算所得撓度與采用初等梁理論計算撓度相比跨間最大撓度增長了23.2%,考慮層間滑移效應和剪切變形所得撓度與初等梁理論計算撓度相比跨間最大撓度增長了37.4%,其中考慮剪切變形引起的撓度較初等梁理論計算撓度增長了14.2%. 此時,在計算鋼-混凝土連續(xù)組合梁撓度時,剪切變形及層間滑移效應的影響較大,不能忽略,否則將出現(xiàn)較大的誤差.
從圖10中可以看出,鋼-混凝土兩跨連續(xù)組合梁由于層間滑移的影響,跨間會產(chǎn)生附加彎矩,其中中支點處產(chǎn)生的附加彎矩值最大,與初等梁理論計算值相比增長了約67%. 實際鋼-混凝土組合連續(xù)梁的工程應用中,為避免混凝土板的開裂,在進行連續(xù)組合梁預應力筋的布置時應考慮層間滑移效應對混凝土板受拉區(qū)域的影響.
4? ?剪力連接件抗剪剛度對鋼-混凝土組合梁滑移位移及撓度的影響分析
從圖11中可以看出,層間滑移位移隨著剪力連接件抗剪剛度的增長而減小,當ks趨近于0時,滑移位移趨于最大值,相當于無剪力連接件的組合梁;當ks趨近于∞時,滑移位移趨于零,相當于完全剪力連接的組合梁.
選取工字鋼-混凝土兩跨連續(xù)組合梁的跨間撓度最大值截面為研究對象,以總撓度w作為分母,以式(38)層間滑移效應產(chǎn)生的撓度w1與總撓度w的比值J1作為表示層間滑移效應引起的撓度對總撓度的影響程度(如圖12所示),同時分析了總撓度隨剪力連接件抗剪剛度變化的情況(如圖13所示).
從圖12中可以看出,工字鋼-混凝土兩跨連續(xù)組合梁層間滑移效應對總撓度的影響隨著剪力連接件抗剪剛度的增長而減小,當ks大于1 200 MPa時,層間滑移效應引起的撓度占總撓度的百分比J1小于5%,此時可以忽略層間滑移效應對總撓度的影響.
從圖13中可以看出,工字鋼-混凝土兩跨連續(xù)組合梁跨間最大撓度隨剪力連接件抗剪剛度的增長而減小,當ks大于1 200 MPa時,總撓度的變化趨于穩(wěn)定,此時可以忽略層間滑移效應對總撓度的影響.
圖11~圖13中,計算結(jié)果均假定連接件處于彈性工作階段,而實際情況中,當連接件抗剪剛度較小時,易發(fā)生塑性變形,引起更大的附加撓度,因此工程中對抗剪連接件進行選擇時,可根據(jù)本文抗剪剛度對撓度影響的簡化分析方法及連接件的抗剪試驗數(shù)據(jù)對抗剪連接件的選取進行優(yōu)化.
5? ?結(jié)? ?論
1)本文在綜合考慮鋼梁與混凝土板接觸面的滑移效應及組合梁剪切變形影響的基礎上,采用能量法推導所得的鋼-混凝土兩跨連續(xù)組合梁的撓度計算公式解,物理含義明確,計算簡單方便,所得附加撓度及附加彎矩計算公式適用于正常使用階段的鋼-混連續(xù)組合梁.
2)鋼-混凝土連續(xù)組合梁的層間滑移效應會降低其彎曲剛度,產(chǎn)生附加撓度,并會引起中支點截面負彎矩的增大. 在工程設計中,混凝土板抗拉能力較差,應當重視層間滑移效應產(chǎn)生的附加彎矩對中支點處負彎矩的影響,避免混凝土板的開裂.
3)鋼-混凝土連續(xù)組合梁剪切變形對撓度的影響較大,在計算撓度時應計入其影響.
4)鋼-混凝土連續(xù)組合梁的層間滑移位移隨著剪力連接件抗剪剛度的增大而減小. 當ks趨近于0時,滑移位移趨于最大值,相當于無剪力連接件的組合梁;當ks趨近于∞時,滑移位移趨于零,相當于完全剪力連接的組合梁.
5)鋼-混凝土兩跨連續(xù)組合梁的層間滑移效應對總撓度的影響和跨間最大撓度均隨剪力連接件抗剪剛度的增大而減小,當剪力連接件抗剪剛度大于1200 MPa時,可忽略層間滑移效應對總撓度的影響.
參考文獻
[1]? ?TAIG G,RANZI G. Generalised beam theory (GBT) for composite beams with partial shear interaction[J]. Engineering Structures,2015,99:582—602.
[2]? ?WANG S H,TONG G,ZHANG L. Reduced stiffness of composite beams considering slip and shear deformation of steel [J]. Journal of Constructional Steel Research,2017,131:19—29.
[3]? ?DEZI L,TARANTINO A M. Creep in composite continuous beams. II: parametric study [J]. Journal of Structural Engineering,1993,119(7):2112—2133.
[4]? NIE J G,CAI C S. Steel-concrete composite beams considering shear slip effects [J]. Journal of Structural Engineering,2003,129(4):495—506.
[5]? ?NGUYEN Q H,HJIAJ M. Nonlinear time-dependent behavior of composite steel-concrete beams[J]. Journal of Structural
Engineering,2016,142(5):04015175.
[6]? ?肖巖,彭羅文,KUNNATH S. 組合梁考慮滑移效應的理論分析[J]. 湖南大學學報(自然科學版),2017,44(1):77—86.
XIAO Y,PENG L W,KUNNATH S. Analysis of composite beams with interlayer slip [J]. Journal of Hunan University (Natural Sciences),2017,44(1):77—86. (In Chinese)
[7]? ?NGUYEN Q H,HJIAJ M,UY B. Time- dependent analysis of composite beams with continuous shear connection based on a space-exact stiffness matrix [J]. Engineering Structures,2010,32 (9): 2902—2911.
[8]? JO?魨O B M,SOUSA J. Exact finite elements for multilayered composite beam-columns with partial interaction [J]. Computers and Structures,2013,123 (4):48—57.
[9]? ?UDDIN M A,SHEIKH A H,BROWN D,et al. A higher order model for inelastic response of composite beams with interfacial slip using a dissipation based arc-length method [J]. Engineering Structures,2017,139:120—134.
[10] 周凌宇,余志武,蔣麗忠. 鋼-混凝土組合梁界面滑移剪切變形的雙重效應分析[J]. 工程力學,2005,22(2):104—109.
ZHOU L Y,YU Z W,JIANG L Z. Analysis of composite beams of steel and concrete with slip and shear deformation [J]. Engineering Mechanics,2005,22(2):104—109. (In Chinese)
[11] 聶建國,李法雄. 鋼-混凝土組合板的彈性彎曲及穩(wěn)定性分析[J].工程力學,2009,26(10):59—66.
NIE J G,LI F X. Elastic bending and stability of steel-concrete composite plate [J]. Engineering Mechanics,2009,26(10):59—66. (In Chinese)
[12] 朱力,聶建國,季文玉. 鋼-混凝土組合箱型梁的滑移和剪力滯效應[J]. 工程力學,2016,33(9):49—58.
ZHU L,NIE J G,JI W Y. Slip and shear-lag effects of steel-concrete composite box beam [J]. Engineering Mechanics,2016,33(9):49—58. (In Chinese)
[13] 苗林,陳德偉. 考慮層間滑移效應的組合梁解析計算[J]. 同濟大學學報(自然科學版),2011,39(8):1113—1119.
MIAO L,CHEN D W. Closed-form solution of composite beam considering interfacial slip effects [J]. Journal of Tongji University (Natural Science),2011,39(8):1113—1119. (In Chinese)
[14] 聶建國,沈聚敏,袁彥聲. 鋼-混凝土簡支組合梁變形計算的一般公式[J]. 工程力學,1994,11(1):21—27.
NIE J G,SHEN J M,YUAN Y S. A general formula for predicting the deflection of simply supported composite steel-concrete beams with the consideration of slip effect[J]. Engineering Mechanics,1994,11(1): 21—27. (In Chinese)
[15] CHIOREAN C G,BURU S M. Practical nonlinear inelastic analysis method of composite steel-concrete beams with partial composite action [J]. Engineering Structures,2017,134: 74—106.
[16] BERTAGNOLI G,GINO D,MARTINELLI E. A simplified method for predicting early-age stresses in slabs of steel-concrete composite beams in partial interaction[J]. Engineering Structures,2017,140: 286—297.
[17] 孫飛飛,李國強. 考慮滑移、剪力滯后和剪切變形的鋼-混凝土組合梁解析解[J]. 工程力學,2005,22(2): 96—103.
SUN F F,LI G Q. A closed-form solution for steel-concrete composite beams with slip,shear lag and shear deformation [J]. Engineering Mechanics,2005,22(2): 96—103. (In Chinese)
[18] QUEIROZ F D,VELLASCO P C G S,NETHERCOT D A. Finite element modeling of composite beams with full and partial shear connection [J]. Journal of Constructional Steel Research,2007,63(4):505—521.
收稿日期:2018-05-24
基金項目:國家自然科學基金資助項目(51708269,51868039),National Natural Science Foundation of China(51708269,51868039);中國博士后科學基金資助項目(2018M643766),China Postdoctoral Science Foundation Project(2018M643766);甘肅省自然科學基金資助項目(18JR3RA115),Natural Science Foundational of Gansu Province(18JR3RA115)
作者簡介:冀偉(1982—),男,山西陽泉人,蘭州交通大學副教授,博士(后)
通訊聯(lián)系人,E-mail:denglu@hnu.edu.cn