盧暢 宋妤 朱文珍 馮慢慢 李佳瑋 韓曉華
[摘要]?目的?探討7,8-二羥基黃酮(DHF)對過氧化氫(H2O2)誘導(dǎo)的H9c2心肌細(xì)胞氧化應(yīng)激損傷的保護(hù)作用及機(jī)制。
方法首先觀察DHF對H2O2誘導(dǎo)的H9c2細(xì)胞損傷的保護(hù)作用(實驗1),H9c2細(xì)胞分為對照組(無藥物處理)、H2O2組(700 μmol/L H2O2孵育24 h)、DHF+H2O2組(1、5、10、20 μmol/L DHF預(yù)處理1 h,700 μmol/L H2O2孵育24 h)、DHF組(20 μmol/L DHF孵育24 h)。為觀察各組Akt 蛋白水平的改變(實驗2),H9c2細(xì)胞分為對照組、H2O2組(700 μmol/L H2O2孵育24 h)、DHF+H2O2組(10 μmol/L DHF預(yù)處理1 h,余同H2O2組)、LY294002+DHF+H2O2組(先加入10 μmol/L LY294002孵育30 min,其余處理同DHF+H2O2組)、DHF組(10 μmol/L DHF孵育24 h)。為觀察PI3K阻斷劑LY294002對DHF保護(hù)作用的影響(實驗3),實驗分5組:前4組分組及處理方法同實驗2,第5組為LY294002組(加入10 μmol/L LY294002孵育24 h)。采用MTT法測定各組細(xì)胞存活率,Western blot法檢測p-Akt蛋白表達(dá)。
結(jié)果實驗1結(jié)果表明,H2O2處理后細(xì)胞存活率降低至(54.1±5.8)%,而5~20 μmol/L DHF發(fā)揮明顯的細(xì)胞保護(hù)作用(n=6,F(xiàn)=16.50,q=1.95~4.76,P<0.05)。實驗2結(jié)果顯示,H2O2能顯著減少p-Akt蛋白表達(dá),而DHF預(yù)處理上調(diào)了p-Akt蛋白水平,該作用可被PI3K抑制劑LY294002所阻斷,單獨(dú)使用DHF對Akt的磷酸化無明顯影響(n=3,F(xiàn)=18.67,q=6.17~10.47,P<0.01)。實驗3結(jié)果表明,與對照組比較,H2O2組細(xì)胞存活率明顯降低,該作用可被10 μmol/L DHF所拮抗,而DHF的保護(hù)作用可部分被LY294002所阻斷(n=6,F(xiàn)=44.75,q=8.52~17.16,P<0.01)。
結(jié)論DHF對H2O2誘導(dǎo)H9c2心肌細(xì)胞損傷具有明顯的保護(hù)作用,該作用可能與PI3K/Akt 信號通路激活密切相關(guān)。
[關(guān)鍵詞]?7,8-二羥基黃酮;過氧化氫;氧化性應(yīng)激;肌細(xì)胞,心臟
[中圖分類號]?R541
[文獻(xiàn)標(biāo)志碼]?A
[文章編號]??2096-5532(2019)01-0035-05
PROTECTIVE EFFECT OF 7,8-DIHYDROXYFLAVONE AGAINST H2O2-INDUCED INJURY IN H9c2 CARDIOMYOCYTES
LU Chang, SONG Yu, ZHU Wenzhen, FENG Manman, LI Jiawei, HAN Xiaohua
(Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the protective effect of 7,8-dihydroxyflavone (DHF) against H2O2-induced oxidative stress injury in H9c2 cardiomyocytes and related mechanism.
MethodsIn order to observe the protective effect of DHF against H2O2-induced injury in H9c2 cardiomyocytes (experiment 1), H9c2 cardiomyocytes were divided into control group (without drug treatment), H2O2 group (treated with 700 μmol/L H2O2 for 24 h), DHF+H2O2 group (pretreated with 1,5,10, and 20 μmol/L DHF for 1 h, followed by the treatment with 700 μmol/L H2O2 for 24 h), and DHF group (treated with 20 μmol/L DHF for 24 h). In order to investigate the change in the level of Akt protein (experiment 2), H9c2 cardiomyocytes were divided into control group, H2O2 group (treated with 700 μmol/L H2O2 for 24 h), DHF+H2O2 group (pretreated with 10 μmol/L DHF for 1 h, followed by the same treatment as the H2O2 group), LY294002+DHF+H2O2 group (firstly treated with 10 μmol/L LY294002 for 30 min, followed by the same treatment as the DHF+H2O2 group), and DHF group (treated with 10 μmol/L DHF for 24 h). In order to investigate the effect of LY294002, a PI3K antagonist, on the protective effect of DHF (experiment 3), H9c2 cardiomyocytes were divided into five groups; the former four groups and their treatment were the same as experiment 2 and the fifth group was LY294002 group (treated with 10 μmol/L LY294002 for 24 h). MTT assay was used to measure cell viability, and Western blot was used to measure the protein expression of Akt.
ResultsExperiment 1 showed that cell viability decreased to (54.1±5.8)% after H2O2 treatment, while 5-20 μmol/L DHF pretreatment exerted a marked protective effect on cells (n=6,F(xiàn)=16.50,q=1.95-4.76,P<0.05). Experiment 2 showed that H2O2 significantly downregulated the protein expression of p-Akt, while DHF pretreatment upregulated the protein expression of p-Akt, which was inhibited by the PI3K antagonist LY294002; DHF used alone had no marked effect on the phosphorylation of Akt (n=3,F(xiàn)=18.67,q=6.17-10.47,P<0.01). Experiment 3 showed that compared with the control group, the H2O2 group had a significant reduction in cell viability, which was antagonized by 10 μmol/L DHF, while the protective effect of DHF was partially blocked byDHF exerts a marked protective effect against H2O2-induced injury in H9c2 cardiomyocytes, which is closely associated with activation of the PI3K/Akt signaling pathway.
[KEY WORDS]7,8-dihydroxyflavone; hydrogen peroxide; oxidative stress; myocytes, cardiac
活性氧(ROS)指一組含氧基的活性化合物,包括超氧化物陰離子(O-2)、羥自由基(·OH)和過氧化氫(H2O2)等[1]。ROS能誘導(dǎo)心肌細(xì)胞損傷,在心肌梗死、心肌缺血再灌注損傷、心力衰竭等疾病的發(fā)生發(fā)展中發(fā)揮重要作用[2-4]。H2O2是ROS中公認(rèn)的內(nèi)源性和外源性誘導(dǎo)細(xì)胞損傷的遞質(zhì),可通過脂質(zhì)過氧化、DNA損傷、蛋白質(zhì)結(jié)構(gòu)和功能改變,最終導(dǎo)致細(xì)胞不可逆死亡[5],常用來誘導(dǎo)細(xì)胞氧化應(yīng)激損傷模型[6]。7,8-二羥基黃酮(DHF)是黃酮家族的一員,最近研究顯示其是一種酪氨酸激酶受體B(TrkB)的激動劑,可通過激活下游的信號通路如蛋白激酶B(Akt)、細(xì)胞外調(diào)節(jié)蛋白激酶(Erk)等發(fā)揮神經(jīng)保護(hù)及營養(yǎng)作用[7-9]。此外,DHF還具有抗氧化[10-12]、抗炎[13-14]、內(nèi)皮細(xì)胞保護(hù)等作用[15]。DHF能通過抑制ROS產(chǎn)生、炎癥因子釋放及激活凋亡酶從而拮抗H2O2誘導(dǎo)的內(nèi)皮細(xì)胞損傷[15],該保護(hù)作用可能與TrkB受體激活相關(guān)。但是DHF能否對H2O2誘導(dǎo)的心肌細(xì)胞損傷有保護(hù)作用,并無相關(guān)報道。大鼠H9c2心肌細(xì)胞來源于胚胎期心臟,被廣泛用于心臟保護(hù)作用和相關(guān)信號通路的研究[16]。本研究利用H2O2誘導(dǎo)H9c2細(xì)胞制備氧化應(yīng)激損傷模型,觀察DHF對其保護(hù)作用以及PI3K/Akt信號通路是否參與該作用,為DHF應(yīng)用于心血管疾病的防治提供實驗依據(jù)。
1?材料和方法
1.1?試劑與儀器
DHF樣品購自美國TCI公司,應(yīng)用二甲基亞砜(DMSO)溶解后配制成濃度100 mmol/L儲存液。體積分?jǐn)?shù)0.30的H2O2購自天津市鼎盛鑫化工有限公司,四甲基偶氮唑藍(lán)(MTT)為Solarbio(北京)公司產(chǎn)品,DMEM高糖培養(yǎng)粉為Gibco公司產(chǎn)品,PI3K抑制劑LY294002為APEXBIO公司產(chǎn)品,胎牛血清為BI公司產(chǎn)品,RIPA裂解液購自碧云天生物技術(shù)研究所,BCA蛋白定量檢測試劑盒為Thermo公司產(chǎn)品,磷酸化的蛋白激酶B(p-Akt)和Akt抗體為Cell Signaling Technology公司產(chǎn)品,HRP-標(biāo)記的二抗購自Santa Cruz公司,其他試劑均為國產(chǎn)分析純。所使用儀器包括CO2培養(yǎng)箱、超凈工作臺、Olympus倒置相差顯微鏡、Spectra Max M5多功能酶標(biāo)儀和Western顯影儀等。
1.2?細(xì)胞培養(yǎng)
將H9c2細(xì)胞置于含體積分?jǐn)?shù)0.1胎牛血清、105 U/L青霉素和100 mg/L鏈霉素的DMEM高糖培養(yǎng)液中,在37 ℃、含體積分?jǐn)?shù)0.05的CO2培養(yǎng)箱中培養(yǎng)。細(xì)胞達(dá)到70%~80%融合時按照1∶3傳代,細(xì)胞生長至對數(shù)生長期進(jìn)行實驗。
1.3?分組及處理方法
取生長狀態(tài)良好的H9c2細(xì)胞,以每孔1.5 mL接種6孔板(每孔3×105)。為觀察DHF對H2O2誘導(dǎo)的細(xì)胞損傷的保護(hù)作用(實驗1),H9c2細(xì)胞分為4組:對照組(無藥物處理)、H2O2組(加入終濃度700 μmol/L H2O2孵育24 h)、DHF+H2O2組(分別加入1、5、10、20 μmol/L DHF預(yù)處理1 h,再加入700 μmol/L H2O2孵育24 h)、DHF組(加入終濃度20 μmol/L DHF孵育24 h)。為觀察各組Akt 蛋白水平的改變(實驗2),H9c2細(xì)胞分為以下5組:對照組(無藥物處理)、H2O2組(700 μmol/L H2O2孵育24 h)、 DHF+H2O2組(10 μmol/L DHF預(yù)處理1 h,再加入700 μmol/L濃度的H2O2孵育24 h)、LY294002+DHF+H2O2 組(首先加入10 μmol/L的LY294002孵育30 min,其余的處理方法同DHF+H2O2組)、DHF組(加入10 μmol/L DHF孵育24 h)。為觀察PI3K阻斷劑LY294002對DHF保護(hù)作用的影響(實驗3),H9c2細(xì)胞分5組:對照組(無藥物處理)、H2O2組(應(yīng)用700 μmol/L H2O2孵育24 h)、 DHF+H2O2組(以10 μmol/L DHF預(yù)處理1 h后,再加入700 μmol/L H2O2孵育24 h)、LY294002+DHF+H2O2組(首先加入10 μmol/L LY294002孵育30 min,其余處理同DHF+H2O2組)、LY294002組(加入10 μmol/L LY294002 孵育24 h)。
1.4?MTT檢測細(xì)胞存活率
藥物處理結(jié)束后,各組細(xì)胞吸出原有培養(yǎng)液,每孔加入5 g/L MTT 20 μL繼續(xù)避光培養(yǎng)4 h,棄上清,加入DMSO 150 μL溶解藍(lán)色的甲瓚顆粒,室溫孵育10 min,用酶標(biāo)儀測定570 nm波長處光密度(D),計算各組細(xì)胞存活率。細(xì)胞存活率(%)=(實驗組D值/對照組D值) × 100%。實驗重復(fù)6次,取其平均值。
1.5?Western blot檢測p-Akt蛋白表達(dá)
各組藥物處理結(jié)束后提取蛋白,測蛋白濃度,以每孔20 μg蛋白上樣,用100 g/L的SDS-PAGE凝膠電泳后轉(zhuǎn)移至PDVF膜。用100 g/L BSA封閉液室溫封閉1 h,再分別加入p-Akt(1∶1 000)和Akt抗體(1∶1 000),4 ℃孵育過夜。TBST洗膜后以HRP標(biāo)記的二抗室溫孵育1 h,ECL發(fā)光劑顯影。用Image J 軟件對蛋白條帶進(jìn)行半定量分析,結(jié)果以p-Akt/Akt比值表示。實驗重復(fù)3次。
1.6?統(tǒng)計學(xué)分析
應(yīng)用GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計學(xué)處理,結(jié)果以[AKx-D]±s表示,多組均數(shù)比較采用單因素方差分析,兩兩比較采用Turkey法。P<0.05為差異有統(tǒng)計學(xué)意義。
2?結(jié)??果
2.1DHF對H2O2誘導(dǎo)H9c2心肌細(xì)胞損傷的保護(hù)作用
實驗1結(jié)果顯示,對照組細(xì)胞存活率為(103.0±
1.8)%,H2O2組細(xì)胞存活率降低至(54.1±5.8)%,提示H2O2誘導(dǎo)了氧化應(yīng)激損傷。DHF+H2O2組分別加入1、5、10、20 μmol/L DHF預(yù)處理后,各組細(xì)胞存活率分別為(58.3±4.3)%、(71.3±2.9)%、(80.2±2.9)%和(71.5±4.4)%),其中5~20 μmol/L DHF預(yù)處理有保護(hù)作用,以10 μmol/L DHF作用最為顯著(n=6,F(xiàn)=16.50,q=1.95~4.76,P<0.05)。結(jié)果表明,單純應(yīng)用20 μmol/L DHF處理細(xì)胞后(DHF組),細(xì)胞存活率和對照組相比無明顯差異,可以排除DHF本身的毒性作用。
2.2?各組p-Akt蛋白表達(dá)比較
實驗2結(jié)果顯示,與對照組比較,H2O2能顯著減少p-Akt蛋白表達(dá)((53.7±6.2)% vs (100.0±1.7)%),而DHF預(yù)處理上調(diào)了p-Akt蛋白表達(dá)水平((94.3±2.4)% vs(53.7±6.2)%),該作用可被PI3K抑制劑LY294002所阻斷((67.0±3.6)% vs(94.3±2.4)%),單獨(dú)使用DHF對p-Akt蛋白表達(dá)無明顯影響(n=3,F(xiàn)=18.67,q=6.17~10.47,P<0.01)。見圖1。
2.3LY294002對DHF保護(hù)作用的影響
本文實驗3結(jié)果顯示,對照組、H2O2組、DHF+H2O2組、LY294002+DHF+H2O2組、LY294002組的細(xì)胞存活率分別為(99.9±2.4)%、(58.8±1.6)%、(84.5±3.7)%、(64.1±1.9)%、(89.8±1.2)%。與對照組比較,H2O2組細(xì)胞存活率明顯降低,該作用可被10 μmol/L DHF所拮抗,而DHF的保護(hù)作用可部分被LY294002所阻斷(n=6,F(xiàn)=44.75,q=8.52~17.16,P<0.01)。而單獨(dú)加入LY294002后,細(xì)胞存活率和對照組比較差異無顯著性(P>0.05),可排除LY294002的毒性作用。
3?討??論
氧化應(yīng)激損傷造成的細(xì)胞凋亡在缺血性心臟病的病程進(jìn)展中發(fā)揮重要作用。DHF是一種天然存在的黃酮類化合物,除了自由基清除作用外,也能與神經(jīng)細(xì)胞膜上的TrkB受體結(jié)合,發(fā)揮神經(jīng)保護(hù)和營養(yǎng)作用。本實驗?zāi)康氖翘接慏HF對心肌細(xì)胞氧化應(yīng)激損傷是否具有保護(hù)作用,以及可能參與的信號通路。
本文研究結(jié)果表明,DHF能明顯抑制H2O2誘導(dǎo)的H9c2心肌細(xì)胞損傷,DHF的保護(hù)作用可能和其激活PI3K/Akt信號通路密切相關(guān)。H2O2誘導(dǎo)的H9c2細(xì)胞損傷機(jī)制復(fù)雜,H2O2可能通過誘導(dǎo)脂質(zhì)過氧化、DNA損傷和蛋白質(zhì)結(jié)構(gòu)和功能異常,導(dǎo)致氧化應(yīng)激損傷[5]。此外,H2O2還可通過誘導(dǎo)線粒體途徑的凋亡以及下調(diào)Akt信號蛋白表達(dá)等[17],導(dǎo)致細(xì)胞不可逆的死亡。
DHF對H9c2細(xì)胞產(chǎn)生保護(hù)作用的可能機(jī)制是:H9c2細(xì)胞膜存在TrkB受體[18],DHF結(jié)合該受體后可能激活相關(guān)信號通路如Akt等[19]。另外,由于DHF分子結(jié)構(gòu)中的兩個羥基能夠直接清除自由基,DHF也能提高細(xì)胞內(nèi)抗氧化酶(如SOD)的活性[20],因此,DHF對H9c2細(xì)胞的保護(hù)作用可能與其抗氧化特性密切相關(guān)。
本研究觀察了PI3K/Akt通路是否參與DHF的保護(hù)作用。PI3K/Akt是細(xì)胞內(nèi)一條重要的信號通路,可參與細(xì)胞的生長、增殖、分化以及凋亡等活動[21-22]。PI3K可導(dǎo)致下游Akt磷酸化,后者通過調(diào)控下游的相關(guān)蛋白如血紅素加氧酶1和Bcl-2/Bax等的表達(dá),發(fā)揮抗氧化與抗凋亡作用[23-24]。有研究結(jié)果顯示,某些抗氧化劑(如石斛蘭和牛奶樹堿)在H9c2細(xì)胞氧化損傷模型中,可通過激活A(yù)kt信號通路發(fā)揮重要的保護(hù)作用[25-28]。我們的前期研究也發(fā)現(xiàn),DHF能夠通過上調(diào)p-Akt蛋白的表達(dá)對抗6-OHDA誘導(dǎo)的PC12細(xì)胞損傷[29]。本研究結(jié)果顯示,DHF可對抗H2O2誘導(dǎo)的Akt失活,并且LY294002預(yù)處理也部分拮抗DHF的保護(hù)作用,提示DHF的保護(hù)作用部分與激活PI3K/Akt信號通路有關(guān)。我們后續(xù)實驗將進(jìn)一步探討DHF的保護(hù)作用機(jī)制。
[參考文獻(xiàn)]
[1]SONG Yi, NI Yuanying, HU Xiaosong, et al. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide[J]. ?International Journal of Biological Macromolecules, 2015,81(81):41-48.
[2]REN Lin, WANG Qian, CHEN Yu, et al. Involvement of microRNA-133a in the protective effect of Hydrogen sulfide against ischemia/reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis[J]. ?Pharmacology, 2018,103(1/2):1-9.
[3]HE Weilai, CHE Hong, JIN Chaolong, et al. Effects of miR-23b on hypoxia-induced cardiomyocytes apoptosis[J]. ?Biomedicine & Pharmacotherapy, 2017,96(96):812-817.
[4]YAO T, FUJIMURA T, MURAYAMA K, et al. Oxidative stress-responsive apoptosis inducing protein(ORAIP)plays a critical role in high glucose-induced apoptosis in rat cardiac myocytes and murine pancreatic β-cells[J]. ?Cells (Basel, Switzerland), 2017,6(4):35-43.
[5]DRGE W. Free radicals in the physiological control of cell function[J]. ?Physiological Reviews, 2002,82(1):47-95.
[6]NIU Tong, JIN Liuzhong, NIU Shizhen, et al. Lycium barbarum polysaccharides alleviates oxidative damage induced by H2O2 through down-regulating microRNA-194 in PC12 and SH-SY5Y cells[J]. ?Cellular Physiology and Biochemistry, 2018,50(2):460-472.
[7]JANG S W, LIU X, YEPES M, et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 2010,107(6):2687-2692.
[8]AYTAN N, CHOI J K, CARRERAS I, et al. Protective effects of 7,8-dihydroxyflavone on neuropathological and neurochemical changes in a mouse model of Alzheimers disease[J]. ?European Journal of Pharmacology, 2018,828(828):9-17.
[9]HUANG H M, HUANG C C, TSAI M H, et al. Systemic 7,8-Dihydroxyflavone treatment protects immature retinas against hypoxic-ischemic injury via muller Glia regeneration and MAPK/ERK activation[J]. ?Investigative Ophthalmology & Visual Science, 2018,59(7):3124-3135.
[10]HAN Xiaohua, ZHU Shaolei, WANG Bingxiang, et al. Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity[J]. ?Neurochemistry International, 2014,64(64):18-23.
[11]MA Rui, ZHANG Jisheng, LIU Xiaoyu, et al. 7,8-DHF treatment induces Cyr61 expression to suppress hypoxia induced ER stress in HK-2 cells[J]. ?BioMed Research International, 2016,2016:5029797. doi:10.1155/2016/5029797.
[12]KANG J S, CHOI I W, HAN M H, et al. The cytoprotective effects of 7,8-dihydroxyflavone against oxidative stress are mediated by the upregulation of Nrf2-dependent HO-1 expression through the activation of the PI3K/Akt and ERK pathways in C2C12 myoblasts[J]. ?International Journal of Molecular Medicine, 2015,36(2):501-510.
[13]JIN Zhen, YANG Yaozhi, CHEN Jianxin, et al. Inhibition of pro-inflammatory mediators in RAW264.7 cells by 7-hydroxyflavone and 7,8-dihydroxyflavone[J]. ?Journal of Pharmacy and Pharmacology, 2017,69(7):865-874.
[14]PARK H Y, PARK C, HWANG H J, et al. 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-kappa B and MAPK signaling pathways[J]. ?International Journal of Molecular Medicine, 2014,33(4):1027-1034.
[15]WANG Bingxiang, ZHANG Qian, YAO Ruyong, et al. 7,8-Dihydroxyflavone protects an endothelial cell line from H2O2 damage[J]. ?PLoS One, 2015,10(8): e0135345.
[16]KUZNETSOV A V, JAVADOV S, SICKINGER S A, et al. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation[J]. ?Biochimica et Biophysica Acta-Molecular Cell Research, 2015,1853(2):276-284.
[17]JUN H O, KIM D H, LEE S W, et al. Clusterin protects H9c2 cardiomyocytes from oxidative stress-induced apoptosis via Akt/GSK-3β signaling pathway[J]. ?Experimental & Molecular Medicine, 2011,43(1):53-61.
[18]HANG Pengzhou, ZHAO Jing, SUN Li, et al. Brain-derived neurotrophic factor attenuates doxorubicin-induced cardiac dysfunction through activating Akt signalling in rats[J]. ?Journal of Cellular and Molecular Medicine, 2017,21(4):685-696.
[19]TECUATL C, HERRRERA-LOPEZ G, MARTIN-AVILA A, et al. TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus[J]. ?European Journal of Neuroscience, 2018,47(9):1096-1109.
[20]CHEN J, CHUA K W, CHUA C C, et al. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity[J]. ?Neuroscience Letters, 2011,499(3):181-185.
[21]HSU H S, LIU C C, LIN J H, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferationin bleomycin-induced pulmonary fibrosis[J]. ?Scientific Re-ports, 2017,7(1):14272.
[22]LV Danni, BAI Zhixia, YANG Libin, et al. Lipid emulsion reverses bupivacaine-induced apoptosis of h9c2 cardiomyocytes: PI3K/Akt/GSK-3 beta signaling pathway[J]. ?Environmental Toxicology and Pharmacology, 2016,42(42):85-91.
[23]JIANG Youqin, CHANG Guanglei, WANG Ying, et al. Geniposide prevents hypoxia/reoxygenation-induced apoptosis in H9c2 cells: improvement of mitochondrial dysfunction and activation of GLP-1R and the PI3K/AKT signaling pathway[J]. ?Cellular Physiology and Biochemistry, 2016,39(1):407-421.
[24]WANG Z, SU G, ZHANG Z, et al. 2.5-Hydroxyl-protopanaxatriol protects against H2O2-induced H9c2 cardiomyocytes injury via PI3K/Akt pathway and apoptotic protein down-regulation[J]. ?Biomedicine Pharmaco Therapy, 2018(99):33-42.
[25]KIM D E, KIM B, SHIN H S, et al. The protective effect of hispidin against Hydrogen peroxide-induced apoptosisin H9c2 cardioyoblast cells through Akt/GSK-3β and ERK1/2 signaling pathway[J]. ?Experimental Cell Research, 2014,327(2):264-275.
[26]ZHANG Jingyi, GUO Ying, SI Jinping, et al. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways[J]. ?International Journal of Biological Macromolecules, 2017,104(A):1-10.
[27]CHU Donghai, ZHANG Zhenqiu. Trichosanthis pericarpium aqueous extract protects H9c2 cardiomyocytes from hypoxia/reoxygenation injury by regulating PI3K/Akt/NO pathway[J]. ?Molecules, 2018,23(10). doi:10.3390/molecules23102409
[28]WANG Yi, CHE Jianbo, ZHAO Hui, et al. Platycodin D inhibits oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation injury[J]. ?Biochemical and Biophysical Research Communications, 2018,503(4):3219-3224.
[29]HAN Xiaohua, CHENG Mengnan, CHEN Lei, et al. 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopa-mine-induced cell death through modulating PI3K/Akt and JNK pathways[J]. ?Neuroscience Letters, 2014,581(13/CX/3):85-88.