曹濤濤,鄧 模,劉 虎,黃儼然,HURSTHOUSE Andrew Stefan
湘中與湘東南巖關(guān)階組和龍?zhí)督M頁巖氣潛力
曹濤濤1,鄧 模2,劉 虎3,黃儼然1,HURSTHOUSE Andrew Stefan1
(1. 湖南科技大學(xué)頁巖氣資源利用與開發(fā)湖南省重點實驗室,湖南 湘潭 411201;2. 中國石化石油勘探開發(fā)研究院無錫石油地質(zhì)研究所,江蘇 無錫 214126;3. 頁巖氣評價與開采四川省重點實驗室,四川 成都 690091)
為了揭示湘中與湘東南坳陷海陸過渡相頁巖含氣潛力及勘探方向,對該區(qū)下石炭統(tǒng)巖關(guān)階組和上二疊統(tǒng)龍?zhí)督M泥頁巖進行總有機碳含量TOC、鏡質(zhì)體反射率ran、干酪根碳同位素、有機質(zhì)顯微組成、X衍射、掃描電鏡、孔滲特征和等溫吸附等測試。結(jié)果表明巖關(guān)階組和龍?zhí)督M處于成熟–高成熟期、類型以III型為主;龍?zhí)督M泥頁巖TOC含量普遍較高、而巖關(guān)階組泥頁巖TOC含量較低。龍?zhí)督M和巖關(guān)階關(guān)組泥頁巖礦物主要為黏土礦物和石英,部分含有較高的方解石。這兩套頁巖的孔隙發(fā)育較差,主要孔隙類型為有機孔、溶蝕孔和層間裂縫。孔隙度為0.41%~2.76%、滲透率為(0.08~0.98)×10-3μm2??紫抖戎饕躎OC控制,不穩(wěn)定礦物如長石和碳酸鹽巖雖然能提供一定孔隙,但對頁巖物性的影響有限。泥頁巖的甲烷吸附量普遍在1.67~2.5 cm3/g,2015H-D3井龍?zhí)督M泥頁巖現(xiàn)場解吸氣量普遍大于0.5 cm3/g,最高為2.35 cm3/g,表明湘中和湘東南地區(qū)龍?zhí)督M具有一定的頁巖氣潛力,但巖關(guān)階組勘探前景相對較差。
頁巖氣;孔滲特征;含氣性;巖關(guān)階組;龍?zhí)督M;湘中和湘東南
隨著我國四川盆地、鄂爾多斯盆地頁巖氣獲得重大突破[1-2],頁巖氣日益引發(fā)關(guān)注,特別是針對海相頁巖氣地質(zhì)學(xué)理論。然而發(fā)育多套頁巖層系的中下?lián)P子地區(qū)的頁巖氣勘探仍處于初級階段[3]。湖南省是一個貧煤、缺油和常規(guī)天然氣的地區(qū),但其內(nèi)潛在的頁巖氣資源較豐富[4],包括湘西下寒武統(tǒng)牛蹄塘組海相頁巖層系,及湘中和湘東南泥盆系棋梓橋組、佘田橋組、下石炭統(tǒng)測水組、上二疊統(tǒng)龍?zhí)督M和大隆組等海陸過渡相富有機質(zhì)頁巖層系[5-8]。
湘中漣源–邵陽–零陵凹陷和湘東南坳陷是我國頁巖氣資源遠景區(qū)之一[9]。漣源凹陷湘頁1井在大隆組和龍?zhí)督M獲得了工業(yè)氣流,揭示了湘中頁巖氣具有一定的勘探潛力[10]。國內(nèi)學(xué)者已對該區(qū)龍?zhí)督M的沉積環(huán)境、烴源巖特征和儲層物性等進行了研究[11-12],但是對下石炭統(tǒng)巖關(guān)階組的關(guān)注很少,其頁巖氣潛力也未進行評價。本文通過對湘中和湘東南野外露頭樣品進行分析,揭示巖關(guān)階組和龍?zhí)督M頁巖氣儲層及含氣特征,以期為該區(qū)頁巖氣的勘探提供參考。
湘中坳陷是以早古生代變質(zhì)巖為基底發(fā)展起來的晚古生代—中三疊世碳酸鹽巖為主并夾碎屑巖為特征的準臺地型沉積坳陷區(qū)[4,13],主要有湘潭凹陷、溈山凸起、漣源凹陷、龍山凸起、邵陽凹陷、關(guān)帝廟凸起和零陵凹陷等二級構(gòu)造單元組成(圖1)。湘東南地區(qū)位于華夏板塊和揚子板塊之間,西北以衡山隆起與湘中坳陷為界、東與桂東—汝城隆起、南與桂中坳陷毗鄰。雪峰運動使湘中和湘東南發(fā)生隆起,自中泥盆世至中三疊世沉積了多套泥頁巖,其中下石炭統(tǒng)富有機質(zhì)頁巖發(fā)育在巖關(guān)階組、測水組,上二疊統(tǒng)富有機質(zhì)頁巖發(fā)育在龍?zhí)督M和大隆組。
圖1 湘中與湘東南區(qū)域地質(zhì)構(gòu)造圖(據(jù)文獻[5],修改)
根據(jù)國土資源部油氣戰(zhàn)略中心海陸過渡相頁巖氣有利區(qū)優(yōu)選標(biāo)準[14],泥頁巖TOC質(zhì)量分數(shù)達到1.5%即可作為頁巖氣評價和生產(chǎn)下限,有利的產(chǎn)氣頁巖有機碳含量不低于2%。由于湘中和湘東南地區(qū)石炭系和二疊系缺乏鉆井資料,筆者對該區(qū)露頭樣品進行分析,結(jié)果表明漣源冷水江、邵陽城南、零陵東安和零陵萍洲等露頭剖面的巖關(guān)階組87個泥頁巖TOC質(zhì)量分數(shù)介于0.20%~20.94%,平均為1.67%(表1)。湘中和湘東南巖關(guān)階組泥頁巖的TOC質(zhì)量分數(shù)高于1.5%的樣品約占樣品總數(shù)20%,其余樣品TOC含量普遍較低。從區(qū)域分布上看,邵陽城南巖關(guān)階組泥頁巖的TOC質(zhì)量分數(shù)比漣源冷水江和零陵地區(qū)要高(表1)。龍?zhí)督M37個泥頁巖中以TOC<1.5%為主,也有較多樣品的TOC在2%以上、甚至高達7.1%~8.1%。漣源凹陷珠梅和斗笠山剖面龍?zhí)督M泥頁巖的TOC顯著高于邵陽凹陷隆回剖面和湘東南坳陷耒陽蔭田圩剖面。從縱向上看,龍?zhí)督M泥頁巖TOC整體顯著高于巖關(guān)階組。從海陸過渡相頁巖氣評價體系來看,巖關(guān)階組頁巖氣成藏物質(zhì)基礎(chǔ)較弱,而龍?zhí)督M具有良好的頁巖氣生成基礎(chǔ)。
根據(jù)GB/T 31483—2015《頁巖氣地質(zhì)評價方法》規(guī)定III型干酪根,其鏡質(zhì)體平均隨機反射率ran>0.9% (表1),湘中和湘東南地區(qū)巖關(guān)階組泥頁巖的成熟度適中、處于成熟階段,個別樣品處于高過成熟階段(ran>2.0%),區(qū)域上成熟度演化變化較小。龍?zhí)督M泥頁巖的ran普遍處于0.9%~1.5%,漣源凹陷珠梅和斗笠山剖面泥頁巖的ran較低;邵陽凹陷隆回北山剖面泥頁巖ran最高;湘東南坳陷耒陽蔭田圩剖面泥頁巖的ran居中。包書景等[15]研究結(jié)果顯示湘中地區(qū)龍?zhí)督M泥頁巖的熱演化程度在1.10%~2.22%,多數(shù)分布在1.2%~1.6%,與本文研究結(jié)果較為接近。
巖關(guān)階組和龍?zhí)督M泥頁巖干酪根碳同位素值13Cker介于–28.6‰~–22.1‰(表1),干酪根類型為II—III型,以III型為主。根據(jù)干酪根類型指標(biāo)與干酪根元素組成之間的對應(yīng)關(guān)系[16],從表1也可以得出巖關(guān)階組和龍?zhí)督M泥頁巖干酪根類型以III型為主。全巖顯微組分以鏡質(zhì)組和超微組分(顆粒小于1 μm,與黏土礦物均勻混合,無法精確定量的組分)為主,并含一定量的陸源碎屑、半絲質(zhì)組和絲質(zhì)組,具有明顯的III型干酪根特征(圖2)。
注:0.38~1.63表示最小值~最大值,其他數(shù)據(jù)同。
V—鏡質(zhì)組;Mi—超顯微有機組分;Cl—黏土礦物;Py—黃鐵礦
傅雪海等[17]認為,煤系較為有利儲層其脆性礦物質(zhì)量分數(shù)在30%以上。研究區(qū)巖關(guān)階組頁巖主要礦物組成為黏土礦物(9.80%~66.40%)和石英(13.50%~ 62.30%),其次是方解石(0~59.30%)、長石(0~2.20%)、白云石(0~13.40%)等(圖3a)。漣源凹陷冷水江剖面主要以黏土礦物和石英為主;邵陽凹陷邵陽城南和零陵凹陷東安剖面黏土礦物質(zhì)量分數(shù)普遍低于20%,同時具有很高含量的方解石;零陵萍洲泥頁巖以黏土礦物為主,石英次之。X衍射表明巖關(guān)階組在漣源凹陷主要以伊蒙混層、伊利石和綠泥石為主;邵陽凹陷則以蒙脫石、伊蒙混層和綠蒙混層為主;零陵凹陷以伊蒙混層、伊利石和綠泥石為主(圖3b)。
龍?zhí)督M泥頁巖以黏土礦物(49.7%~71.3%)和石英(19.6%~45.00%)為主,其次為長石(0~9.8%)等(圖3c)。石英和長石等脆性礦物的質(zhì)量分數(shù)為29.7%~51.3%。龍?zhí)督M頁巖黏土礦物由伊蒙混層、伊利石、綠泥石和高嶺石組成,以伊蒙混層和伊利石為主(圖3d)。含有高嶺石這一特征也揭示了龍?zhí)督M成巖演化較低的特征,隨著埋藏深度增加,介質(zhì)條件由酸性向堿性轉(zhuǎn)化,高嶺石向綠泥石或伊利石進行轉(zhuǎn)化。
張慧等[18-19]將頁巖孔隙分為主要孔隙如順層縫隙、泥???、組分間孔、層間裂縫、有機孔和其他孔隙如晶間孔、溶蝕孔、片間縫隙,以及構(gòu)造孔隙等。研究區(qū)巖關(guān)階組和龍?zhí)督M泥頁巖孔隙整體發(fā)育較差,主要以礦物層間孔、溶蝕孔、有機孔為主,發(fā)育少量層理裂縫,這與梁家駒等[12]研究結(jié)果相似。圖4a顯示泥頁巖具有片狀結(jié)構(gòu),發(fā)育一定的礦物間孔隙,部分孔隙被充填,彼此連通性較差。片狀伊利石呈定向分布,順層發(fā)育一定的孔隙。圖4b—圖4d顯示泥頁巖被溶蝕的特征,屬于次生孔隙[18]。頁巖中發(fā)育的溶蝕孔主要為碳酸鹽巖礦物,其次為碎屑長石[18-19]。其中圖4b顯示礦物致密、整體都具有溶蝕的特征,溶蝕孔之間多孤立存在;圖4c—圖4d顯示碳酸鹽巖礦物被溶蝕,數(shù)量較少,孔徑為幾至幾十微米級。形成于生氣窗的溶蝕孔對頁巖氣賦存具有積極作用。草莓體黃鐵礦晶粒表面呈溶蝕現(xiàn)象(圖4e),其脫落后殘留的孔隙具有較差的連通性。層間裂縫是指規(guī)模遠小于層理、大于順層裂縫且平行層理的單向裂縫,以原生為主[18],一般長幾十微米,寬幾微米(圖4f)。張慧等[18]認為順層裂縫可以是礦物質(zhì)與有機質(zhì)之間的,也可以發(fā)育在同一礦物之間。頁巖的層間裂縫能增加頁巖儲層的各向異性和橫向上的孔滲性。普遍認為有機孔是由于生烴母質(zhì)在熱演化過程中形成的,多呈納米級存在于干酪根內(nèi)部或顆粒堆砌成的格架孔中。從圖4g—圖4i可以看出,龍?zhí)督M有機質(zhì)內(nèi)部發(fā)育一定量的微孔隙或不發(fā)育孔隙。硬性顆粒接觸邊緣發(fā)育較多的微裂縫,寬度一般在十幾至一百多納米,這是由于在生烴過程中有機質(zhì)收縮、而無機礦物的體積基本保持不變的情況下形成的[20]。郭少斌等[21]對我國海陸過渡相頁巖研究也發(fā)現(xiàn)有機孔發(fā)育較差。相比較于四川盆地海相龍馬溪組,巖關(guān)階組和龍?zhí)督M泥頁巖有機孔發(fā)育較差,可能與其顯微組分構(gòu)成不同有關(guān)。巖關(guān)階組和龍?zhí)督M泥頁巖主要顯微組分為鏡質(zhì)組,隨著熱演化程度增加,鏡質(zhì)體內(nèi)孔隙發(fā)育不明顯[22],這與以腐泥組和固體瀝青為主要特征的龍馬溪組明顯不同,而傾油型的腐泥組和固體瀝青與有機孔的發(fā)育存在顯著關(guān)系[19,23]。
圖4 湘中與湘東南巖關(guān)階組和龍?zhí)督M泥頁巖孔隙類型
湘中與湘東南地區(qū)巖關(guān)階組泥頁巖孔隙率在0.41%~2.76%,平均為1.20%,滲透率為(0.09~0.98) × 10-3μm2,平均為0.27×10-3μm2(圖5);龍?zhí)督M泥頁巖孔隙度在0.96%~1.78%,平均為1.42%,滲透率為(0.08~0.53)×10-3μm2,平均為0.23×10-3μm2(圖5)。
該結(jié)果與鄂爾多斯盆地海陸過渡相頁巖具有很好的可比性,閆德宇等[14]對鄂爾多斯海陸過渡相頁巖測試表明其平均有效孔隙度為1.12%,平均滲透率為0.037 ×10-3μm2。李國亮等[24]也發(fā)現(xiàn)龍?zhí)督M泥頁巖具有非常低的孔滲,其孔隙度為0.4%~1.0%,滲透率皆低于0.04 ×10-3μm2。巖關(guān)階組和龍?zhí)督M的孔隙度明顯低于海相龍馬溪組頁巖的孔隙[25-26]。龍馬溪組包括硅質(zhì)頁巖相、鈣質(zhì)硅質(zhì)頁巖相、黏土質(zhì)硅質(zhì)混合頁巖相、鈣質(zhì)頁巖相、黏土質(zhì)頁巖相等,這些巖相之間的孔隙度存在一定的差異,如硅質(zhì)頁巖相孔隙度為4.1%~6.9%、鈣質(zhì)硅質(zhì)混合頁巖相孔隙度為4.5%~7.5%、黏土質(zhì)頁巖相為3.8%~5.2%,整體上都在3.8%以上[25]。本次研究的頁巖樣品根據(jù)其礦物含量也可分為硅質(zhì)頁巖相、黏土質(zhì)頁巖相和鈣質(zhì)頁巖相,但均具有非常低的孔隙度,可能與海陸過渡相發(fā)育部分煤系相關(guān),煤系普遍具有較低的孔滲特征[27-28]。
為了進一步研究湘中與湘東南泥頁巖微觀孔隙特征,進行了氮氣吸附–壓汞實驗聯(lián)合表征(圖6)。結(jié)果表明龍?zhí)督M泥頁巖在低壓階段(0.000 1~0.1 MPa),汞流體注入速率很慢,揭示大孔及微裂縫發(fā)育較差;在0.1~10 MPa,流體注入速度呈快速增加的狀態(tài),說明了該階段孔隙明顯增多。毛管壓力超過10 MPa,流體注入速度呈現(xiàn)兩種狀態(tài),一是以漣源珠梅和耒陽蔭田圩為例,呈注入速度放緩的情況,揭示了小尺度的孔隙較少;另一種以隆回北山為代表,注入速度保持增加的狀態(tài),揭示微觀孔隙數(shù)量增多。從圖6可以看出,孔隙以半徑10~20 nm的孔隙為主,半徑小于10 nm和大于40 nm的孔隙發(fā)育相對較少。包書景等[15]認為該套頁巖壓實作用強烈,主要發(fā)育了殘留孔、溶蝕孔等,有機孔發(fā)育較差,導(dǎo)致頁巖微孔發(fā)育較差。
圖5 湘中與湘東南巖關(guān)階組和龍?zhí)督M泥頁巖孔滲分布圖
揭示泥頁巖物性的控制因素對于尋找頁巖氣富集規(guī)律和甜點區(qū)具有重要的意義。從圖7中可以看出巖關(guān)階組和龍?zhí)督M大部分樣品的孔隙度與TOC之間存在一定的正相關(guān)性(圖7a)。然而也有少量低TOC泥頁巖具有相對高的孔隙度,可能受礦物孔或微裂縫的影響較大。TOC與滲透率之間也具有一定的正相關(guān)性(圖7b),說明了TOC及較小尺度的有機孔是滲透率的主要控制因素。巖關(guān)階組和龍?zhí)督M泥頁巖中黏土礦物含量與孔隙度之間具有輕微的負相關(guān)性(圖7c),說明高含量的黏土礦物不利于孔隙系統(tǒng)的建設(shè),該研究與張國濤等[29]認為黏土礦物是微觀孔隙的重要因素不完全一致。包書景等[15]通過氬離子拋光+掃描電鏡觀察到龍?zhí)督M泥頁巖壓實強烈,黏土礦物孔隙被壓實,導(dǎo)致其與孔隙度之間存在輕微的負相關(guān)性,從而導(dǎo)致其對孔隙發(fā)育影響較小。徐國盛等[5]也認為龍?zhí)督M泥頁巖的吸附氣含量受TOC控制,其次受黏土礦物影響。滲透率與黏土礦物之間沒有明顯的相關(guān)性(圖7d),說明滲透率受黏土礦物影響較小。長石和碳酸鹽巖等不穩(wěn)定礦物含量與孔隙度之間沒有相關(guān)性(圖7e),反映了不穩(wěn)定礦物被溶蝕后產(chǎn)生的孔隙能在一定程度上增加孔隙度、但增幅有限,其對滲透率影響也較小(圖7f)。
圖6 湘中與湘東南龍?zhí)督M泥頁巖氣體吸附–壓汞法毛管壓力曲線和孔徑分布
圖7 湘中與湘東南巖關(guān)階組和龍?zhí)督M泥頁巖孔滲影響因素
等溫吸附實驗表明1個巖關(guān)階組泥頁巖樣品的吸附氣含量為1.67 cm3/g(TOC=0.55%),湘頁1井2個龍?zhí)督M泥頁巖樣品的吸附氣含量在2.0~2.5 cm3/g (圖8),達到了商業(yè)開采的標(biāo)準(1.1 cm3/g)。包書景等[15]研究分析的湘中龍?zhí)督M泥頁巖甲烷吸附量變化范圍在0.82~4.67 cm3/g,平均為2.74 cm3/g。
已有勘探表明,湘頁1井在龍?zhí)督M鉆探深度為700~800 m,龍?zhí)督MTOC分布為0.45%~8.33%,平均高達4.81%,成熟度ran分布在1.5%~1.72%,干酪根為腐植型(III型)。湘頁1井現(xiàn)場解吸顯示總含氣量0.16~1.41 cm3/g,平均只有0.48 cm3/g,可以看出絕大部分都低于1 cm3/g,僅1個龍?zhí)督M碎煤樣含氣量達到1.41 cm3/g。依據(jù)GB/T 31483—2015《頁巖氣地質(zhì)評價方法》,湘頁1井的含氣量低于頁巖氣含量下限定位1 cm3/g的標(biāo)準。分析其原因可知,湘頁1井鉆探資料顯示龍?zhí)督M僅含上部含煤層段,而缺失下部不含煤段,泥頁巖頂?shù)装鍡l件較差,受后期構(gòu)造改造較為強烈,可能是頁巖氣含量偏低的原因。然而邵陽凹陷2015H-D3井的龍?zhí)督M頁巖現(xiàn)場解吸氣普遍大于0.5 cm3/g,最高達2.35 cm3/g,平均為1 cm3/g,證實了湘中地區(qū)龍?zhí)督M頁巖氣具有良好的資源潛力[30]。
圖8 巖關(guān)階組與龍?zhí)督M泥頁巖甲烷等溫吸附曲線
較好的孔隙發(fā)育條件和較發(fā)達的孔隙系統(tǒng)往往具有好的頁巖氣儲集條件。北美大部分盆地的頁巖孔隙度為3%~10%,而研究區(qū)巖關(guān)階組和龍?zhí)督M泥頁巖的孔隙度多在3%以下,整體上表現(xiàn)為孔隙系統(tǒng)發(fā)育較差,具有一定的有機孔和溶蝕孔發(fā)育,黏土礦物孔發(fā)育較少。盡管湘頁1井現(xiàn)場解吸含氣量低,但原因可能與埋藏淺(1 000 m以淺)、保存條件較差有關(guān),因此保存條件是湘中頁巖氣成藏的關(guān)鍵因素,也是勘探成功的首要因素[10]。徐國盛等[5]研究認為湘中和湘東南廣泛發(fā)育垂直層面的裂縫,受構(gòu)造作用影響強烈,此種裂縫利于各層系間氣體的串通,因此,針對低滲透率的泥頁巖而言,對吸附氣的滲流作用非常重要。2015H-D3井具有較高的含氣能力也說明了保存條件較好時,湘中和湘東南地區(qū)頁巖氣可能具有較高的含氣量和良好的頁巖氣勘探前景。張成龍等[11]研究認為龍?zhí)督M在湘中和湘東南形成了攸縣和永興兩個頁巖氣勘探有利區(qū)。
a.湘中和湘東南地區(qū)巖關(guān)階組和龍?zhí)督M泥頁巖處于成熟–高成熟階段,干酪根以III型為主;TOC平均質(zhì)量分數(shù)分別為1.67%和1.82%,其中巖關(guān)階組高TOC質(zhì)量分數(shù)的泥頁巖主要分布在邵陽凹陷;龍?zhí)督M高TOC質(zhì)量分數(shù)的泥頁巖主要分布在漣源凹陷。
b. 巖關(guān)階組和龍?zhí)督M泥頁巖孔隙發(fā)育整體較差,孔隙度為0.41%~2.76%、滲透率為(0.08~0.98)× 10-3μm2??紫抖扰cTOC具有一定正相關(guān)性,與黏土礦物含量呈微弱負相關(guān)性。
c. 湘中與湘東南龍?zhí)督M泥頁巖的甲烷等溫吸附量普遍在1.67~2.5 cm3/g,研究區(qū)2015H-D3井龍?zhí)督M泥頁巖現(xiàn)場解吸氣量普遍大于0.5 cm3/g,最高為2.35 cm3/g,表明湘中和湘東南龍?zhí)督M具有一定的頁巖氣潛力。
d. 湘中與湘東南巖關(guān)階組海陸過渡相泥頁巖TOC質(zhì)量分數(shù)普遍較低、頁巖氣勘探潛力較差,但在邵陽城南地區(qū)具有相對較高的豐度,為今后該層位頁巖氣勘探有利方向。
[1] 郭彤樓,劉若冰. 復(fù)雜構(gòu)造區(qū)高演化程度海相頁巖氣勘探突破的啟示:以四川盆地東部盆緣JY1井為例[J]. 天然氣地球科學(xué),2013,24(4):643–651.GUO Tonglou,LIU Ruobing. Implications from marine shale gas exploration breakthrough in complicated structured area at high thermal stage:Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience,2013,24(4):643–651.
[2] 范柏江,王香增,吳小斌. 頁巖的氣體解吸特征及地球化學(xué)認識:以鄂爾多斯盆地中南部長7段頁巖為例[J]. 中國礦業(yè)大學(xué)學(xué)報,2017,46(3):554–562. FAN Bojiang,WANG Xiangzeng,WU Xiaobin. Desorption analysis of shale and its geochemical characteristics:A case study of the Chang 7 Member shale[J]. Journal of China University of Mining and Technology,2017,46(3):554–562.
[3] 鄒才能,董大忠,王玉滿,等. 中國頁巖氣特征、挑戰(zhàn)及前景 (二)[J]. 石油勘探與開發(fā),2016,43(2):166–178.ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China:Characteristics,challenges and prospects(II)[J]. Petroleum Exploration and Development,2016,43(2):166–178.
[4] 肖正輝,?,F(xiàn)強,楊榮豐,等. 湘中漣源—邵陽凹陷上二疊統(tǒng)大隆組頁巖氣儲層特征[J]. 巖性油氣藏,2015,27(4):17–24. XIAO Zhenghui,NIU Xianqiang,YANG Rongfeng,et al. Reservoir characteristics of shale gas of Upper Permian Dalong Formation in Lianyuan-Shaoyang depression,central Hunan[J]. Lithologic Reservoirs,2015,27(4):17–24.
[5] 徐國盛,張震,羅小平,等. 湘中和湘東南拗陷上古生界泥頁巖含氣性及其影響因素[J]. 成都理工大學(xué)學(xué)報(自然科學(xué)版),2013,40(5):577–587. XU Guosheng,ZHANG Zhen,LUO Xiaoping,et al. Gas-bearing characteristics and affected factors of Upper Paleozoic shale in depressions of central Hunan and southeast Hunan,China[J]. Journal of Chengdu University of Technology(Science and Technology Edition),2013,40(5):577–587.
[6] 錢勁,馬若龍,步少峰,等. 湘中、湘東南拗陷泥頁巖層系巖相古地理特征[J]. 成都理工大學(xué)學(xué)報(自然科學(xué)版),2013,40(6):688–695. QIAN Jin,MA Ruolong,BU Shaofeng,et al. Lithofacies-paleogeographical characteristics of marine shale series of strata in Xiangzhong and Xiangdongnan depressions,Hunan,China[J]. Journal of Chengdu University of Technology(Science and Technology Edition),2013,40(6):688–695.
[7] 張琳婷,郭建華,焦鵬,等. 湘中地區(qū)漣源凹陷下石炭統(tǒng)頁巖氣成藏條件[J]. 中南大學(xué)學(xué)報(自然科學(xué)版),2014,45(7):2268–2277. ZHANG Linting,GUO Jianhua,JIAO Peng,et al. Accumulation conditions and exploration potential of shale gas of Lower Carboniferous in Lianyuan depression in the middle of Hunan Province[J]. Journal of Central South University(Science and Technology),2014,45(7):2268–2277.
[8] 黃儼然,曹運江,楊榮豐,等. 湘中坳陷泥盆系頁巖氣生儲特征及勘探潛力研究[J]. 非常規(guī)油氣,2017,4(3):8–14. HUANG Yanran,CAO Yunjiang,YANG Rongfeng,et al. The characteristics of shale gas generation and accumulation and its exploration in Devonian,Xiangzhong depression[J]. Unconventional Oil and Gas,2017,4(3):8–14.
[9] 馬若龍. 湘中、湘東南及湘東北地區(qū)泥頁巖層系地質(zhì)特征與頁巖氣勘探潛力[D]. 成都:成都理工大學(xué),2013.
[10] 顧志翔,彭勇民,何幼斌,等. 湘中坳陷二疊系海陸過渡相頁巖氣地質(zhì)條件[J]. 中國地質(zhì),2015,42(1):288–299. GU Zhixiang,PENG Yongmin,HE Youbin,et al. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong depression[J]. Geology in China,2015,42(1):288–299.
[11] 張成龍,唐書恒,姜文,等. 湘東南龍?zhí)督M頁巖氣儲層特征與勘探前景淺析[J]. 特種油氣藏,2014,21(1):26–30. ZHANG Chenglong,TANG Shuheng,JIANG Wen,et al. Characteristics and exploration prospect of the Longtan shale gas reservoir in the southeastern Hunan[J]. Special Oil and Gas Reservoirs,2014,21(1):26–30.
[12] 梁家駒,馬若龍,步少峰,等. 湘中、湘東南拗陷泥頁巖層系儲層特征[J]. 成都理工大學(xué)學(xué)報(自然科學(xué)版),2014,41(1):45–54. LIANG Jiaju,MA Ruolong,BU Shaofeng,et al. Reservoir characteristics of shale in Xiangzhong depression and Xiangdongnan depression of Hunan,China[J]. Journal of Chengdu University of Technology(Science and Technology Edition),2014,41(1):45–54.
[13] 劉喜順. 湘中拗陷含油氣保存條件研究[J]. 新疆石油天然氣,2008,4(2):15–20. LIU Xishun. Study on tectonic evolution and hydrocarbon reservoir forming rules in Xiangzhong depression[J]. Xinjiang Oil and Gas,2008,4(2):15–20.
[14] 閆德宇,黃文輝,張金川. 鄂爾多斯盆地海陸過渡相富有機質(zhì)泥頁巖特征及頁巖氣意義[J]. 地學(xué)前緣,2015,22(6):197–206. YAN Deyu,HUANG Wenhui,ZHANG Jinchuan. Characteristics of marine-continental transitional organic-rich shale in the Ordos basin and its shale gas significance[J]. Earth Science Frontiers,2015,22(6):197–206.
[15] 包書景,林拓,聶海寬,等. 海陸過渡相頁巖氣成藏特征初探:以湘中坳陷二疊系為例[J]. 地學(xué)前緣,2016,23(1):44–53. BAO Shujing,LIN Tuo,NIE Haikuan,et al. Preliminary study of the transitional facies shale gas reservoir characteristics:Taking Permian in the Xiangzhong depression as an example[J]. Earth Science Frontiers,2016,23(1):44–53.
[16] 胡見義,黃第藩. 中國陸相石油地質(zhì)理論基礎(chǔ)[M]. 北京:石油工業(yè)出版社,1991.
[17] 傅雪海,張苗,張慶輝,等. 山西省域石炭二疊紀煤系泥頁巖氣儲層評價指標(biāo)體系[J]. 煤炭學(xué)報,2018,43(6):1654–1660. FU Xuehai,ZHANG Miao,ZHANG Qinghui,et al. Evaluation index system for the Permo-Carboniferous mud shale reservoirs of coal measures in Shanxi Province[J]. Journal of China Coal Society,2018,43(6):1654–1660.
[18] 張慧,魏小燕,楊慶龍,等. 海相頁巖儲層礦物質(zhì)孔隙的形貌–成因類型[J]. 煤田地質(zhì)與勘探,2018,46(4):72–78. ZHANG Hui,WEI Xiaoyan,YANG Qinglong,et al. The morphology-origin types of mineral pores in the marine shale reservoir[J]. Coal Geology & Exploration,2018,46(4):72–78.
[19] 張慧,晉香蘭,吳靜,等. 四川盆地龍馬溪組頁巖有機質(zhì)的納米孔隙[J]. 煤田地質(zhì)與勘探,2018,46(3):47–53. ZHANG Hui,JIN Xianglan,WU Jing,et al. Nano-pores of organic matter in Longmaxi Formation shale in Sichuan basin[J]. Coal Geology & Exploration,2018,46(3):47–53.
[20] 韓京,陳波,趙幸濱,等. 下?lián)P子地區(qū)二疊系頁巖有機質(zhì)孔隙發(fā)育特征及其影響因素[J]. 天然氣工業(yè),2017,37(10):17–26. HAN Jing,CHEN Bo,ZHAO Xingbin,et al. Development characteristics and influential factors of organic pores in the Permian shale in the lower Yangtze region[J]. Natural Gas Industry,2017,37(10):17–26.
[21] 郭少斌,付娟娟,高丹,等. 中國海陸過渡相頁巖氣研究現(xiàn)狀與展望[J]. 石油實驗地質(zhì),2015,37(5):535–540. GUO Shaobin,F(xiàn)U Juanjuan,GAO Dan,et al. Research status and prospects for marine-continental shale gases in China[J]. Petroleum Geology and Experiment,2015,37(5):535–540.
[22] ARDAKANI O H,SANEI H,GHANIZEDEH A,et al. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica shale,southern Quebec,Canada[J]. Marine & Petroleum Geology,2018,92(3):794–808.
[23] 騰格爾,申寶劍,俞凌杰,等. 四川盆地五峰組–龍馬溪組頁巖氣形成與聚集機理[J]. 石油勘探與開發(fā),2017,44(1):69–78. TENGER Borjigin Tenger,SHEN Baojian,YU Lingjie,et al. Mechanism of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation,Sichuan basin,SW China[J]. Petroleum Exploration and Development,2017,44(1):69–78.
[24] 李國亮,王先輝,柏道遠,等. 湘中及湘東南地區(qū)上二疊統(tǒng)龍?zhí)督M頁巖氣勘探前景[J]. 地質(zhì)科技情報,2015,34(3):133–138. LI Guoliang,WANG Xianhui,BO Daoyuan,et al. Potentiality exploration of the Upper Permian Longtan Formation shale gas in central and southern Hunan Province[J]. Geological Science and Technology Information,2015,34(3):133–138.
[25] 王超,張柏橋,舒志國,等. 四川盆地涪陵地區(qū)五峰組–龍馬溪組海相頁巖巖相類型及儲層特征[J]. 石油與天然氣地質(zhì),2018,39(3):485–497.WANG Chao,ZHANG Boqiao,SHU Zhiguo,et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area,the Sichuan basin[J]. Oil and Gas Geology,2018,39(3):485–497.
[26] 王玉滿,王淑芳,董大忠,等. 川南下志留統(tǒng)龍馬溪組頁巖巖相表征[J]. 地學(xué)前緣,2016,23(1):119–133. WANG Yuman,WANG Shufang,DONG Dazhong,et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian,southern Sichuan[J]. Earth Science Frontiers,2016,23(1):119–133.
[27] 鄭浚茂,應(yīng)鳳祥. 煤系地層(酸性水介質(zhì))的砂巖儲層特征及成巖模式[J]. 石油學(xué)報,1997,18(4):19–24. ZHENG Junmao,YING Fengxiang. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bearing strata(acid water medium)[J]. Acta Petrolei Sinica,1997,18(4):19–24.
[28] 蔣凌志,顧家裕,郭彬程. 中國含油氣盆地碎屑巖低滲透率儲層的特征及形成機理[J]. 沉積學(xué)報,2004,22(1):13–18. JIANG Lingzhi,GU Jiayu,GUO Bincheng. Characteristics and mechanism of low permeability clastic reservoir in Chinese petroliferous basin[J]. Acta Sedimentologica Sinica,2004,22(1):13–18.
[29] 張國濤,陳孝紅,張保民,等. 湘中地區(qū)邵陽凹陷二疊系頁巖儲集物性特征研究[J]. 華南地質(zhì)與礦產(chǎn),2016,32(2):149–158. ZHANG Guotao,CHEN Xiaohong,ZHANG Baomin,et al. Physical property characteristic of Permian shale reservoir in the Shaoyang depression,central Hunan Province[J]. Geology and Mineral Resources of South China,2016,32(2):149–158.
[30] 張國濤,陳孝紅,張保民,等. 湘中邵陽凹陷二疊系龍?zhí)督M頁巖含氣性特征與氣體成因[J]. 地球科學(xué),2018. http://kns.cnki. net/kcms/detail/42.1874.P.20180619.1108.044.htm.ZHANG Guotao,CHEN Xiaohong,ZHANG Baomin,et al. Gas bearing characteristics and origin analysis of shale gas in Longtan Formation,Permian,Shaoyang sag,central Hunan[J]. Earth Science,2018. http://kns.cnki.net/kcms/detail/42.1874.P. 20180 619.1108.044.htm.
Shale gas potential of Yanguanjie Formation and Longtan Formation in central and southeastern Hunan Province
CAO Taotao1, DENG Mo2, LIU Hu3, HUANG Yanran1, HURSSTHOUSE Andrew Stefan1
(1. Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan 411201, China; 2. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi 214126, China; 3. Sichuan Key Laboratory of Shale Gas Evaluation and Exploration, Chengdu 600091, China)
In order to reveal the shale gas potential and exploration direction of the marine-continental transitional shale in central and southeastern Hunan, samples were collected from the Lower Carboniferous Yanguanjie Formation and Upper Permian Longtan Formation, measurements were conducted on TOC,ran, kerogen carbon isotope, maceral composition, X-ray diffraction, scanning electron microscopy, porosity, permeability and methane sorption capacity. The results indicate that Yanguanjie Formation and Longtan Formation shale are at the mature stage, and mainly dominated by type III kerogen. The Longtan shale generally has higher TOC content, while Yanguanjie shale has usually low TOC content. The minerals are mainly dominated by clay mineral and quartz, some Yanguanjie shale has high content of calcite. Pores in the two set of shales are not well developed, and their main pores are organic matter pore, dissolution pore and microfracture. The porosity of the Yuanguanjie and Longtan shales varies from 0.41% to 2.73%, and the permeability is between 0.08×10-3μm2and 0.98×10-3μm2. The porosity is positively affected by TOC content. Unstable minerals such as feldspar and carbonate could provide some pore space, but have limited influence on shale physical property. However, the porosity is negatively correlated with clay mineral content. Methane sorption capacity of shales is generally between 1.67 and 2.5 cm3/g. The desorbed gas content of Longtan Formation shales from well 2015H-D3 is generally higher than 0.5 cm3/g, with a highest value of 2.35 cm3/g, indicating that Longtan Formation in central and southeastern Hunan Province has a certain shale gas potential. However, the shale gas potential of the Yanguanjie Formation is relatively weaker compared to Longtan Formation.
shale gas; pore structure; gas-bearing capacity; Yanguanjie Formation; Longtan Formation; central and southeastern Hunan
TE122;P618.130.2+1
A
10.3969/j.issn.1001-1986.2019.04.015
1001-1986(2019)04-0094-010
2018-10-29
國家自然科學(xué)基金項目(41802163);湖南省自然科學(xué)基金項目(2018JJ3152);四川省科技計劃項目(2018JZ003)
National Natural Science Foundation of China(41802163);Hunan Provincial Natural Science Foundation of China(2018JJ3152);Science and Technology Plan Project of Sichuan(2018JZ003)
曹濤濤,1987年生,男,河南商丘人,博士,講師,從事非常規(guī)油氣地質(zhì)與地球化學(xué)相關(guān)工作. E-mail:515165359@163.com
曹濤濤,鄧模,劉虎,等. 湘中與湘東南巖關(guān)階組和龍?zhí)督M頁巖氣潛力[J]. 煤田地質(zhì)與勘探,2019,47(4):94–103.
CAO Taotao,DENG Mo,LIU Hu,et al.Shale gas potential of Yanguanjie Formation and Longtan Formation in central and southeastern Hunan Province[J]. Coal Geology & Exploration,2019,47(4):94–103.
(責(zé)任編輯 范章群)