師昀巍
摘 要:基于極限分析上限定理建立了考慮土體非均質(zhì)及各向異性效應(yīng)的裂縫土坡抗震穩(wěn)定性分析模型。結(jié)合算例,分析了土體非均質(zhì)及各向異性等參數(shù)對邊坡穩(wěn)定性的影響。結(jié)果表明:隨著坡角的增大,裂縫對邊坡穩(wěn)定性的不利影響越顯著。隨著土體非均質(zhì)系數(shù)和各向異性系數(shù)的減小,邊坡穩(wěn)定性顯著降低。在土體粘聚力強度較高時,坡體中的裂縫對邊坡穩(wěn)定性的不利影響較為顯著。
關(guān)鍵詞:邊坡穩(wěn)定性;裂縫;非均質(zhì)及各向異性
DOI:10.16640/j.cnki.37-1222/t.2019.19.198
0 引言
我國是一個多山的國家,其中存在的眾多邊坡易受到內(nèi)外營力的作用而發(fā)生失穩(wěn)破壞。大量研究表明,地震誘發(fā)的滑坡在坡頂往往會出現(xiàn)裂縫,裂縫的存在會對邊坡的穩(wěn)定性產(chǎn)生不利影響[1-2]。然而現(xiàn)階段關(guān)于裂縫對邊坡穩(wěn)定性的研究仍然較少。因此,本文基于極限分析上限定理,將土體的非均質(zhì)性及各向異性引入到裂縫邊坡抗震穩(wěn)定性分析中。結(jié)合算例,分析了土體非均質(zhì)及各向異性等參數(shù)對邊坡穩(wěn)定性的影響,以期為裂縫邊坡穩(wěn)定性評估提供一定的參考。
1 邊坡穩(wěn)定性分析
1.1 極限分析上限定理
土體受荷后由彈性階段進入塑流階段,對其全程的應(yīng)力應(yīng)變進行細(xì)致分析較為復(fù)雜。而極限分析法提供了一種便利,其直接關(guān)注土體進入塑流狀態(tài)時的極限荷載,可以對土坡極限荷載的上、下限進行計算。其中,極限分析運動學(xué)定理的運用需要構(gòu)建機動許可的破壞機構(gòu),確保土體內(nèi)各點滿足運動協(xié)調(diào)性與幾何相容性。對于任一滿足機動許可要求的速度場,所確定的荷載為真實極限荷載的上限,因此極限分析運動學(xué)定理常常被稱為上限定理。自Chen[3]發(fā)表專著,論述極限分析在巖土工程中的運用后,極限分析在邊坡穩(wěn)定性分析中的應(yīng)用越來越廣泛。
利用極限分析上限定理分析邊坡穩(wěn)定性的基本思路為:確定某一運動許可的破壞機構(gòu)上的外力功率與內(nèi)能耗散率,再令外力功率與內(nèi)能耗散率相等可得到邊坡的臨界坡高或穩(wěn)定系數(shù),最后對破壞機構(gòu)進行優(yōu)化求得最小的臨界坡高或穩(wěn)定系數(shù)。
1.2 裂縫邊坡穩(wěn)定性分析
考慮如圖1所示的計算模型。實際上,坡體中可能存在許多條裂縫,在穩(wěn)定性分析時將所有裂縫都計入在內(nèi)是非常復(fù)雜的。因此,本文中考慮一條對土坡穩(wěn)定性產(chǎn)生最不利影響的豎向裂縫CC'。圖中,邊坡高度為H,坡角為β,W為土體重力,khW為水平地震荷載,滑動面與坡面的交點至坡肩的距離為L,對數(shù)螺旋滑動面AB'以角速度ω繞O點旋轉(zhuǎn)破壞?;鶞?zhǔn)線OA和OB'的傾角分別為θ0和θh,長度分別為r0和rh,滑動面某一點的間斷速度v與滑動面切向的夾角為土體內(nèi)摩擦角φ,N為破壞面最深處至坡趾平面的距離,L1為裂縫與坡頂交點至破壞面與坡頂交點的距離。其他定義破壞機構(gòu)的變量如圖所示。
由于自然沉積、開挖卸荷或膠結(jié)作用等因素的影響,土體往往呈現(xiàn)出非均質(zhì)及各向異性的特點。假設(shè)土體服從線性摩爾庫侖破壞準(zhǔn)則,該準(zhǔn)則由兩個參數(shù)來描述:土體的粘聚力c與內(nèi)摩擦角φ。研究表明[3],土體內(nèi)摩擦角的非均質(zhì)性及各向異性對穩(wěn)定性影響不顯著。本文中進一步假設(shè)僅考慮土體粘聚力的非均質(zhì)性及各向異性。土體的粘聚力隨應(yīng)力方向變化的各向異性特點可表示為[4]:
式中,ci為與豎直向成角度i的大主應(yīng)力方向上的粘聚力,ch和cv分別為水平和豎向的粘聚力。設(shè)各向異性系數(shù)k=ch/cv且其在土體中任一點均相同,上式可進一步寫為:
當(dāng)k=1時,土體呈各向同性特性。
為了考慮由于土體自然沉積而產(chǎn)生的非均質(zhì)性,采用如圖1(c)所示的土體粘聚力隨深度線性變化模式。圖中,n0、n1和n2為不同深度處的非均質(zhì)系數(shù)。當(dāng)n0=n1=n2=1時,土體是均質(zhì)的。本文中僅考慮土體粘聚力隨深度線性分布的情況,即n1=1,n2=n0+(1-n0)(1+N/H)。
本文中,外力功率包括土體重力做功功率與水平向地震力做功功率,內(nèi)能耗散率僅考慮速斷間斷面B'C'上的功率。令外力功率與內(nèi)能耗散率相等,并對破壞機構(gòu)進行優(yōu)化可得穩(wěn)定系數(shù)Ns=γH/c的最小上限解答,具體求解步驟可參照文獻[4]。
2 參數(shù)分析
為了研究土體粘聚力的非均質(zhì)性及各向異性對裂縫土坡穩(wěn)定性的影響,計算了不同地震系數(shù)及坡角情況下非均質(zhì)性及各向異性對穩(wěn)定系數(shù)的影響,如圖2與圖3所示。
由圖2可以發(fā)現(xiàn),隨著土體非均質(zhì)系數(shù)的減小,邊坡穩(wěn)定性顯著降低,而考慮裂縫的土坡與完整土坡穩(wěn)定性間的差距也在逐漸減小。即在土體粘聚力強度較高時,裂縫對邊坡穩(wěn)定性的不利影響顯著。同時,隨著地震系數(shù)或坡角的增大,邊坡穩(wěn)定性顯著降低。隨著坡角的增大,裂縫對邊坡穩(wěn)定性的不利影響越顯著。因此,在較陡的土坡穩(wěn)定性分析中,有必要考慮裂縫的存在。從圖3中可以發(fā)現(xiàn),隨著土體各向異性系數(shù)的減小,穩(wěn)定系數(shù)逐漸減小。當(dāng)邊坡的坡角較大時,穩(wěn)定性系數(shù)隨著各向異性系數(shù)的變化幾乎沒有變化。因此,土體的非均質(zhì)特性對土坡的穩(wěn)定性有較大的影響,而土體各向異性效應(yīng)對坡度較緩的土坡影響更大。
3 結(jié)束語
基于極限分析上限定理建立了考慮土體非均質(zhì)及各向異性效應(yīng)的裂縫土坡抗震穩(wěn)定性分析模型。結(jié)合算例,分析了土體非均質(zhì)性及各向異性等參數(shù)對邊坡穩(wěn)定性的影響。結(jié)果表明:隨著坡角的增大,裂縫對邊坡穩(wěn)定性的不利影響越顯著。隨著土體非均質(zhì)系數(shù)和各向異性系數(shù)的減小,邊坡穩(wěn)定性顯著降低。在土體粘聚力強度較高時,坡體中的裂縫對邊坡穩(wěn)定性的不利影響較為顯著。
參考文獻:
[1]鄧冬平,李亮.水力條件下具有張裂縫臨河邊坡穩(wěn)定性分析[J].巖土力學(xué),2016,37(S2):25-34.
[2]劉華強,殷宗澤.膨脹土邊坡穩(wěn)定性分析方法研究[J].巖土力學(xué),2010,31(05):1543-1549.
[3]Chen W F.Limit analysis and soil plasticity[M].Elsevier,1975:399-446.
[4]Nian T K,Chen G Q,Luan M T,et al.Limit analysis of the stabilityof slopes reinforced with piles against landslide in nonhomogeneousand anisotropic soils[J].Canadian Geotechnical Journal,2008,45(08):1092-1103.