王冬霞 謝俊霞 宋寧
[摘要]?目的?了解經(jīng)鼻給枸櫞酸鐵銨對(duì)小鼠嗅覺、嗅球鐵含量及酪氨酸羥化酶(TH)表達(dá)影響。
方法健康雄性C57BL/6小鼠40只,隨機(jī)分成兩組,各20只。實(shí)驗(yàn)組雙側(cè)交替經(jīng)鼻給枸櫞酸鐵銨(200 mg/kg),隔天1次,持續(xù)3周;對(duì)照組則給予等量生理鹽水。3周后,經(jīng)嗅覺測(cè)試檢測(cè)兩組小鼠嗅覺,應(yīng)用Perls鐵染色聯(lián)合二氨基聯(lián)苯胺(DAB)強(qiáng)化的方法檢測(cè)嗅球鐵陽(yáng)性細(xì)胞數(shù),運(yùn)用免疫印跡法檢測(cè)嗅球TH表達(dá)。
結(jié)果?與對(duì)照組比較,實(shí)驗(yàn)組小鼠嗅覺明顯減退,嗅球鐵染色陽(yáng)性細(xì)胞數(shù)明顯增加,TH表達(dá)水平顯著下降,差異有統(tǒng)計(jì)學(xué)意義(t=2.266~4.801,P<0.05)。
結(jié)論經(jīng)鼻給枸櫞酸鐵銨能夠引起小鼠嗅球鐵沉積和多巴胺能神經(jīng)元損傷。
[關(guān)鍵詞]?枸櫞酸鐵銨;經(jīng)鼻給藥;酪氨酸單氧化酶;鐵;小鼠
[中圖分類號(hào)]?R338
[文獻(xiàn)標(biāo)志碼]?A
[文章編號(hào)]??2096-5532(2019)01-0013-04
EFFECT OF INTRANASAL ADMINISTRATION OF FERRIC AMMONIUM CITRATE ON OLFACTORY FUNCTION AND IRON CONTENT AND PROTEIN EXPRESSION OF TYROSINE HYDROXYLASE IN THE OLFACTORY BULB IN MICE
WANG Dongxia, XIE Junxia, SONG Ning
(Department of Physiology and Pathephysiology, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of intranasal administration of ferric ammonium citrate on olfactory function and iron content and the protein expression of tyrosine hydroxylase (TH) in the olfactory bulb in mice.
MethodsA total of 40 healthy male C57BL/6 mice were randomly divided into control group and experimental group, with 20 mice in each group. The mice in the experimental group were given intranasal administration of ferric ammonium citrate (200 mg/kg) at both sides alternatively once every other day for 3 consecutive weeks, and those in the control group were given an equal volume of normal saline without ferric ammonium citrate. After three weeks, the olfactory test was performed to evaluate olfactory function, Perls iron staining combined with diaminobenzidine enhancement was used to measure the number of iron-positive cells in the olfactory bulb, and Western blotting was used to measure the expression of TH in the olfactory bulb.
ResultsCompared with the control group, the experimental group had a significant reduction in olfactory function, a significant increase in the number of iron-positive cells in the olfactory bulb, and a significant reduction in the expression of TH (t=2.266-4.801,P<0.05).
ConclusionIntranasal administration of ferric ammonium citrate can induce iron deposition and dopaminergic neuronal injury in the olfactory bulb in mice.
[KEY WORDS]ferric ammonium citrate; intranasal administration; tyrosine 3-monooxygenase; iron; mice
鐵是正常生命活動(dòng)中必需微量元素,參與所有生物體多種重要的生理、生化過程,包括氧運(yùn)輸、線粒體呼吸、細(xì)胞生長(zhǎng)分化以及金屬酶活性位點(diǎn)的形成,在腦內(nèi)鐵對(duì)于維持神經(jīng)組織的高代謝、能量需求、髓鞘合成、神經(jīng)遞質(zhì)合成以及新陳代謝等發(fā)揮著至關(guān)重要的作用[1-3]。然而,過多的鐵可能通過哈伯-韋斯反應(yīng)和芬頓反應(yīng)引起氧與過氧化氫發(fā)生有害反應(yīng),并形成高反應(yīng)性和極具破壞性的羥自由基(OH-),從而造成組織細(xì)胞氧化應(yīng)激損傷[4]。帕金森?。≒D)是第二大常見中樞神經(jīng)系統(tǒng)退行性疾病,多見于中老年人,以腦內(nèi)黑質(zhì)致密部多巴胺能神經(jīng)元缺失和路易小體形成為主要病理改變[5]。在正常情況下,腦鐵水平升高是衰老的正常特征之一[6-7]。而在尸檢和活體腦檢測(cè)均發(fā)現(xiàn),PD病人黑質(zhì)區(qū)多巴胺能神經(jīng)元損傷的區(qū)域同時(shí)還存在著鐵的異常沉積[2,8-9],多巴胺代謝與多種鐵依賴/非依賴通路有關(guān),且有神經(jīng)毒性代謝產(chǎn)物生成[10]。因而,鐵和多巴胺被認(rèn)為是一對(duì)毒性組合,高鐵介導(dǎo)的多巴胺神經(jīng)毒性可能是多巴胺能神經(jīng)元損傷的重要機(jī)制之一[9,11]。嗅覺系統(tǒng)內(nèi)廣泛分布有多巴胺能神經(jīng)元和多巴胺受體,其中嗅球內(nèi)10%~16%的球周顆粒層細(xì)胞為多巴胺能細(xì)胞。
1?材料與方法
1.1?實(shí)驗(yàn)動(dòng)物及試劑
取8周齡SPF級(jí)C57BL/6雄性小鼠40只,購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物有限公司,單籠飼養(yǎng)于潔凈動(dòng)物房?jī)?nèi),置適量食物和水,供小鼠自由飲用。室溫(20±2)℃,濕度(50±2)%,晝夜循環(huán)(12/12 h)光照條件,于本實(shí)驗(yàn)室飼養(yǎng)適應(yīng)1周。FAC購(gòu)于美國(guó)Sigma公司,其余試劑均從當(dāng)?shù)卦噭┕举?gòu)買。用生理鹽水溶解FAC,濃度為250 g/ L。
1.2?動(dòng)物分組及處理
將小鼠隨機(jī)分為兩組,各20只。實(shí)驗(yàn)組給予濃度為250 g/L的FAC溶液,間隔1 d經(jīng)雙側(cè)鼻孔交替給藥(200 mg/kg);對(duì)照組給予同等體積的生理鹽水。用藥3周后停藥3周,對(duì)兩組小鼠進(jìn)行相應(yīng)指標(biāo)檢測(cè)。
1.3?檢測(cè)指標(biāo)及方法
1.3.1嗅覺檢測(cè)?將小鼠置于透明的矩形盒內(nèi),盒子中間插入帶有拱形通道的透明隔板。在隔板的一側(cè)鋪放全新的墊料(相對(duì)陌生的味道環(huán)境),另一側(cè)鋪放小鼠生活過3 d的舊墊料(相對(duì)熟悉的味道環(huán)境)。小鼠可以通過拱形通道在新舊墊料兩側(cè)自由穿梭。應(yīng)用Ethvision XT 7系統(tǒng)追蹤小鼠5 min的活動(dòng)情況,以小鼠在熟悉味道環(huán)境中逗留總時(shí)長(zhǎng)反映小鼠嗅覺的靈敏度。
1.3.2嗅球鐵染色陽(yáng)性細(xì)胞數(shù)目檢測(cè)?將切好的腦片轉(zhuǎn)移至40 g/L多聚甲醛溶液內(nèi)固定5 min,轉(zhuǎn)移至去離子水中漂洗30 s,以20 g/L亞鐵氰化鉀與20 g/L鹽酸溶液等體積的混合液(現(xiàn)配現(xiàn)用)孵育30 min;轉(zhuǎn)移至 0.01 mol/L 的PBS中漂洗3次,每次5 min;以體積分?jǐn)?shù)0.01的H2O2-甲醇溶液封閉20 min,滅活假陽(yáng)性過氧化物酶和內(nèi)源性過氧化氫酶;用0.01 mol/L的PBS沖洗3次,每次5 min;二氨基聯(lián)苯胺(DAB)溶液避光顯色10~30 min,于顯微鏡下觀察顯色情況;雙蒸水終止顯色。將顯色后的腦片展平,鋪于干凈的載玻片上,充分干燥后用中性樹膠封片;明場(chǎng)顯微鏡下觀察、拍片,進(jìn)行細(xì)胞計(jì)數(shù)。在10倍物鏡下取嗅球鐵陽(yáng)性細(xì)胞最明顯處5個(gè)視野,分別對(duì)其內(nèi)的鐵陽(yáng)性細(xì)胞進(jìn)行計(jì)數(shù),取其平均值。
1.3.3免疫印跡法檢測(cè)嗅球部位酪氨酸羥化酶(TH)表達(dá)?取新鮮的嗅球組織,加入RIPA裂解緩沖液,置于冰上裂解30 min,然后收集到EP管中,4 ℃、12 000 r/min離心20 min,吸取上清液至新EP管中,應(yīng)用BCA方法檢測(cè)嗅球內(nèi)的蛋白濃度。之后將蛋白樣品經(jīng)SDS-PAGE電泳,并濕轉(zhuǎn)至PVDF膜上,用濃度為50 g/L的脫脂奶粉室溫?fù)u床封閉2 h,用TH(1∶3 000)、β-actin(1∶10 000)一抗于4 ℃搖床過夜,用1∶10 000的山羊抗兔HRP-IgG二抗室溫孵育1 h,ECL發(fā)光液顯影,用 Image J 圖像采集和分析軟件進(jìn)行條帶灰度分析。
1.4?統(tǒng)計(jì)學(xué)處理
應(yīng)用Prism 5軟件進(jìn)行統(tǒng)計(jì)分析,結(jié)果以[AKx-D]±s表示,兩組間比較采用t檢驗(yàn)。 P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2?結(jié)??果
2.1?兩組小鼠嗅覺功能比較
對(duì)照組小鼠在舊、新墊料活動(dòng)時(shí)間比值為2.004±0.203(n=17),實(shí)驗(yàn)組小鼠為1.454±0.118(n=15),兩組相比較差異有統(tǒng)計(jì)學(xué)意義(t=2.266,P<0.05)。
2.2?兩組小鼠嗅球區(qū)鐵含量比較
對(duì)照組小鼠鐵染色陽(yáng)性細(xì)胞計(jì)數(shù)為72.31±7.67(n=3),實(shí)驗(yàn)組為130.90±9.48(n=3),兩組比較差異有統(tǒng)計(jì)學(xué)意義(t=4.801,P<0.05)。
2.3?兩組小鼠嗅球區(qū)TH蛋白表達(dá)比較
對(duì)照組小鼠嗅球TH蛋白與β-actin蛋白比值為0.829±0.262(n=6),實(shí)驗(yàn)組為0.192±0.034(n=7),兩組比較差異有統(tǒng)計(jì)學(xué)意義(t=2.618,P<0.05)。
3?討??論
基于高鐵動(dòng)物模型的大量研究顯示,PD動(dòng)物具有某些行為學(xué)改變及病理學(xué)特征[9,12-13],但大多數(shù)高鐵動(dòng)物模型的給藥方式是外周給鐵(例如高鐵飼料)等,由于血-腦脊液屏障(BBB)的存在,鐵主要在外周沉積,無法有效模擬動(dòng)物腦內(nèi)高鐵環(huán)境。而經(jīng)鼻給藥則可以有效避開BBB進(jìn)入中樞神經(jīng)系統(tǒng)[14-15]。目前研究認(rèn)為,經(jīng)鼻給藥進(jìn)入中樞神經(jīng)系統(tǒng)可能存在兩條途徑:①藥物先進(jìn)入嗅細(xì)胞,然后沿嗅神經(jīng)通路經(jīng)由神經(jīng)元軸突間轉(zhuǎn)運(yùn)到達(dá)嗅球,最后
廣泛分布于大腦實(shí)質(zhì);②通過支持細(xì)胞間緊密連接方式或是以某種細(xì)胞外途徑通過支持細(xì)胞與嗅細(xì)胞之間開放的縫隙進(jìn)入中樞。已有研究顯示后者更快速,只需幾分鐘[16-20]。小分子和大分子生物制劑,如蛋白質(zhì)、基因載體和干細(xì)胞,均有報(bào)道可經(jīng)鼻途徑進(jìn)入腦內(nèi)。已有研究表明,經(jīng)鼻給予胰島素樣生長(zhǎng)因子-1,能夠有效減少大腦中動(dòng)脈閉塞模型大鼠梗死體積和神經(jīng)功能缺損。經(jīng)鼻給予神經(jīng)生長(zhǎng)因子能極大逆轉(zhuǎn)阿爾茨海默病模型小鼠的神經(jīng)變性和記憶喪失[21-22]。在健康成年人和遺忘性輕度認(rèn)知功能障礙或阿爾茨海默病早期,經(jīng)鼻給予胰島素后記憶能力能夠有效改善[23-25]。本實(shí)驗(yàn)使用Perls鐵染色聯(lián)合DAB強(qiáng)化的方法,檢測(cè)經(jīng)鼻給FAC小鼠嗅球區(qū)鐵沉積情況,結(jié)果顯示,F(xiàn)AC經(jīng)鼻給藥組小鼠嗅球區(qū)鐵染色陽(yáng)性細(xì)胞計(jì)數(shù)較對(duì)照組明顯增多,差異有統(tǒng)計(jì)學(xué)意義。由于神經(jīng)膠質(zhì)細(xì)胞是腦內(nèi)主要的鐵儲(chǔ)存細(xì)胞,且本實(shí)驗(yàn)鐵染色陽(yáng)性細(xì)胞呈現(xiàn)膠質(zhì)細(xì)胞而并非神經(jīng)元的形態(tài)特征,提示經(jīng)鼻給予FAC能導(dǎo)致小鼠嗅球區(qū)鐵在神經(jīng)膠質(zhì)細(xì)胞中沉積。
有研究顯示,嗅覺損傷與多巴胺能神經(jīng)元損傷有關(guān)[26]。本實(shí)驗(yàn)利用小鼠有在熟悉環(huán)境內(nèi)逗留的習(xí)性對(duì)小鼠嗅覺的靈敏度進(jìn)行檢測(cè),結(jié)果顯示,小鼠經(jīng)鼻給FAC后在熟悉環(huán)境內(nèi)逗留時(shí)間與對(duì)照組相比明顯縮短,說明經(jīng)鼻給予FAC后,小鼠嗅覺功能減退。TH是腦內(nèi)多巴胺合成的限速酶,其結(jié)構(gòu)域由150個(gè)氨基酸構(gòu)成,通過四氫生物蝶呤和分子氧將酪氨酸轉(zhuǎn)化為左旋多巴,以調(diào)節(jié)酶活性,是腦內(nèi)多巴胺能神經(jīng)元的細(xì)胞標(biāo)志物。本文結(jié)果表明,實(shí)驗(yàn)組TH表達(dá)水平較對(duì)照組顯著下降,差異有統(tǒng)計(jì)學(xué)意義。已有研究表明,嗅球內(nèi)多巴胺能神經(jīng)元在氣味的感覺、辨別和學(xué)習(xí)過程中發(fā)揮著關(guān)鍵作用。我們推測(cè)經(jīng)鼻給FAC引起嗅球部位鐵聚集,沉積的鐵可能導(dǎo)致多巴胺能神經(jīng)元損傷,表現(xiàn)為TH蛋白水平降低。
綜上所述,經(jīng)鼻給FAC可以引起嗅球部位鐵聚集,損傷多巴胺神經(jīng)元。在此基礎(chǔ)上,我們將繼續(xù)研究經(jīng)鼻給FAC后其他腦區(qū)鐵含量的變化。本文結(jié)果為進(jìn)一步研究經(jīng)鼻途徑給予鐵對(duì)中樞神經(jīng)系統(tǒng)鐵含量和多巴胺神經(jīng)元的影響提供實(shí)驗(yàn)和理論基礎(chǔ)。
[參考文獻(xiàn)]
[1]BELAIDI A A, BUSH A I. Iron neurochemistry in Alzheimers disease and Parkinsons disease: targets for therapeutics[J]. ?Journal of Neurochemistry, 2016,139(1):179-197.
[2]JIANG H, WANG J, ROGERS J, ?et al. ?Brain Iron metabolism dysfunction in Parkinsons disease[J]. ?Molecular Neurobiology, 2017,54(4):3078-3101.
[3]CRICHTON R R, DEXTER D T, WARD R J. Brain Iron metabolism and its perturbation in neurological diseases[J]. ?Journal of Neural Transmission (Vienna, Austria:1996), 2011,118(3):301-314.
[4]LOCHHEAD J J, THORNE R G. Intranasal delivery of biologics to the central nervous system[J]. ?Advanced Drug Deli-very Reviews, 2012,64(7):614-628.
[5]LEAK R K. Conditioning against the pathology of Parkinsons disease[J]. ?Cond Med, 2018,1(3):143-162.
[6]WARD R, ZUCCA F A, DUYN J H, ?et al. ?The role of Iron in brain ageing and neurodegenerative disorders[J]. ?Lancet Neurology, 2014,13(10):1045-1060.
[7]PIRPAMER L, HOFER E, GESIERICH B, ?et al. ?Determinants of iron accumulation in the normal aging brain[J]. ?Neurobiol Aging, 2016,43:149-155.
[8]OLIVEIRA BARBOSA J H, SANTOS A C, TUMAS V, ?et al. ?Quantifying brain Iron deposition in patients with Parkinsons disease using quantitative susceptibility mapping, R2 and R2[J]. ?Magnetic Resonance Imaging, 2015,33(5):559-565.
[9]ZUCCA F A, SEGURA-AGUILAR J, FERRARI E A, ?et al. ?Interactions of Iron, dopamine and neuromelanin pathways in brain aging and Parkinsons disease[J]. ?Progress in Neurobio-logy, 2017,155(SI):96-119.
[10]EXNER N, LUTZ A K, HAASS C A. Mitochondrial dysfunction in Parkinsons disease: molecular mechanisms and pathophysiological consequences[J]. ?EMBO Journal, 2012,31(14):3038-3062.
[11]呂占云,姜宏,徐華敏,等. 高鐵飲食致C57BL/6小鼠黑質(zhì)DA多巴胺能神經(jīng)元選擇性損傷的研究[J]. ?青島大學(xué)醫(yī)學(xué)院學(xué)報(bào), 2010,46(4):298-300.
[12]MOOS T, MORGAN E H. The metabolism of neuronal iron and its pathogenic role in neurological disease: review[J]. ?Ann N Y Acad Sci, 2004,1012:14-26.
[13]CAROCCI A, CATALANO A, SINICROPI M S. Oxidative stress and neurodegeneration: the involvement of Iron[J]. ?BioMetals, 2018,31(5):715-735.
[14]KAMEI N. Nose-to-Brain delivery of peptide drugs enhanced by coadministration of cell-penetrating peptides: therapeutic potential for dementia[J]. ?Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan, 2017,137(10):1247-1253.
[15]MIYAKE M M, BLEIER B S. The blood-brain barrier and nasal drug delivery to the central nervous system[J]. ?American Journal of Rhinology & Allergy, 2015,29(2):124-127.
[16]THORNE R G, PRONK G J, PADMANABHAN V, ?et al. ?Delivery of insulin-like growth factor-Ⅰ to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration[J]. ?Neuroscience, 2004,127(2):481-496.
[17]MITTAL D, ALI A, MD S, ?et al. ?Insights into direct nose to brain delivery:current status and future perspective[J]. ?Drug Delivery, 2014,21(2):75-86.
[18]THORNE R G, HANSON L R, ROSS T M, ?et al. ?Delivery of interferon-beta to the monkey nervous system following intranasal administration[J]. ?Neuroscience, 2008,152(3):785-797.
[19]HANSON L R, FREY I W. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease[J]. ?BMC Neuroscience, 2008,9(3):S5.
[20]BOURGANIS V, KAMMONA O, ALEXOPOULOS A A. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics[J]. ?European Journal of Pharmaceutics and Biopharmaceutics, 2018,128:337-362.
[21]CAPSONI S, UGOLINI G, COMPARINI A, ?et al. ?Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 2000,97(12):6826-6831.
[22]DE ROSA R, GARCIA A A, BRASCHI C, ?et al. ?Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 2005,102(10):3811-3816.
[23]MAO Yanfang, GUO Zhangyu, ZHENG Tingting, ?et al. ?Intranasal insulin alleviates cognitive deficits and amyloid patho-logy in young adult APPswe/PS1dE9 mice[J]. ?Aging Cell, 2016,15(5):893-902.
[24]CLAXTON A, BAKER L D, HANSON A, ?et al. ?Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimers disease dementia[J]. ?Journal of Alzheimers Disease: JAD, 2015,45(4):1269-1270
[25]SHEMESH E, RUDICH A, HARMAN-BOEHM I A. Effect of intranasal insulin on cognitive function: a systematic review[J]. ?Journal of Clinical Endocrinology & Metabolism, 2012,97(2):366-376.
[26]DENG X L, LADENHEIM B, JAYANTHI S, ?et al. ?Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb[J]. ?Biological Psychiatry, 2007,61(11):1235-1243.