夏桂云 李傳習(xí) 楊美良
摘? ?要:利用初參數(shù)法和傳遞矩陣,建立了薄壁箱梁約束扭轉(zhuǎn)分析的有限元列式,導(dǎo)出了均布扭矩和均布雙力矩的非結(jié)點(diǎn)荷載的等效公式.基于約束扭轉(zhuǎn)的有限元位移解,進(jìn)一步建立了彎扭力矩新算法,導(dǎo)出相應(yīng)的剛度矩陣、均布扭矩和均布雙力矩作用下的固端力公式,方便正應(yīng)力和剪應(yīng)力的計(jì)算.算例表明,本文的計(jì)算結(jié)果與理論值完全符合,所建立的薄壁箱梁約束扭轉(zhuǎn)有限元列式、均布扭矩和均布雙力矩的非結(jié)點(diǎn)荷載等效公式、彎扭力矩新算法公式正確.
關(guān)鍵詞:薄壁結(jié)構(gòu);約束扭矩;有限元分析;雙力矩;扭率;新算法
中圖分類號(hào):U448.213?? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1674—2974(2019)01—0085—08
Abstract: Using initial parameter solutions and transfer matrix method,the finite element formulation for restrained torsion of a thin-walled box girder was presented. The equivalent nodal forces of distributing torque and bimoment acted on an element were also derived. Based on the displacement solutions of the finite element method for restrained torsion, a new algorithm for calculating the flexural-torsional moment was developed. The relevant stiffness matrix and fixed-end forces for distributing torque and bimoment acted on the element were established. It facilitated the calculation of normal stress and shear stress. The examples show that the calculation results of the proposed method agree well with the theoretical solutions, which proves that the stiffnesses for restrained torsion, equivalent nodal forces for distributing torque and bimoment acted on element as well as new algorithm for flexural-torsional moment are exact.
Key words: thin walled structures;restrained torsion;finite element analysis;bimoment;rate of twist;new algorithm
薄壁桿件的約束扭轉(zhuǎn)是一個(gè)經(jīng)典力學(xué)問題[1].眾所周知的已有理論有烏曼斯基第一理論、烏曼斯基第二理論、詹涅里杰理論和符拉索夫廣義坐標(biāo)法理論等[2].包世華等[3]系統(tǒng)闡述開/閉口截面薄壁桿件的約束扭轉(zhuǎn)問題.徐勛[4]基于混合變分原理,建立了一種考慮全部次生剪切變形影響的薄壁桿件約束扭轉(zhuǎn)新理論,并能與前4種理論統(tǒng)一.對(duì)于復(fù)雜結(jié)構(gòu)的空間效應(yīng)分析,多位學(xué)者將約束扭轉(zhuǎn)問題有限元組裝到一般桿件程序中,建立多自由度的通用單元,如聶國雋等[5]建立的每結(jié)點(diǎn)7自由度的兩結(jié)點(diǎn)桿單元.楊綠峰等[6]基于剛性周邊假定,建立閉口薄壁桿件約束扭轉(zhuǎn)分析的一維離散有限元方法,其自由度為扭角和扭率,理論上是烏曼斯基第一理論體系.蘇賢鋒[7]以扭轉(zhuǎn)角為基本未知量,考慮翹曲正應(yīng)力和剪應(yīng)力,利用變分原理建立了約束扭轉(zhuǎn)分析的有限元列式,其以多項(xiàng)式作為位移插值函數(shù),但計(jì)算誤差達(dá)20%.謝旭等[8]利用約束扭轉(zhuǎn)微分方程的初參數(shù)解,進(jìn)行轉(zhuǎn)換后得到有限元列式,所導(dǎo)出的剛度矩陣非常精確,但建立的均布扭矩非結(jié)點(diǎn)荷載等效公式有誤.朱德榮等[9]采用約束扭轉(zhuǎn)微分方程的奇次解作為單元扭轉(zhuǎn)插值函數(shù),在初參數(shù)解的基礎(chǔ)上推導(dǎo)箱梁?jiǎn)卧募s束扭轉(zhuǎn)剛度矩陣,對(duì)于非結(jié)點(diǎn)荷載的等效,論文只說明可以運(yùn)用虛功原理來建立非結(jié)點(diǎn)荷載的等效公式,沒有給出具體表達(dá)式.對(duì)于薄壁箱梁約束扭轉(zhuǎn)分析問題,雖然現(xiàn)有的利用約束扭轉(zhuǎn)微分方程初參數(shù)解來建立薄壁桿件的單元?jiǎng)偠染仃嚭头墙Y(jié)點(diǎn)荷載等效結(jié)點(diǎn)非常準(zhǔn)確,其可與理論解析解媲美,但存在一些值得研究的問題,如:1)目前,薄壁箱梁約束扭轉(zhuǎn)分析的桿系有限元一般是將總的扭矩M和雙力矩B作為單元結(jié)點(diǎn)力,因此扭矩和雙力矩可根據(jù)有限元結(jié)果直接確定.但是根據(jù)約束扭轉(zhuǎn)理論可知,在計(jì)算單元的剪應(yīng)力時(shí),需要利用彎扭力矩,沒有彎扭力矩結(jié)果,就不能正確計(jì)算約束扭轉(zhuǎn)翹曲導(dǎo)致的剪應(yīng)力.如何在有限元的基礎(chǔ)上計(jì)算此內(nèi)力,使得約束扭轉(zhuǎn)的有限元列式能計(jì)算桿內(nèi)的全部?jī)?nèi)力,從而確定桿件的正應(yīng)力和剪應(yīng)力狀態(tài),此問題值得研究.2)約束扭轉(zhuǎn)分析的一些經(jīng)典文獻(xiàn)存在一些計(jì)算公式、算例結(jié)果的印刷錯(cuò)誤,如果后續(xù)研究者以這些公式、結(jié)果來校驗(yàn)其他方法時(shí)可能會(huì)誘導(dǎo)出錯(cuò)誤結(jié)論,因此有必要更正這些錯(cuò)誤.
3)扭轉(zhuǎn)分析對(duì)于大跨度橋梁抗風(fēng)性能的研究至關(guān)
重要[10-11].本文基于此認(rèn)識(shí),對(duì)薄壁桿件約束扭轉(zhuǎn)的桿系有限元進(jìn)行研究,以期取得有意義的成果.