• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,elastic,and electronic properties of topological semimetal WC-type MX family by first-principles calculation?

    2019-08-06 02:06:04SamiUllahLeiWang王磊JiangxuLi李江旭RonghanLi李榮漢andXingQiuChen陳星秋
    Chinese Physics B 2019年7期
    關(guān)鍵詞:王磊

    Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李榮漢), and Xing-Qiu Chen(陳星秋)

    1Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China

    Keywords: topological semimetals,WC-type materials,MX family,elastic properties

    1. Introduction

    All types of topological materials-such as topological insulators[1-3]and topological semimetals[4-8]-have attracted the attention of researchers because their nontrivial topological phases and unique transport properties, which could establish a fertile ground for quantum computers and spintronic applications. The topological semimetals play a leading role to pinpoint numerous fermions phenomena in solid crystal systems. Moreover, due to its protection mechanism and diverse band crossing points in the electronic band structure near the Fermi level, the topological semimetals family can be classified into different groups, such as threedimensional Dirac semimetals,[9-25]Weyl semimetals,[26-48]Dirac nodal lines semimetals,[49-67]and semimetals with triply degenerate nodal points(TDNPs).[68-79,81]Furthermore,in the field of high energy physics, their realizations are also essential in solid crystals to establish a productive ground to study fundamental particles.

    The non-centrosymmetric WC-type hexagonal structural MX family(MX =TaN,ZrTe,WC,MoP,TaS,TiS,TiSe,TiTe,ZrS,ZrSe,HfS,HfSe,and HfTe)compounds have raised extensive attention due to the incredible innovation of two coexisted phenomenon of fermions: (i)three-component fermions(TDNPs), and (ii) two-component Weyl fermions (WPs) in their bulk phases around the Fermi level.[70-75,78,79]The existence of triply degenerated nodal points (TDNPs) can differentiate the MX family from other renowned topological semimetal candidates. Meanwhile,the properties related with the electronic TDNPs and WPs have been already discussed in detail by using theoretical and experimental approaches in the literature.[68-79]Interestingly,we have recently found that several WC-type compounds commonly host the unique phononic triply degenerate nodal points (TDNPs) and phononic Weyl nodes(WPs)[79,80]in their phonon spectra.

    Following these advances in topological electronic and phononic properties of these MX compounds, further interests have been motivated to see which of the other compounds are isoelectronic and isostructural WC-type systems. Therefore,we have further analyzed the MX compounds,which are the combination of group IVB elements (Ti, Zr, and Hf) and VIA elements(S,Se,and Te)of the periodic table. This family contains nine compounds, in which five compounds (TiS,ZrS, ZrSe0.9, ZrTe, and Hf0.92Se) have been experimentally reported by Harry and Steiger, Sodeck, Orlygsson, Schewe-Miller et al.[82-89]However, the remaining four compounds(TiSe, TiTe, HfS, and HfTe) have not been reported experimentally to date. Nowadays, because of the advances in experimental synthesis techniques-such as,chemical vapor deposition(CVD),physical vapor deposition(PVD),and molecular beam epitaxy (MBE)-it is possible to synthesize these materials. In this sense,here we have assumed that these four unknown compounds of TiSe,TiTe,HfS,and HfTe also crystallize in the same WC-type structure.

    Within this context, through first-principles calculations,we have used the WC-type structure to explore systematically their structural stability, enthalpy of formation, elastic and electronic properties. The MX family has a simple WCtype structure(space group of P 6m2 and No. 187). We have investigated several detailed properties, such as structural parameters,enthalpies of formation,and elastic properties,such as bulk modulus B, shear modulus G, and Young’s modulus E. The Poisson’s ratio v, B/G ratio, electronic structure, and the effects of bond distance and unit cell volume on the elastic properties of the MX family were also evaluated. Interestingly, all of the compounds of the MX family have low enthalpies of formation and no negative frequency was noticed in the phonon dispersion. These results indicate their thermodynamically and dynamical stabilities,respectively.[79]These calculated results will provide basic structural,mechanical,and electronic properties for the MX family.

    2. Computational methods

    2.1. DFT calculations

    In this work, all of the results of the density functional theory (DFT)[90,91]have been obtained by employing Vienna ab-initio simulation package (VASP) code[92-94]with the projector augmented wave(PAW)technique[95,96]through generalized gradient approximations (GGA) of the Perdew-Burke-Ernzerhof(PBE)exchange-correlation function.[97,98]The implemented PAW-PBE pseudo-potentials of all elements(i.e.,Ti,Zr,Hf,S,Se,and Te)are chosen by valence electrons states (i.e., 3p4s3d, 4s4p5s4d, 5p6s5d, and s2p4) and proper cutoff energy is selected according to their ENMAX parameters of elements in each compound. The Γ-centered grid is applied for significantly fasten energy converges for hexagonal structures with a proper set of k-points (21×21×21), and a very precise criterion of forces(below 0.0001 eV/?A)is used for structural optimizations.

    2.2. Elastic constant calculations

    In the literature,[99]the Voigt proposed a scheme for the determination of average elastic moduli of a single crystal to be established by assuming uniform strain throughout a lattice orientation of the crystal,and its values indicate the upper range of the actual moduli. Furthermore,in 1929,Reuss proposed another scheme to obtain the average elastic moduli of a single crystal by the assumption of uniform stress, and the values of resultant moduli indicate the lower frontier of the actual moduli of the crystals.[100]Both of these schemes are based on the assumption of uniform strain and stress in the crystal respectively and show the upper and lower limits of the actual elastic moduli but not the actual values of the elastic moduli of the crystal phase. To obtain the actual values of the elastic moduli (B&G) for a crystal phase, the R. Hill approximations[101]are used,and the resultant elastic moduli are equal to the arithmetic average value of the elastic moduli of the Voigt and Reuss schemes.[102]In addition,these elastic moduli were also used to determine the Poisson’s ratio ν and Young’s modulus E of the crystal phase.[103]

    3. Structural and elastic properties of the MX family

    3.1. Structural properties

    The WC-type crystal structure of the MX family contains two atoms per unit cell,which is non-centrosymmetric without inversion center as shown in Fig. 1. The Wyckoff sites show the occupancy of atom X at the 1a Wyckoff site(0, 0, 0)and the M atom at the 1d Wyckoff site(1/3,2/3,1/2).

    Fig.1. WC-type crystal structure of MX family(M=Ti,Zr,Hf;X=S,Se,Te).

    We have optimized the lattice structures of nine MX compounds with the WC-type structure. Table 1 summarizes all of the optimized lattice constants as compared with the available experimental data. Our DFT calculated lattice constants for five experimentally known compounds(TiS,ZrS,ZrSe0.9,ZrTe, and Hf0.92Se) are in good agreement with the experimentally reported lattice constants with an error less than 1%.Furthermore, we have derived their enthalplies of formation(ΔH)at 0 K using the following equation:

    where EDFT(MX) is the total DFT-derived ground-state energy of the stoichiometric MX compound and both EDFT(M)and EDFT(X) are the DFT-derived energies at their referred solid phases of M and X at their ground states, respectively. The structure optimization to their equilibrium states has been achieved at zero pressure for each elemental solid(Ti, Zr, Hf, S, Se, and Te) of the MX family to derive the ground-state energy.[104,105]The experimentally reported crystal structures such as Ti(hcp,P63/mmc,194),[106-108]Zr(hcp,P63/mmc, 194),[109-112]Hf (hcp, P63/mmc, 194),[113-115]S (orthorhombic, Pnm, 58),[116]Se (rhombohedral, R-3m,166),[117]and Te (hcp, P3121)[118,119]were used to calculate the ground state energy of each individual candidate. The results are further complied in Table 1 and these nine compounds have highly negative enthalpies of formation,indicating their thermodynamic stabilities. Furthermore,in our latest publication,[79]we have calculated the phonon spectra of these nine MX compounds, revealing no negative branches and noimaginary frequencies,which confirm their dynamical stabilities.

    Table 1. DFT-derived lattice constants a and c and enthalpy of formation of single crystals,in comparison with available experimental data.

    3.2. Elastic properties

    The elastic constants are crucial because they allow us to investigate the stability of a crystal phase. They are also associated with numerous basic solid-state phenomenons such as,phonon dispersion,thermal properties,inter-atomic potentials,mechanical properties, and hardness.[120,121]Most recently,the elastic properties of WC-type topological semimetals of MoP, ZrTe, and TaN have been theoretically investigated by Guo et al.[122-124]To elucidate the elastic properties of these MX compounds in this work,we have first repeated the calculations of the elastic properties of ZrTe which is isostructural to the MX family, and the accomplished results were comparable with the previous work.[123]Theoretically,our proposed nine compounds of the MX family have a hexagonal structure phase and they require four-order tensors of 3×3×3×3 order matrix of 81 elements.[125]Due to the hexagonal symmetry of the MX compounds,the number of elastic constants Cijis reduced from 81 to 5, which are C11, C12, C13, C33,and C44.[103,123]For these nine compounds,the derived elastic constants are compiled in Table 2. In terms of these five independent elastic constants, we have found that all these MX compounds meet the mechanical criteria for hexagonal lattice,C44>0,C11>|C12|,and(C11+2C12)C33>2C213.[102,126]Furthermore,according to the R.Hill approximation,we have derived the elastic moduli of the polycrystalline MX compounds in Table 2.

    Table 2. The DFT-derived elastic constants Cij in GPa,C66=C11-C12/2,bulk modulus B in GPa,shear modulus G in GPa,Young’s modulus E in GPa,Poisson’s ratio v,B/G ratio,and hardness Hv in GPa at their equilibrium states.

    From Fig.2,it can be seen that the bulk modulus B,shear modulus G, and Young’s modulus E follow the zigzag path from TiX to ZrX to HfX compounds. From MS to MSe to MTe, the data show a decreasing tendency against from Ti to Zr to Hf with increasing the atomic number of M. Among these compounds, the TiS compound has the highest bulk modulus (141.3 GPa), shear modulus (100.7 GPa), Young’s modulus (244.1 GPa) and the lowest Poisson ratio (0.21) as shown in Figs.2(a)and 2(b)respectively. The only exception is HfS, which has a bulk modulus of 153 GPa. Figure 2(c)illustrates the B/G ratio. According to the Pugh’s criteria[127]for the brittle or ductile mechanical properties of materials,eight compounds(TiS,TiSe,TiTe,ZrS,ZrSe,ZrTe,HfS,and HfSe) are in brittle because of their B/G values smaller than 1.75, whereas the compound HfTe is in the ductile manner.Because of the lowest Poisson’s ratio and B/G value, TiS would be the most brittle one among them. Furthermore, we have derived their theoretical Vickers’ hardness according to the proposed hardness model(Hv=2(k2G)0.585-3[128]using the inputs of both B and G.

    Fig.2. DFT-derived(a)elastic moduli,(b)Poisson’s ratio,and(c)B/G.

    4. Electronic properties of MX compounds

    Furthermore,we have derived the total densities of states(DOSs)and the partial DOSs of the MX compounds in Fig.3,indicating that they share quite similar electronic structures.At first, they are typically metallic and their common feature is the existence of the pseudogaps at the Fermi level, mainly featured by the 3d, 4d, and 5d orbitals of the metallic components Ti, Zr, and Hf in the MX compounds. In Fig. 3, we have noticed obvious hybridization between 3d-Ti,4d-Zr,5d-Hf and 3p-S,4p-Se, 5p-Te in different energy ranges, but not at the Fermi level. In the total DOSs and partial DOSs of these compounds, the energy range decreases and shrinks towards the Fermi level due to the increasing atomic number of 3p-S,4p-Se,5p-Te with 3d-Ti,4d-Zr,5d-Hf,respectively. The presence of the pseudogap valley in the total TDOS at the Fermi level is a useful factor for the illustration of the electronic stabilities of these MX compounds.

    Fig.3. The DFT-derived total densities of states and the partial density of states of MX (M=Ti,Zr,Hf;X =S,Se,Te). The Fermi level is set to the zero energy.

    We have derived the electronic band structures of these nine MX compounds in Figs.4-6 with and without the spinorbital coupling (SOC). First, it can be seen that we have reproduced the electronic band structure of ZrTe, which is exactly consistent to that in Ref.[64],indicating that our current calculations are reliable. Second, the electronic structures of all these nine MX compounds look highly similar. When the SOC effect is ignored, two main features are observable (see panels (a)-(c) in Figs. 4-6). (i) Surrounding each K point in the bulk BZ, there is a Dirac nodal line (DNL) in the Kz=0 plane,as shown in Fig.7(a). These DNLs are clearly formed around the Fermi level due to the linear band crossing of their several inverted orbitals between the M dxz+ dyzorbitals and M dx2-y2+ dxyorbitals (M=Ti, Zr, Hf) surrounding each K point. (ii)A sixfold degenerate nodal point(sixfold DNP)locates at the position on the Γ-A direction around the Fermi level due to another type of band inversion between the doubly degenerate M dxz+ dyzand the M dz2-like orbitals at the A point of the bulk BZ (in Fig. 7(a)). Taking HfSe as an example, it can be clearly seen that without the SOC inclusion at the K point in the BZ the band inversion occurs between Hf dxz+dyzorbitals and Hf dx2-y2+dxyorbitals, resulting in the formation of the DNL surrounding the K point in the kz=0 plane(Fig.8(a)). At the A point in the BZ,the band inversion between the doubly degenerate Hf dxz+ dyzand dz2-like orbitals indicates the sixfold DNP occurring along the Γ-A line(Fig.8(a)).

    Fig.4. The DFT-derived electronic band structures of TiX (X =S,Se,Te): (a)-(c)without the SOC effect and(d)-(f)with the SOC effect. The Fermi level is set to the zero energy.

    Because the masses of these elemental solids M and X are not very light, their SOC interactions should be considered. Once the SOC has been contained in their electronic band structures,we can see the highly apparent changes,particularly around the Fermi level. The only exception is the case TiS.Because TiS exhibits the weakest SOC effect among these nine compounds, as shown in Fig.4(a), the SOC inclusion does not obviously change its electronic band structure,indicating the coexisted six DNLs surrounding the K point and two sixfold DNPs along the Γ-A direction. Nevertheless,for other eight MX compounds, the SOC-induced modifications of the electronic band structures are relatively obvious. Because the MX lattice is lack of the inversion symmetry, each doubly-degenerate band in the case of SOC inclusion exhibits the so-called spin splitting. This results in two facts. First,each DNL around the K point in the kz=0 plane has to be broken into gap or WPs. After a careful search of the whole BZ, in our current cases for all MX compounds, each DNL is broken into a pair of WPs with opposite chirality, as illustrated in Fig.7(b). Therefore,in their BZ,there exist six pairs of WPs locating at the positions which are just slightly above and below the kz=0 plane. Second,the SOC inclusion splits each sixfold DNP into two TDNP [TDNP1 and TDNP2] as marked in Fig. 7(b) along the Γ-A direction. For instance,still for HfSe in Fig. 8(b), the SOC inclusion certainly splits the band around the Fermi level. This fact leads to two features:(i)the DNLs are split into the WPs at(0.27871,0.27871,±0.0100), as marked in Fig. 8(d). All these WPs have the same energy level of 33 meV above the Fermi level. (ii)Due to the SOC effect, the sixfold DNP along the Γ-A direction is split into two TDNPs, TDNP1(0, 0, 0.29081)and TDNP2(0,0,0.33169),as shown in the zoom-in plot of Fig.8(c). All these compounds indeed share the same behaviors. For ZrSe,a pair of WPs at (0.27314, 0.27314, ±0.01628) and TDNP1 at(0,0,0.2904)and TDNP2 at(0,0,0.3146)[79]and for ZrTe WPs at (0.2698, 0.2698, ±0.00655)[71]and TDNP1 at (0, 0,0.2834) and TDNP2 at (0, 0, 0.3313) appear. Of course, it should be emphasized that the appearances of TDNPs(TDNP1& TDNP2) are indeed protected by the C3zrotation and mirror symmetries,which are the same as those in both ZrTe and ZrSe cases.[71,79]

    Fig.5. The DFT-derived electronic band structures of ZrX (X =S,Se,Te): (a)-(c)without the SOC effect and(d)-(f)with the SOC effect. The Fermi level is set to the zero energy.

    Fig.6. The DFT-derived electronic band structures of HfX (X =S, Se, Te): (a)-(c)without the SOC effect and(d)-(f)with the SOC effect.The Fermi level is set to the zero energy.

    Fig.7. Illustrations of BZ of MX. (a)Without the SOC inclusion,six DNLs surround the K point in the kz =0 plane and two sixfold degenerate nodal points (sixfold DNPs) locate at the Γ-A path of the BZ. (b) With the SOC inclusion, each DNL surrounding the k point will be broken into WPs with the opposite chirality, as marked by WP+and WP-. The sixfold DNPs will be broken into two TDNPs still on the Γ-A path.

    Furthermore,as for ZrTe in Ref.[71],we can illustrate the topological property of the electronic structure using the Wilson loop method. Here,we have selected HfSe as a prototypical example to show the non-trivial topological feature of its electronic structure. We have first plot the DFT-derived electronic structure around one of the WPs for HfSe in Figs.9(a)-9(c)to illustrate the evolution of the electronic band structure around the WP.It can be seen that these WPs are clearly away from the kz=0 plane. Meanwhile, for HfSe it can be identified that all WPs have the same energy of 33 meV above the Fermi level. In addition,we also show the evolution of the socalled Wannier centers created along the kydirection in the two kz=0 and kz=π planes in Figs.9(d)and 9(e). Accordingly,the Z2numbers(namely,counting the times of Wannier center crosses a reference line)of both these planes are odd,signifying their topological non-trivial electronic feature. Of course,the other members including ZrTe in this family are similar to each other with the coexisted WPs and TDNPs in their bulk electronic structures. Of course, because of their non-trivial topological nature on some certain surface,there would exhibit some topologically protected surface states. These non-trivial surface states of both ZrTe and ZrSe have been discussed in details in Refs.[71]and[79],respectively.

    Fig. 8. Electronic structures of HfSe. (a) Band structure without the SOC inclusion shows the band inversion between dxz+dyz and dx2-y2+dxy at K and the band inversion between dz2 and dxz+dyz orbitals at the A point. (b) Band structure with the SOC inclusion. (c)The zoom-in visualization of TDNP1 and TDNP2 along the Γ-A direction in panel (b). (d) The zoom-in bands crossing one WP (0.27871,0.27871,±0.0100)around the Fermi level with the SOC inclusion.

    Fig.9. DFT-derived band structures around the WP node at(a)kz =0.003, (b)kz =0.007, and(c)kz =0.010(exactly corresponding to the WP node)for HfSe. The derived Wilson loops along the ky evaluation of the Berry phases of all occupied bands along the kx direction in both(d)kz=0 and(e)kz=π planes.

    5. Conclusion

    By employing the first-principles calculations, we have studied the structural, thermodynamic, elastic, and electronic properties of nine WC-type MX compounds(TiS,TiSe,TiTe,ZrS, ZrSe, ZrTe, HfS, HfSe, and HfTe). Five of them (TiS,ZrS,ZrSe0.9, ZrTe, and Hf0.92Se)have been theoretically derived to have comparable results with known experimental reported data. We have also predicted four new compounds of TiSe,TiTe,HfS,and HfTe which are thermodynamically and dynamically stable. All these compounds satisfy the mechanical criteria of hexagonal crystal phase, their bulk and shear moduli are obtained by R.Hill approximation. In addition,all these compounds have been theoretically proposed to be topological semimetals and revealed the analogous electronic band structures with the coexisted Weyl nodes and triply degenerate nodal points in their bulk phases like ZrTe compound,excluding TiS,due to the weak SOC effect.

    猜你喜歡
    王磊
    Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
    First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
    Differentiable programming and density matrix based Hartree–Fock method?
    逼近人性
    我愛你,中國(guó)
    Carriage to eternity: image of death in Dickinson and Donne
    青年生活(2019年29期)2019-09-10 06:46:01
    作品選登
    不再被“圓”困住
    “根本停不下來”
    Exact analytical solutions for moving boundary problems of one-dimensional flow in semi-infinite porous media with consideration of threshold pressure gradient*
    av又黄又爽大尺度在线免费看| 亚洲色图综合在线观看| 99国产精品99久久久久| 亚洲欧美日韩另类电影网站| 国产在线一区二区三区精| 久久天堂一区二区三区四区| 在线看a的网站| 两人在一起打扑克的视频| 法律面前人人平等表现在哪些方面| 亚洲国产中文字幕在线视频| 黄频高清免费视频| 国产一区二区三区综合在线观看| 亚洲九九香蕉| 黄频高清免费视频| 夜夜爽天天搞| 欧美日韩视频精品一区| 亚洲人成77777在线视频| 男女之事视频高清在线观看| 国产精品av久久久久免费| 成年人免费黄色播放视频| 免费黄频网站在线观看国产| 美女午夜性视频免费| 亚洲成人国产一区在线观看| 99re6热这里在线精品视频| 国产福利在线免费观看视频| 啪啪无遮挡十八禁网站| 亚洲人成电影观看| 国产色视频综合| 99香蕉大伊视频| 欧美日韩福利视频一区二区| 18禁黄网站禁片午夜丰满| 美女主播在线视频| 亚洲成国产人片在线观看| 精品少妇久久久久久888优播| 亚洲中文字幕日韩| 热99久久久久精品小说推荐| 中国美女看黄片| 午夜激情久久久久久久| 一边摸一边抽搐一进一出视频| 国产日韩欧美亚洲二区| 午夜福利在线免费观看网站| 一区二区av电影网| 一区二区三区国产精品乱码| 建设人人有责人人尽责人人享有的| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 一级片'在线观看视频| 我要看黄色一级片免费的| 国产男靠女视频免费网站| 亚洲av电影在线进入| 亚洲人成电影免费在线| 黄色a级毛片大全视频| 天天躁日日躁夜夜躁夜夜| 麻豆成人av在线观看| 日韩有码中文字幕| 欧美黄色淫秽网站| 最近最新中文字幕大全电影3 | 最黄视频免费看| 国产男靠女视频免费网站| 精品福利永久在线观看| 一个人免费看片子| 热99久久久久精品小说推荐| 欧美激情极品国产一区二区三区| 丁香欧美五月| 国产成人系列免费观看| 久久毛片免费看一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 国产国语露脸激情在线看| 99热国产这里只有精品6| 黑人猛操日本美女一级片| 亚洲色图综合在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲精品中文字幕在线视频| 国产又爽黄色视频| 在线永久观看黄色视频| 黄片小视频在线播放| 视频区欧美日本亚洲| 天天操日日干夜夜撸| 国产精品美女特级片免费视频播放器 | 人妻一区二区av| 99国产综合亚洲精品| 最新的欧美精品一区二区| 久久这里只有精品19| 国产在线精品亚洲第一网站| 国产精品一区二区免费欧美| 国产精品自产拍在线观看55亚洲 | 黄色视频不卡| 少妇裸体淫交视频免费看高清 | 国产单亲对白刺激| 中文字幕最新亚洲高清| 成人永久免费在线观看视频 | 欧美乱妇无乱码| 18禁裸乳无遮挡动漫免费视频| 热re99久久国产66热| 午夜91福利影院| 757午夜福利合集在线观看| 中文字幕制服av| 欧美午夜高清在线| 久久久久精品人妻al黑| 老司机亚洲免费影院| 人人妻人人澡人人看| 在线观看免费午夜福利视频| 午夜福利在线免费观看网站| cao死你这个sao货| 久久亚洲真实| 中国美女看黄片| 一区在线观看完整版| 一区二区av电影网| 久久九九热精品免费| 国产精品久久久久久人妻精品电影 | 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| 久久精品成人免费网站| 国产亚洲午夜精品一区二区久久| 欧美性长视频在线观看| 国产精品久久久av美女十八| 久久人妻福利社区极品人妻图片| 两人在一起打扑克的视频| 啦啦啦中文免费视频观看日本| 国产日韩欧美视频二区| 少妇被粗大的猛进出69影院| 又大又爽又粗| 99香蕉大伊视频| www.熟女人妻精品国产| 建设人人有责人人尽责人人享有的| 亚洲视频免费观看视频| 18在线观看网站| 久久久久精品国产欧美久久久| a级毛片黄视频| 在线观看一区二区三区激情| 狠狠婷婷综合久久久久久88av| 女人精品久久久久毛片| 欧美日韩国产mv在线观看视频| 亚洲全国av大片| 亚洲久久久国产精品| 亚洲精品自拍成人| 国产精品 欧美亚洲| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产中文字幕在线视频| 啦啦啦视频在线资源免费观看| 2018国产大陆天天弄谢| 精品国产乱码久久久久久小说| 视频区图区小说| 色视频在线一区二区三区| 成人特级黄色片久久久久久久 | 日韩有码中文字幕| 一区二区三区国产精品乱码| 午夜精品国产一区二区电影| 亚洲精品国产精品久久久不卡| 欧美日韩视频精品一区| 亚洲 欧美一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成狂野欧美在线观看| 欧美黄色淫秽网站| www日本在线高清视频| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 免费在线观看黄色视频的| 色播在线永久视频| 搡老熟女国产l中国老女人| 午夜激情久久久久久久| 精品国内亚洲2022精品成人 | 老司机深夜福利视频在线观看| 一个人免费看片子| 狠狠狠狠99中文字幕| √禁漫天堂资源中文www| 亚洲一区中文字幕在线| videos熟女内射| 国产不卡一卡二| 少妇精品久久久久久久| 丁香六月天网| 高清在线国产一区| 午夜免费鲁丝| 国产男女内射视频| 亚洲精品久久午夜乱码| 一本久久精品| 侵犯人妻中文字幕一二三四区| 精品国产超薄肉色丝袜足j| 午夜免费成人在线视频| 两个人免费观看高清视频| 亚洲久久久国产精品| 国产精品自产拍在线观看55亚洲 | 女人精品久久久久毛片| 一区二区三区乱码不卡18| 97在线人人人人妻| 欧美日韩亚洲综合一区二区三区_| 日本撒尿小便嘘嘘汇集6| 久久国产亚洲av麻豆专区| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 老司机午夜十八禁免费视频| 高清欧美精品videossex| 国产视频一区二区在线看| 精品一区二区三卡| 久久精品91无色码中文字幕| 正在播放国产对白刺激| 蜜桃国产av成人99| 国产男女超爽视频在线观看| 成人国语在线视频| a级毛片黄视频| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 色婷婷久久久亚洲欧美| 国产高清激情床上av| 中亚洲国语对白在线视频| 久久ye,这里只有精品| 日韩中文字幕欧美一区二区| 精品人妻熟女毛片av久久网站| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区久久| 男女无遮挡免费网站观看| 亚洲人成电影免费在线| 精品国产国语对白av| 丝袜喷水一区| 最近最新免费中文字幕在线| 久久国产精品人妻蜜桃| 午夜视频精品福利| 大陆偷拍与自拍| 狂野欧美激情性xxxx| 老熟妇乱子伦视频在线观看| 国产免费av片在线观看野外av| 中国美女看黄片| 两个人看的免费小视频| 国产成人欧美| 久久中文字幕人妻熟女| 一级片'在线观看视频| 久久国产精品影院| 精品少妇黑人巨大在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 王馨瑶露胸无遮挡在线观看| 欧美激情 高清一区二区三区| 操出白浆在线播放| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| 久久精品91无色码中文字幕| 亚洲色图综合在线观看| 少妇精品久久久久久久| 午夜福利在线观看吧| 久久人人爽av亚洲精品天堂| 嫩草影视91久久| 久久中文字幕一级| 亚洲 欧美一区二区三区| 新久久久久国产一级毛片| 久久亚洲真实| av国产精品久久久久影院| 丝瓜视频免费看黄片| 男女之事视频高清在线观看| 高清在线国产一区| 久久久久久久大尺度免费视频| 丝袜美腿诱惑在线| 成人影院久久| 国产野战对白在线观看| 国产成人精品无人区| 黑人猛操日本美女一级片| 国产亚洲一区二区精品| 极品教师在线免费播放| 国产高清videossex| 国产一区二区三区视频了| 一个人免费在线观看的高清视频| 亚洲avbb在线观看| www.自偷自拍.com| 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 韩国精品一区二区三区| 欧美激情极品国产一区二区三区| 夫妻午夜视频| 成人av一区二区三区在线看| 国产有黄有色有爽视频| 国产成人av激情在线播放| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| 日日夜夜操网爽| 午夜福利视频在线观看免费| 老鸭窝网址在线观看| 亚洲色图综合在线观看| 美女午夜性视频免费| 高清毛片免费观看视频网站 | 久久久精品免费免费高清| 黄片大片在线免费观看| 色综合婷婷激情| 久久精品熟女亚洲av麻豆精品| 久久午夜综合久久蜜桃| 国产精品香港三级国产av潘金莲| 制服诱惑二区| 老司机深夜福利视频在线观看| 久久久水蜜桃国产精品网| 老司机午夜福利在线观看视频 | 欧美激情极品国产一区二区三区| 桃花免费在线播放| 亚洲中文字幕日韩| 日韩欧美免费精品| 成人18禁在线播放| 欧美日韩亚洲高清精品| 日本a在线网址| 国产精品电影一区二区三区 | 日日夜夜操网爽| 一进一出好大好爽视频| 久久香蕉激情| 国产精品99久久99久久久不卡| 国产91精品成人一区二区三区 | 国产欧美日韩一区二区三区在线| 久久99一区二区三区| 精品第一国产精品| 欧美精品高潮呻吟av久久| 国产精品偷伦视频观看了| 色综合婷婷激情| 男女无遮挡免费网站观看| 99精品久久久久人妻精品| 免费日韩欧美在线观看| 91精品三级在线观看| 亚洲人成伊人成综合网2020| 又紧又爽又黄一区二区| 国产在线视频一区二区| 国产日韩一区二区三区精品不卡| videos熟女内射| 国产黄频视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品一区二区三区在线| 亚洲精品av麻豆狂野| 新久久久久国产一级毛片| 99久久国产精品久久久| 在线 av 中文字幕| 亚洲中文av在线| 大片电影免费在线观看免费| 亚洲专区中文字幕在线| 亚洲精品自拍成人| 9191精品国产免费久久| 久久天堂一区二区三区四区| a级毛片在线看网站| 一区二区三区国产精品乱码| 国产精品九九99| www.熟女人妻精品国产| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 免费在线观看视频国产中文字幕亚洲| 国产一区二区激情短视频| √禁漫天堂资源中文www| 久久人人97超碰香蕉20202| a级毛片在线看网站| netflix在线观看网站| 亚洲av日韩精品久久久久久密| √禁漫天堂资源中文www| 国产精品影院久久| 国产免费福利视频在线观看| 国产精品久久电影中文字幕 | 1024香蕉在线观看| 久久久久国产一级毛片高清牌| 亚洲全国av大片| 亚洲av国产av综合av卡| 99久久99久久久精品蜜桃| 黄片小视频在线播放| 首页视频小说图片口味搜索| 国产成+人综合+亚洲专区| 国产精品免费一区二区三区在线 | 成在线人永久免费视频| 91麻豆av在线| 久久久久久免费高清国产稀缺| 国产在线免费精品| 成人18禁在线播放| 搡老岳熟女国产| 免费在线观看黄色视频的| 一边摸一边抽搐一进一出视频| 五月开心婷婷网| 国产人伦9x9x在线观看| 999久久久精品免费观看国产| 汤姆久久久久久久影院中文字幕| 国产在视频线精品| 欧美日本中文国产一区发布| 国产高清国产精品国产三级| 国产日韩欧美在线精品| 日本一区二区免费在线视频| 曰老女人黄片| 成在线人永久免费视频| 看免费av毛片| 亚洲成人国产一区在线观看| 大码成人一级视频| 久久久久久人人人人人| 精品一区二区三区四区五区乱码| 国产成人欧美| 久久精品成人免费网站| 亚洲午夜精品一区,二区,三区| 午夜福利免费观看在线| 人人妻人人添人人爽欧美一区卜| 欧美av亚洲av综合av国产av| 青草久久国产| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸| 我的亚洲天堂| 一进一出好大好爽视频| 久久久久国产一级毛片高清牌| 巨乳人妻的诱惑在线观看| 成年人黄色毛片网站| 一边摸一边抽搐一进一出视频| 精品久久久久久久毛片微露脸| 久久影院123| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 亚洲中文字幕日韩| cao死你这个sao货| 国产在视频线精品| 久久久国产精品麻豆| 天堂8中文在线网| 考比视频在线观看| 国产男女内射视频| 日韩欧美一区二区三区在线观看 | 亚洲av国产av综合av卡| 色老头精品视频在线观看| 99在线人妻在线中文字幕 | 男男h啪啪无遮挡| 宅男免费午夜| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 精品久久久久久久毛片微露脸| 精品少妇久久久久久888优播| av有码第一页| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 免费看十八禁软件| 我要看黄色一级片免费的| 亚洲午夜理论影院| 制服人妻中文乱码| www.自偷自拍.com| 我要看黄色一级片免费的| 正在播放国产对白刺激| av福利片在线| 亚洲国产精品一区二区三区在线| 18禁国产床啪视频网站| 一个人免费看片子| 国产亚洲av高清不卡| 国产精品久久久久成人av| 日日摸夜夜添夜夜添小说| 亚洲欧洲精品一区二区精品久久久| 人妻 亚洲 视频| 伊人久久大香线蕉亚洲五| 亚洲av日韩在线播放| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 无人区码免费观看不卡 | 亚洲欧美激情在线| 日本a在线网址| 亚洲国产欧美网| 日本黄色日本黄色录像| 我的亚洲天堂| 日本黄色日本黄色录像| 成人影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人av教育| 亚洲精品在线美女| 大型av网站在线播放| 久久 成人 亚洲| 国产欧美日韩一区二区三| 大片电影免费在线观看免费| 天天影视国产精品| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡| 国产国语露脸激情在线看| 纯流量卡能插随身wifi吗| 久久性视频一级片| 国产精品一区二区精品视频观看| 纵有疾风起免费观看全集完整版| 久久精品亚洲精品国产色婷小说| 亚洲性夜色夜夜综合| 在线观看免费高清a一片| 亚洲精品久久成人aⅴ小说| 中文欧美无线码| 国产一区二区 视频在线| 无人区码免费观看不卡 | 亚洲情色 制服丝袜| 久久久久久免费高清国产稀缺| videosex国产| 欧美另类亚洲清纯唯美| 精品久久久精品久久久| 日韩欧美一区二区三区在线观看 | 9热在线视频观看99| 99在线人妻在线中文字幕 | 天天躁夜夜躁狠狠躁躁| 国产福利在线免费观看视频| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 精品欧美一区二区三区在线| 日韩欧美国产一区二区入口| 欧美精品一区二区免费开放| 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 成人精品一区二区免费| 一个人免费看片子| 亚洲五月婷婷丁香| 无限看片的www在线观看| 国产一卡二卡三卡精品| 欧美国产精品一级二级三级| 黄色视频不卡| 99国产精品99久久久久| 国产精品av久久久久免费| 成年版毛片免费区| a级毛片在线看网站| 国产精品98久久久久久宅男小说| 丝袜喷水一区| 桃花免费在线播放| 在线观看人妻少妇| 国产麻豆69| 国产又爽黄色视频| 大片电影免费在线观看免费| 美女午夜性视频免费| 精品一区二区三区av网在线观看 | 如日韩欧美国产精品一区二区三区| 亚洲精品在线美女| 日韩一卡2卡3卡4卡2021年| 久久久久久久大尺度免费视频| 国产精品美女特级片免费视频播放器 | 建设人人有责人人尽责人人享有的| 欧美日韩视频精品一区| 久久久久久人人人人人| 国产成人一区二区三区免费视频网站| 人人妻,人人澡人人爽秒播| 女人精品久久久久毛片| 精品一区二区三卡| 亚洲avbb在线观看| 精品一品国产午夜福利视频| 午夜免费鲁丝| 国产免费现黄频在线看| 99九九在线精品视频| 免费女性裸体啪啪无遮挡网站| 欧美激情久久久久久爽电影 | 青草久久国产| 9热在线视频观看99| 国产三级黄色录像| 久久热在线av| 久久av网站| 国产1区2区3区精品| 大陆偷拍与自拍| 五月天丁香电影| 国产成人精品久久二区二区91| 老司机亚洲免费影院| 久久精品国产亚洲av高清一级| 亚洲一区中文字幕在线| 久久久久国内视频| 丰满饥渴人妻一区二区三| 人成视频在线观看免费观看| 国产欧美日韩一区二区三区在线| 亚洲天堂av无毛| 色老头精品视频在线观看| 考比视频在线观看| 欧美变态另类bdsm刘玥| av福利片在线| 国产精品1区2区在线观看. | 在线看a的网站| 91精品国产国语对白视频| 在线观看免费视频网站a站| 18禁黄网站禁片午夜丰满| 999久久久精品免费观看国产| 久久亚洲真实| 99国产精品99久久久久| 国产不卡av网站在线观看| 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久5区| 高潮久久久久久久久久久不卡| 亚洲第一av免费看| 国产成人av教育| 超碰97精品在线观看| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 日韩欧美一区二区三区在线观看 | 久久久久久久久免费视频了| 啦啦啦免费观看视频1| 两性夫妻黄色片| 欧美人与性动交α欧美软件| 欧美在线一区亚洲| 一二三四在线观看免费中文在| 国产黄频视频在线观看| 91字幕亚洲| 首页视频小说图片口味搜索| 1024香蕉在线观看| 99精品在免费线老司机午夜| 久久天躁狠狠躁夜夜2o2o| 大型黄色视频在线免费观看| 国产精品亚洲av一区麻豆| 国产精品香港三级国产av潘金莲| 成人精品一区二区免费| 日韩欧美免费精品| 欧美日韩精品网址| 久久久精品国产亚洲av高清涩受| 亚洲国产毛片av蜜桃av| 欧美中文综合在线视频| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲| 久久亚洲真实| 老熟女久久久| 欧美日韩成人在线一区二区| 悠悠久久av| av福利片在线| 亚洲第一av免费看| 在线播放国产精品三级| 亚洲av电影在线进入| 国产精品熟女久久久久浪| tocl精华| 丰满饥渴人妻一区二区三| 精品一区二区三区四区五区乱码| avwww免费| 国产精品电影一区二区三区 | av电影中文网址| 亚洲一卡2卡3卡4卡5卡精品中文| 两个人免费观看高清视频| 中文字幕av电影在线播放| 午夜福利在线免费观看网站| 亚洲三区欧美一区| 18禁黄网站禁片午夜丰满| 国产又色又爽无遮挡免费看| 在线观看免费高清a一片| 国产成人精品久久二区二区91| 国产一区二区三区视频了| 亚洲avbb在线观看|