• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Monolithic semi-polar(1ˉ101)InGaN/GaN near white light-emitting diodes on micro-striped Si(100)substrate?

    2019-08-16 01:20:48QiWang王琦GuoDongYuan袁國棟WenQiangLiu劉文強ShuaiZhao趙帥LuZhang張璐ZhiQiangLiu劉志強JunXiWang王軍喜andJinMinLi李晉閩
    Chinese Physics B 2019年8期
    關(guān)鍵詞:張璐王琦

    Qi Wang(王琦), Guo-Dong Yuan(袁國棟),?, Wen-Qiang Liu(劉文強), Shuai Zhao(趙帥),Lu Zhang(張璐), Zhi-Qiang Liu(劉志強), Jun-Xi Wang(王軍喜), and Jin-Min Li(李晉閩)

    1Center for Semiconductor Lighting,Institute of Semiconductors,Chinese Academy of Sciences,State Key Laboratory of Solid State Lighting,Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: InGaN/GaN MQWs,near white light-emitting diodes,Si(100)substrate

    1. Introduction

    Over the last few years,GaN-based light-emitting diodes(LEDs) have been rapidly developed due to their low energy consumption and long lifetime.[1-5]By reducing the indium content, the band gap of InGaN increases from 0.7 eV to 3.4 eV,which corresponds to the wavelength of emission from ultraviolet to infrared.[6-8]Traditionally, polar blue InGaN-based LEDs are combined with phosphors to produce white LEDs[9-12]This method has achieved a high lumen efficiency(197.8 lm/W),[13]but this method is not a fully meaningful LEDs lighting technology, and there are still some shortcomings: the process is complex,[14]conversion efficiency is still far from the theoretical efficiency limit(298.7 lm/W),[13]and polar InGaN has a strong quantum confined stark effect(QCSE).[15]As a result, researchers are looking for a new method to produce white LEDs on a monochromatic chip with no phosphors. For example,by growing a hexagonal nanopillar and inverted pyramid structure,the mixed structures of polar and semi-polar multiple quantum wells (MQWs), or inclined polar MQWs with changing the in-plane indium content in MQWs are prepared.[16-18]The white LEDs can also be achieved by changing the indium content of MQWs in polar,semi-polar and non-polar MQWs,respectively.[19-22]Nevertheless,the white LEDs have not been realized by changing the in-plane In content in semi-polar InGaN/GaN MQWs.The semi-polar facets of nitride include (1ˉ101), (11ˉ22), (20ˉ2ˉ1),etc., the first-principles calculation shows theoretically that the In incorporated in semi-polar facet is higher than in polar facet.[23,24]The semi-polar facet has a lower strain state than polar facet,which will give rise to higher In content[25,26]It was experimentally reported that the semi-polar(1ˉ101)has the maximum In content incorporation-efficiency compared with polar,nonpolar,and other semi-polar planes.[26]For long wavelength nitride LEDs, the InGaN/GaN MQWs with high indium content are needed, which is necessary for fabricating monochromatic white LEDs. The Si-based LEDs have become a hot research topic.[27-32]There are already some publications about semi-polar(1ˉ101)GaN grown on patterned Si(100)substrate.[33-37]Most of these studies focus on the growing of single-layer semi-polar GaN films, blue-green LEDs,blue lasers, and high-In content InGaN/GaN MQWs.[34,35]However,the white LEDs based on semi-polar(1ˉ101)MQWs on patterned Si (100) substrates have not yet been reported,which is probably due to V-grooves on a patterned Si (100)substrate with a width smaller than 3μm.[35]In such a small width,in-plane distribution of the indium content is more uniform and corresponding emission waveband is too narrow to emit wide spectrum light.Here in this work,semi-polar(1ˉ101)MQWs are grown on patterned Si (100) substrates with a V-groove width of ~10μm. The wide in-plane indium distribution in semi-polar (1ˉ101) MQW is realized by carefully controlling the size of micro-stripe and the growth temperature of the InGaN, and the electroluminescence (EL) of white LEDs is reported.

    2. Experiment

    An InGaN MQW structure was grown on a(1ˉ101)plane GaN by selective-area epitaxy on inclined Si (111) planes etched from a Si(100)substrate as shown in Fig.1. First,the micro-stripes on Si(100)substrate were fabricated by depositing a 200-nm-thick silicon dioxide(SiO2)hard mask layer via plasma-enhanced chemical vapor deposition (Fig. 1(b)) followed by conventional photolithography (Fig. 1(c)), then the SiO2and photoresist were removed from the surface. After that, the Si(100)substrate was etched by tetramethyl ammonium hydroxide and isopropyl alcoholmixed solution, which is normally used for the anisotropic etching of(100)-oriented Si[38,39]as reported previously in our work.[40]Finally,the two opposite Si(111)planes were exposed with an inclined angle of about 54.7°with respect to the horizontal Si (100) plane.The LED structures were grown on a two-inch-thick p-type patterned Si (100) substrate by metal organic chemical vapor deposition(MOCVD).Trimethylgallium,trimethylaluminum,and ammonia were used as the Ga, Al, and N precursor, respectively. And hydrogen (H2) served as the carrier gas. As shown in Fig. 1(f), a 30-nm-thick AlN nucleation layer was deposited at 600°C and a 300-nm-thick AlN nucleation layer was deposited at 1100°C followed by a graded AlGaN buffer layer in which the Al content changed from 10% to 100%.Next, we deposited a 3-μm-thick n-GaN layer at 800°C, 11 periods of InGaN/GaN MQWs at 700°C/834°C, and a fiveperiod AlGaN/GaN superlattice.Finally,100-nm-thick p-GaN and 20-nm-thick u-GaN layer are grown as shown in Fig. 1.With a given sized patterned-Si (100) substrate, the growing of semi-polar(1ˉ101)LED structures shows a very good reproducibility.

    Fig. 1. Schematic diagram of (a) Si (100) substrate, (b) Si (100) substrate with SiO2 mask, (c) photolithography, (d) removing SiO2 and photoresist,(e)developing trenches by TMAH,(f)InGaN multiple-quantum-well system grown on the(1ˉ101)plane of GaN based on selectivearea epitaxial growth.

    The morphology of the epitaxy structures was characterized by scanning electron microscopy (SEM). The structural analysis of the LED epitaxy structure formed on the micro-striped Si (100) substrate was performed by transmission electron microscopy (TEM). The cathodoluminescence(CL) measurements were conducted to determine the luminescence spectra. For functional testing, lateral LED devices were fabricated. A p-contact was deposited by electron-beam evaporation and defined by photolithography and lift-off. The Cr/Al/Ti/Au was used for the n-contact and the probing pad.The electroluminescence (EL) spectra of the LEDs indicate that the semi-polar InGaN/GaN MQWs emit near white light.

    3. Results and discussion

    From the cross-sectional SEM image in Fig.2(a),we obtain smooth triangular protrusions with Si(111)and(ˉ1ˉ11)side planes, and a period of 15μm, and 10-μm-wide trenches between the protrusions. Figure 2(b) shows an SEM image of the cross-section of the epilayers grown in the grooves shown in Fig.2(a). In our experiments,the size of the micro-stripe is enlarged:its maximum size is only 3μm in Ref.[35],whereas we use lithography to produce micro-stripes of 10μm or even larger V-groove to analyze the inner structures. The large size is favorable for the research of subsequent devices: the larger the more favorable. Besides,the width of the MQW is closely related to the size of the micro-stripe. Figure 2(c)reveals the surface morphology from a top-down view. The morphology is slightly roughened by the two opposite layers colliding with each other. The c (0001) plane of GaN completely disappears,and the semi-polar(1ˉ101)plane covers the whole stripe surface,which is shown in Fig.2(d). Figure 2(d)shows a cross-sectional SEM image of InGaN/GaN MQWs grown on a Si(111)plane,from which we see that the inclined angle between the side wall and the flat is ~7°, indicating that the GaN (1ˉ101) semi-polar plane is not parallel to Si (100). The existence of the inclination angle is the main reason for the inhomogeneity of the epitaxial structure(for example,the width of InGaN/GaN MQWs). Furthermore, the growth rate of the GaN on the c (0001) plane is almost three times higher than that on the semi-polar(1ˉ101)plane. Under these growth conditions, the growth rate of the c (0001) plane is much larger than that of the semi-polar (1ˉ101) plane, indicating that the growth rate depends on the crystal orientation. The growth rates on both the Si(111)plane and the Si(ˉ1ˉ11)plane are almost the same, giving rise to a nearly symmetrical structure with a kite-like cross section in the trench. The growth direction of the GaN (0001) plane is perpendicular to that of the Si (111) plane, so that the two opposite GaN layers collide with each other, leaving only the(1ˉ101)plane. Then the two(1ˉ101)semi-polar planes merge after they have been in contact while growing,as shown in Fig.2(b).

    The LED structure growth process is shown in Figs.3(a)-3(c). As shown in Fig.3(a),the AlN/AlGaN buffer layer only grows along the c-direction on two opposite Si (111) planes.The gradually decreasing of precursor concentration gives rise to different growth rates in the V-grooves along the c-plane.[41]The larger the open window of V-groove,the more obvious the uneven distribution will be. With the growth time increasing,due to the V-groove geometrical limitation, the polar c-plane area decreases while the semi-polar plane increases. When the c-plane fills the whole V-groove,the two opposite c-planes meet in the center of the V-groove and their growth is hindered due to a geometrical limitation. After that,semi-polar MQWs grow on the top of the filled trench as shown in Fig.3(b). According to the relationship between the planes in the hexagonal GaN, it can be known that the semi-polar plane is the (1ˉ101)plane, which is similar to the result reported previously.[42]As shown in Fig.3(c),there is an angle between(1ˉ101)plane and Si (100) plane, precursor concentration decreases along the surface slightly,causing the width of MQWs on the semipolar plane to gradually decrease from the middle to the two sides. When the stripe width is smaller than 3μm, the quantum well width variation along the surface is too small to be detected,thereby exhibiting a relatively narrow emission peak as shown in Ref. [35]. When the V-groove width increases to 10 μm in our case, the effect of precursor concentration turns much more obvious, the width of the quantum well decreases from the middle to the sides,which is the main reason for broad spectrum emission.

    Fig. 2. Cross-sectional SEM images of (a) array of (111)-plane V-grooves in a Si(100)substrate and(b)as-grown epilayer from panel(a). Plan-view SEM images of(c)as-grown epilayer and(d)cross-section of SEM epilayer in V-groove. (e)Schematic cross-section of micro-stripe.

    Fig.3. Schematic epitaxial growth showing(a)c-plane AlN/AlGaN buffer growth on Si(111)planes on Si(100)substrate,(b)GaN growth on trench,and(c)semi-polar growth.

    To explore the nature of the wideband LED, the crosssectional TEM images are taken on the (1ˉ101) plane, and shown in Fig.4. Figures 4(a)and 4(b)show the high-magnification cross-sectional TEM images of InGaN/GaN MQWs,and the bright and dark layers indicate the InGaN quantum wells and GaN quantum barriers, respectively. Figure 3(a)corresponds to the center of the stripe, while figure 4(b) corresponds to the side of the stripe. More information about the width related to the embedded MQWs can be obtained from Figs.4(a)and 4(b). In Fig.4(a),the width of the InGaN QWs is 3.45 nm, whereas that of the InGaN QWs in Fig. 4(b) is 1.57 nm. Figure 4(c) shows the positions at which the images in panels (a) and (b) are acquired. The width of the In-GaN/GaN MQWs decreases gradually along the [1ˉ101]zone axis. Figure 4(c) shows the MQW portion of the epitaxial layer;the dashed lines indicate the boundaries of the MQWs,showing how the width of the surface MQWs changes from the center to the side of the(1ˉ101)plane. As shown in Fig.4(c),the width of the MQWs decreases from the center to the side.Besides,many black quantum dots appear in InGaN/GaN MQWs. After EDX analysis,it is found that the compositions of these black spots are all indium and the indium phase separation may be used to explain their formation.[43]Figure 4(d)shows the TEM-EDX line scan analysis, and it is interesting that the indium content in the center is much higher than that on the side. The result shows that the indium concentration at the center position is about 10%higher than that on the side.Wider QWs and more indium precipitation in the center of stripe causes the different indium content along the stripe.The MQWs with different indium content may be responsible for the wideband emissions.

    Fig.4. (a)and(b)High-magnification cross-sectional TEM images of MQW portion, which corresponds to different parts (red squares) of panel (c). (c)TEM of MQWs portion revealing individual InGaN/GaN QWs.Dashed lines indicate the boundaries of the MQWs. (d) TEM-EDX lines scanning in direction perpendicular to QW: Line a and line b representing the center and the side of the stripe,respectively.

    We also study the optical properties of semi-polar LED structures by cathodoluminescence (CL) spectroscopy. As shown in Fig.5,the origins of individual spectral peaks within an LED structure grown on patterned Si (100) are identified.Figure 5(d) shows 1-μm-resolution CL spot scanning along the white dots denoted respectively as A, B, C, D, and E in Fig.5(a).The emission wavelengths undergo a blue-shift from the center (A) to the side (E) of the (1ˉ101) plane. The dualcolor emission peaks appear in the center region,whereas only blue emission appears in the remaining side. We apply the CL-image to a single groove with an acceleration voltage of 5 kV at room temperature to obtain the spatial distribution of the indium content as well as the emission wavelengths.These results are shown in Figs.5(b)and 5(c),where the dotted red line represents the merging area in the center, further demonstrate the characteristic of the dependence of QW stripe emission on position:uniform emission occurs over the whole stripe for λ =450 nm.Conversely,the emission comes mainly from the center of the stripe for λ =560 nm. The nonuniform emission is attributed to the nonuniform InGaN MQWs on the semi-polar(1ˉ101)plane,which contains various indium content. These results are consistent with the above TEM results and demonstrate the nature of the wideband emission LEDs. One should believe that there are several reasons for the wideband emission. Firstly, the angle between the semipolar(1ˉ101)plane and the Si(100)direction is measured to be 7°,the width of the MQWs portion and indium content in In-GaN/GaN MQWs gradually decrease along the (1ˉ101) plane(as shown in Fig. 4). Secondly, the short-wavelength emission on the side may be attributed to lattice-pulling effects.[44]When the n-GaN grows,the strain is generated and gathers in the lateral zones. This effect leads to a lower indium incorporation in these areas. What is more, the indium-riched points exist in these wells as shown in Figs.4(c)and 5(c),the strain relaxation of thicker InGaN in the center region is responsible for the indium-riched points,which cause the surface morphology and InGaN/GaN wells to degrade.

    Fig. 5. (a) SEM images of single stripe from the center (a) to the side (e).Monochromatic CL mapping images at wavelengths of (b) 450 nm and (c)560 nm. (d)Normalized emission intensity from points A-E in panel(a).

    To investigate the electrical properties of the LED structures, we fabricate the lateral-LED devices as shown in the inset (i) of Fig. 6(a). Upon the injection of 350-mA forward current, the white light is obtained by the mixing of the two emission peaks as clearly seen in the inset (ii) of Fig. 6(a).Due to the strong light absorption of silicon substrate, the LED light intensity is relatively weak. Figure 6(a)shows the electroluminescence spectra of semi-polar white LED. Each curve is composed of a strong peak in short wavelength(peak 1, 525 nm-550 nm) and a weak shoulder peak in long wavelength (peak 2, around 575 nm). When the current increases from 50 mA to 80 mA, peak 1 has a rapid blue shift from 570 nm to 530 nm. Such a big blue shift of peak 1 should be due to the band filling of the carrier localization states.[45]In the case of low current, the carriers are injected into the high indium content region (the center of V-groove) and re-combined with each other; as the current increases, the carriers gradually fill the low indium content region (the side of V-groove), thereby leading to a large blue-shift. Then, as the current further increases to 90 mA, peak 1 is basically stable at around 525 nm. As the current increases from 50 mA to 90 mA,peak 2 slowly increases from 575 nm to 580 nm. Figure 6(b)shows the CIE color coordinates taken from the LEDs driven with 350 mA/cm2. The CIE x-and y-chromaticity coordinates are 0.24 and 0.34,respectively. This point is close to white light emission. There are some differences between the EL of our white light LED and the previously reported white light LED.[46]The emissions from our white LEDs are located near the green region,which should be due to a relatively small luminescence area of the high indium content MQW in the center of the V-groove and correspondingly a low proportion in long wavelength emission between 575 nm-600 nm.

    Fig. 6. (a) EL spectra with inset (i) exhibiting reference array of LEDs for various injected current densities,and inset(ii)showing a photograph of LED with injection current of 350 mA/cm2. (b) Typical CIE color coordinates taken from the LEDs driven with 350 mA/cm2.

    4. Conclusions

    In this work, we obtain wideband emission by growing semi-polar InGaN/GaN MQWs on a patterned micro-striped Si (100) substrate and realize monolithic near white lightemitting diodes. The MQWs are angled with respect to the plane, causing the indium content of the MQWs to gradually vary. The difference in indium content,caused by the variable width of MQWs and indium phase separation,plays a decisive role in determining the characteristics of the monolithic semipolar white InGaN/GaN LED, which uses no luminophores.From a CL analysis, we find the blue emission from the side of the(1ˉ101)plane and yellow emission from the center of the(1ˉ101)plane. The wide EL emission and CIE results are well explained by comparing with the CL results. This proposed structure is a promising advance for the fabrication of monolithic semi-polar InGaN/GaN-based near white light-emitting devices without luminophores on Si(100)substrates.

    猜你喜歡
    張璐王琦
    Stability and Convergence of Non-standard Finite Difference Method for Space Fractional Partial Differential Equation
    會爬樹的“青蛙”
    Stability of Linear θ-Method for Delay Partial Functional Differential Equations with Neumann Boundary Conditions
    張璐攝影作品欣賞
    參花(下)(2021年1期)2021-12-26 06:27:52
    幫接孩子遇意外
    Briefly Talking About Methods Of Infiltrating Mental Health Education In Ideological And Political Teaching
    Pf- D mrt4, a potential factor in sexual development in the pearl oyster Pinctada f ucata*
    作品八
    Research Paper on PepsiCo, Inc.
    智富時代(2018年1期)2018-03-26 12:14:26
    《皇帝的新裝》后傳
    www.熟女人妻精品国产| 国产黄a三级三级三级人| 神马国产精品三级电影在线观看 | 久久久精品欧美日韩精品| 国产三级黄色录像| 在线天堂中文资源库| 淫秽高清视频在线观看| 俄罗斯特黄特色一大片| 两个人视频免费观看高清| 免费看十八禁软件| 成年人黄色毛片网站| 操出白浆在线播放| 欧美丝袜亚洲另类 | 精品午夜福利视频在线观看一区| 日本在线视频免费播放| 久久精品亚洲精品国产色婷小说| 亚洲精品国产区一区二| 精品国产美女av久久久久小说| 51午夜福利影视在线观看| 黄色片一级片一级黄色片| 中文字幕最新亚洲高清| 亚洲五月色婷婷综合| 一进一出抽搐gif免费好疼| 欧美午夜高清在线| 桃红色精品国产亚洲av| 黄片播放在线免费| 老司机在亚洲福利影院| 亚洲片人在线观看| 最近最新中文字幕大全免费视频| 欧美一级毛片孕妇| 国产亚洲精品av在线| 99久久久亚洲精品蜜臀av| 国产蜜桃级精品一区二区三区| 欧美激情极品国产一区二区三区| 免费看美女性在线毛片视频| 中文字幕色久视频| 黑人欧美特级aaaaaa片| 一级a爱视频在线免费观看| 99re在线观看精品视频| 搡老妇女老女人老熟妇| 欧美乱妇无乱码| 亚洲精品国产色婷婷电影| 欧美激情久久久久久爽电影 | 成人三级做爰电影| 99riav亚洲国产免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成av片中文字幕在线观看| 91国产中文字幕| 99国产精品免费福利视频| 亚洲第一青青草原| 啦啦啦免费观看视频1| 亚洲欧美日韩另类电影网站| 搞女人的毛片| 一级a爱视频在线免费观看| 悠悠久久av| 97人妻精品一区二区三区麻豆 | 国产精品1区2区在线观看.| 精品国产超薄肉色丝袜足j| 天天躁夜夜躁狠狠躁躁| 国产在线观看jvid| 亚洲男人天堂网一区| 精品久久久久久久毛片微露脸| 人成视频在线观看免费观看| 两性夫妻黄色片| 97超级碰碰碰精品色视频在线观看| 久久影院123| 色av中文字幕| 久久青草综合色| netflix在线观看网站| 看黄色毛片网站| 色老头精品视频在线观看| 91字幕亚洲| 亚洲熟妇熟女久久| 无人区码免费观看不卡| 怎么达到女性高潮| 男女午夜视频在线观看| 亚洲黑人精品在线| 亚洲精品国产一区二区精华液| 成人国产综合亚洲| 国产真人三级小视频在线观看| 丝袜美腿诱惑在线| 校园春色视频在线观看| 亚洲欧美激情在线| 变态另类丝袜制服| 精品一区二区三区四区五区乱码| 欧美绝顶高潮抽搐喷水| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 黄片播放在线免费| 久久久久久人人人人人| 国产成人精品在线电影| 亚洲一区高清亚洲精品| 9热在线视频观看99| 在线观看一区二区三区| 在线观看免费日韩欧美大片| 亚洲情色 制服丝袜| 国产一级毛片七仙女欲春2 | 人人妻人人澡人人看| 日韩大尺度精品在线看网址 | 久久久精品国产亚洲av高清涩受| 国产激情欧美一区二区| 亚洲精品在线观看二区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区高清亚洲精品| 国产精品免费视频内射| 亚洲av成人av| 18禁黄网站禁片午夜丰满| 精品久久久久久成人av| 欧美丝袜亚洲另类 | 国产一级毛片七仙女欲春2 | 精品少妇一区二区三区视频日本电影| 一区二区三区激情视频| 黑人巨大精品欧美一区二区蜜桃| 久久亚洲精品不卡| 成人亚洲精品一区在线观看| 日韩大码丰满熟妇| 亚洲第一欧美日韩一区二区三区| 中文字幕久久专区| 岛国在线观看网站| 日韩精品青青久久久久久| 一区二区日韩欧美中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 久久亚洲真实| 国产欧美日韩综合在线一区二区| 亚洲欧洲精品一区二区精品久久久| 在线国产一区二区在线| 999精品在线视频| 欧美黑人精品巨大| 欧美午夜高清在线| 免费观看人在逋| 日本a在线网址| 国产高清有码在线观看视频 | 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 久久精品91蜜桃| 国产精品一区二区三区四区久久 | 黄色片一级片一级黄色片| 久久国产亚洲av麻豆专区| 精品电影一区二区在线| 极品教师在线免费播放| 亚洲avbb在线观看| 亚洲国产欧美日韩在线播放| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 悠悠久久av| 国产精品爽爽va在线观看网站 | 国内久久婷婷六月综合欲色啪| 99精品在免费线老司机午夜| 亚洲成人久久性| 成人亚洲精品一区在线观看| 少妇的丰满在线观看| 亚洲色图av天堂| 国产蜜桃级精品一区二区三区| 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 丁香欧美五月| 成年人黄色毛片网站| 亚洲中文日韩欧美视频| 久久亚洲精品不卡| 久久久精品国产亚洲av高清涩受| 变态另类成人亚洲欧美熟女 | 久久精品亚洲精品国产色婷小说| 1024香蕉在线观看| 一区在线观看完整版| 窝窝影院91人妻| 久久久国产欧美日韩av| 露出奶头的视频| 性欧美人与动物交配| 亚洲午夜精品一区,二区,三区| 久久中文看片网| 国产成人av教育| 欧美激情久久久久久爽电影 | 国产1区2区3区精品| 亚洲少妇的诱惑av| 两性夫妻黄色片| 亚洲一区二区三区不卡视频| 长腿黑丝高跟| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 精品免费久久久久久久清纯| 成人欧美大片| 国产xxxxx性猛交| 男人的好看免费观看在线视频 | 久久人妻av系列| 久久欧美精品欧美久久欧美| 黄片大片在线免费观看| 午夜福利影视在线免费观看| 国产精品二区激情视频| 校园春色视频在线观看| 亚洲精品一区av在线观看| 日本 欧美在线| 日日摸夜夜添夜夜添小说| 亚洲国产看品久久| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全免费视频| 波多野结衣av一区二区av| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一出视频| 亚洲人成77777在线视频| 国产熟女午夜一区二区三区| 亚洲国产精品久久男人天堂| 久久精品亚洲熟妇少妇任你| 村上凉子中文字幕在线| 免费女性裸体啪啪无遮挡网站| 亚洲免费av在线视频| 国产熟女xx| 国产三级在线视频| 日韩视频一区二区在线观看| 老司机午夜十八禁免费视频| 在线国产一区二区在线| 亚洲精品在线观看二区| 久久久久久大精品| 欧美色欧美亚洲另类二区 | 国产xxxxx性猛交| 久久精品国产亚洲av高清一级| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 国产精品香港三级国产av潘金莲| 午夜福利在线观看吧| √禁漫天堂资源中文www| 色老头精品视频在线观看| 午夜a级毛片| 18禁美女被吸乳视频| 日韩成人在线观看一区二区三区| 男女下面进入的视频免费午夜 | 久久久久国产精品人妻aⅴ院| 黄色成人免费大全| 天天躁夜夜躁狠狠躁躁| 宅男免费午夜| 亚洲欧美一区二区三区黑人| 操美女的视频在线观看| 一区二区三区国产精品乱码| 午夜两性在线视频| 国产蜜桃级精品一区二区三区| av超薄肉色丝袜交足视频| 女人精品久久久久毛片| 国产精品永久免费网站| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 天天躁夜夜躁狠狠躁躁| 露出奶头的视频| 女人被狂操c到高潮| 国产精品 欧美亚洲| 精品国产国语对白av| 亚洲人成网站在线播放欧美日韩| 国产又爽黄色视频| 视频区欧美日本亚洲| 国产高清有码在线观看视频 | 两性午夜刺激爽爽歪歪视频在线观看 | 久久影院123| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 级片在线观看| 一进一出抽搐gif免费好疼| 日本 欧美在线| 黄片播放在线免费| 一区福利在线观看| 欧美成人一区二区免费高清观看 | 老司机靠b影院| 精品乱码久久久久久99久播| 国产人伦9x9x在线观看| www.自偷自拍.com| 最近最新免费中文字幕在线| svipshipincom国产片| 9热在线视频观看99| 午夜免费观看网址| 国产不卡一卡二| 波多野结衣高清无吗| 黑人欧美特级aaaaaa片| 久久热在线av| 激情视频va一区二区三区| 亚洲激情在线av| 国产一区二区三区在线臀色熟女| 久久久久久久精品吃奶| 久久久国产成人免费| 正在播放国产对白刺激| 亚洲av五月六月丁香网| 丰满的人妻完整版| 91av网站免费观看| 免费在线观看黄色视频的| 亚洲男人天堂网一区| 国产精品二区激情视频| 午夜免费激情av| 国产在线精品亚洲第一网站| 一本大道久久a久久精品| 亚洲精品一区av在线观看| 亚洲五月婷婷丁香| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www| 国产欧美日韩精品亚洲av| 国产亚洲欧美精品永久| 夜夜看夜夜爽夜夜摸| 中文字幕人妻丝袜一区二区| 51午夜福利影视在线观看| 亚洲,欧美精品.| 久久精品人人爽人人爽视色| 性少妇av在线| 成人精品一区二区免费| 国产99白浆流出| 亚洲视频免费观看视频| 一夜夜www| 涩涩av久久男人的天堂| 黄片小视频在线播放| 国产亚洲精品久久久久5区| 成人手机av| 久久久国产精品麻豆| 精品久久久久久久毛片微露脸| 免费女性裸体啪啪无遮挡网站| 国产成人欧美在线观看| av天堂久久9| 在线国产一区二区在线| 老司机靠b影院| 国产一区二区激情短视频| 婷婷丁香在线五月| 国产精品乱码一区二三区的特点 | 在线观看舔阴道视频| 午夜精品国产一区二区电影| 日韩欧美一区二区三区在线观看| 一边摸一边抽搐一进一小说| 国产成人一区二区三区免费视频网站| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 日韩欧美一区视频在线观看| 日韩三级视频一区二区三区| 丝袜美腿诱惑在线| 最近最新中文字幕大全免费视频| 操美女的视频在线观看| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 国产国语露脸激情在线看| 一区二区三区激情视频| 亚洲欧美一区二区三区黑人| 黑人操中国人逼视频| 亚洲国产精品sss在线观看| 母亲3免费完整高清在线观看| 一本综合久久免费| 国产一区二区三区综合在线观看| 最新美女视频免费是黄的| 一级黄色大片毛片| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区三区四区久久 | 美女午夜性视频免费| 欧美黑人欧美精品刺激| 一级片免费观看大全| 97超级碰碰碰精品色视频在线观看| 亚洲国产高清在线一区二区三 | 如日韩欧美国产精品一区二区三区| 免费观看精品视频网站| 午夜福利一区二区在线看| 老司机福利观看| 悠悠久久av| 亚洲黑人精品在线| aaaaa片日本免费| 久久久久久亚洲精品国产蜜桃av| 97超级碰碰碰精品色视频在线观看| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 亚洲全国av大片| 天堂动漫精品| 桃红色精品国产亚洲av| 大型av网站在线播放| 大香蕉久久成人网| 国产精品一区二区免费欧美| 黄色 视频免费看| 国产欧美日韩一区二区三| 日本免费a在线| 99久久精品国产亚洲精品| 在线观看舔阴道视频| 一边摸一边抽搐一进一出视频| 欧美一区二区精品小视频在线| 天堂√8在线中文| 久99久视频精品免费| 淫妇啪啪啪对白视频| 亚洲av五月六月丁香网| 波多野结衣高清无吗| 午夜影院日韩av| 神马国产精品三级电影在线观看 | 一进一出好大好爽视频| 亚洲熟妇中文字幕五十中出| 91av网站免费观看| 高清毛片免费观看视频网站| 非洲黑人性xxxx精品又粗又长| 亚洲 欧美一区二区三区| 欧美激情久久久久久爽电影 | 成人免费观看视频高清| av超薄肉色丝袜交足视频| 欧美黄色淫秽网站| 色播在线永久视频| 国产亚洲av高清不卡| 又紧又爽又黄一区二区| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 天堂影院成人在线观看| 国产成人系列免费观看| 亚洲成av人片免费观看| 久久人妻av系列| 日韩欧美国产一区二区入口| 成人av一区二区三区在线看| 国产精品免费一区二区三区在线| 国产精品自产拍在线观看55亚洲| 一个人观看的视频www高清免费观看 | 精品久久久久久久毛片微露脸| 日韩视频一区二区在线观看| 中文字幕人妻熟女乱码| 亚洲最大成人中文| 久久久精品欧美日韩精品| 久久精品国产综合久久久| 国产精品二区激情视频| 怎么达到女性高潮| 美女高潮喷水抽搐中文字幕| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 欧美乱妇无乱码| 国内久久婷婷六月综合欲色啪| www.熟女人妻精品国产| 一级a爱视频在线免费观看| 国产黄a三级三级三级人| 嫁个100分男人电影在线观看| 在线观看日韩欧美| 亚洲欧美日韩高清在线视频| 午夜激情av网站| 国产亚洲精品第一综合不卡| 国产av精品麻豆| x7x7x7水蜜桃| 国产亚洲精品久久久久久毛片| 制服丝袜大香蕉在线| 欧美乱色亚洲激情| 黑丝袜美女国产一区| 欧美 亚洲 国产 日韩一| 国产精品九九99| 久久影院123| 日本 av在线| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 久久国产乱子伦精品免费另类| 国产欧美日韩综合在线一区二区| 女同久久另类99精品国产91| 午夜福利18| 又紧又爽又黄一区二区| 亚洲片人在线观看| 两个人免费观看高清视频| 高清黄色对白视频在线免费看| 免费在线观看亚洲国产| netflix在线观看网站| 国产在线观看jvid| 国产成人av教育| 一本大道久久a久久精品| 两个人免费观看高清视频| 亚洲一区高清亚洲精品| 午夜激情av网站| 岛国视频午夜一区免费看| 国产欧美日韩一区二区精品| 精品福利观看| 亚洲熟妇熟女久久| 69精品国产乱码久久久| 欧美成人性av电影在线观看| 男人操女人黄网站| 亚洲在线自拍视频| 夜夜看夜夜爽夜夜摸| 纯流量卡能插随身wifi吗| 精品久久久久久,| 黑人巨大精品欧美一区二区mp4| 亚洲精品在线美女| 精品一品国产午夜福利视频| 国产成人影院久久av| 亚洲av电影不卡..在线观看| 91九色精品人成在线观看| 伊人久久大香线蕉亚洲五| 18禁国产床啪视频网站| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 一区二区三区高清视频在线| 亚洲av日韩精品久久久久久密| 亚洲人成77777在线视频| 视频在线观看一区二区三区| 久久人妻av系列| 午夜影院日韩av| 俄罗斯特黄特色一大片| 亚洲人成伊人成综合网2020| 老熟妇乱子伦视频在线观看| 免费女性裸体啪啪无遮挡网站| 91大片在线观看| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 国产乱人伦免费视频| 亚洲狠狠婷婷综合久久图片| 级片在线观看| 亚洲 国产 在线| 如日韩欧美国产精品一区二区三区| 香蕉久久夜色| 精品国产美女av久久久久小说| 精品久久蜜臀av无| 亚洲 欧美 日韩 在线 免费| 露出奶头的视频| 怎么达到女性高潮| 欧美在线黄色| 国产精品秋霞免费鲁丝片| 国产精品综合久久久久久久免费 | 丝袜美腿诱惑在线| 国产高清videossex| 精品久久久久久,| 一进一出抽搐动态| 亚洲欧美激情在线| 久久精品aⅴ一区二区三区四区| 日韩有码中文字幕| 每晚都被弄得嗷嗷叫到高潮| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 老汉色av国产亚洲站长工具| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 日韩有码中文字幕| 曰老女人黄片| 国产精品av久久久久免费| 一区二区三区国产精品乱码| 97人妻精品一区二区三区麻豆 | 搡老熟女国产l中国老女人| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 国产99久久九九免费精品| 国产成人欧美| 久久久久九九精品影院| 色播在线永久视频| 亚洲第一av免费看| 又大又爽又粗| 操出白浆在线播放| www日本在线高清视频| 波多野结衣高清无吗| 亚洲一码二码三码区别大吗| 色综合婷婷激情| 亚洲av成人av| 午夜福利成人在线免费观看| 国产精品国产高清国产av| 欧美在线一区亚洲| 国产免费男女视频| 男女下面插进去视频免费观看| 精品久久久久久久人妻蜜臀av | 色综合欧美亚洲国产小说| 嫩草影视91久久| 国产成人一区二区三区免费视频网站| 少妇粗大呻吟视频| 99久久国产精品久久久| av免费在线观看网站| 久久中文字幕一级| 色老头精品视频在线观看| 19禁男女啪啪无遮挡网站| 色综合欧美亚洲国产小说| 麻豆久久精品国产亚洲av| 亚洲精华国产精华精| 国产精品免费视频内射| 亚洲九九香蕉| 欧美国产日韩亚洲一区| 国产xxxxx性猛交| 久久久久国产一级毛片高清牌| 日本欧美视频一区| 国产精品 欧美亚洲| 成人三级黄色视频| 成人三级做爰电影| 99re在线观看精品视频| 在线播放国产精品三级| 久久精品aⅴ一区二区三区四区| 成年女人毛片免费观看观看9| 日本 av在线| aaaaa片日本免费| 97人妻精品一区二区三区麻豆 | 亚洲国产看品久久| 亚洲成国产人片在线观看| 欧美+亚洲+日韩+国产| av福利片在线| 久久人人97超碰香蕉20202| 久久久久九九精品影院| 九色亚洲精品在线播放| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 久久久精品国产亚洲av高清涩受| 神马国产精品三级电影在线观看 | 悠悠久久av| 69精品国产乱码久久久| 国产av在哪里看| 最新在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 在线av久久热| av天堂在线播放| 亚洲avbb在线观看| 午夜福利欧美成人| 最新美女视频免费是黄的| 国产91精品成人一区二区三区| 脱女人内裤的视频| 国产精品免费一区二区三区在线| 亚洲国产中文字幕在线视频| 日韩欧美三级三区| 中文字幕久久专区| 极品教师在线免费播放| 香蕉久久夜色| 一级,二级,三级黄色视频| 国产亚洲av高清不卡| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线| 一区在线观看完整版| 国产精品影院久久| 久久精品国产亚洲av高清一级| 美女国产高潮福利片在线看| 亚洲av电影在线进入| 人妻丰满熟妇av一区二区三区| 午夜福利一区二区在线看| 国产欧美日韩综合在线一区二区| 老熟妇乱子伦视频在线观看| 日韩高清综合在线| 午夜久久久在线观看|