趙喜晨 孫曉云 伊麗安 趙麗 鞠波 趙洪國(guó)
[摘要]?目的?研究急性白血?。ˋL)伴混合系列白血?。∕LL)基因易位和擴(kuò)增的臨床特點(diǎn)。
方法?初治成人AL病人112例,取其骨髓細(xì)胞經(jīng)24 h短期培養(yǎng),常規(guī)方法制備染色體標(biāo)本,R顯帶行染色體核型分析;使用位點(diǎn)特異性識(shí)別(LSI)11q23/MLL雙色分離DNA探針行間期熒光原位雜交(FISH),對(duì)異常信號(hào)者行中期FISH確定11q23/MLL異常。分析MLL基因易位和擴(kuò)增者臨床特征。
結(jié)果?FISH顯示112例AL病人中9例(8.04%)存在11q23/MLL基因易位,8例(7.14%)存在MLL基因擴(kuò)增。兩者顯示相似的臨床特點(diǎn):髓外浸潤(rùn)發(fā)生率高,對(duì)細(xì)胞毒藥物敏感性低,治療后早期復(fù)發(fā)率高,生存期短,預(yù)后不良。病人通常診斷為B-祖細(xì)胞急性淋巴細(xì)胞白血病、急性單核細(xì)胞白血病或雙表型急性白血病。急性淋巴細(xì)胞白血病高表達(dá)CD34,急性髓系白血病高表達(dá)CD117、CD56、CD11b和CD64并有明顯骨髓病態(tài)造血。MLL基因擴(kuò)增病人發(fā)病年齡較大、外周血白細(xì)胞計(jì)數(shù)較低,有更明顯的病態(tài)造血。
結(jié)論?11q23/MLL基因易位和擴(kuò)增的成人AL病人具有相似的臨床特點(diǎn),MLL基因在AL發(fā)病中為功能獲得性異常。
[關(guān)鍵詞]?白血病,雙表型,急性;易位,遺傳;基因擴(kuò)增
[中圖分類號(hào)]?R733.71
[文獻(xiàn)標(biāo)志碼]?A
[文章編號(hào)]??2096-5532(2019)06-0679-06
doi:10.11712/jms201906012
[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
CLINICAL FEATURES OF ACUTE LEUKEMIA WITH 11Q23/MLL TRANSLOCATIONS OR AMPLIFICATIONS
ZHAO Xichen, SUN Xiaoyun, YI Li′an, ZHAO Li, JU Bo, ZHAO Hongguo
(Department of Hematology, Qingdao West Coast New Area Central Hospital, Qingdao, 266555, China)
[ABSTRACT] Objective To investigate the clinical features of acute leukemia (AL) with mixed-lineage leukemia (MLL) gene translocations or amplifications.
Methods Bone marrow cells were collected from 112 previously untreated adult patients with AL, and then cultured for a short period of 24 h followed by conventional chromosome preparation. The R-banding technique was applied for karyotype analysis. Interphase-fluorescence in situ hybridization (FISH) was used to detect gene abnormalities using the locus-specific identifier 11q23/MLL dual-color break-apart probe. Abnormal signals of the 11q23/MLL screened out by interphase-FISH would be further determined by metaphase-FISH. The clinical features of the patients with MLL translocations or amplifications were analyzed.
Results The 11q23/MLL translocations were observed in 9 cases (8.04%) and MLL amplifications in 8 cases (7.14%) of all the 112 AL patients according to FISH. There were similar clinical features between the patients with 11q23/MLL translocations and those with 11q23/MLL amplifications: a high incidence of extramedullary infiltration, a low sensitivity to cytotoxic drugs, a high early recurrence rate after treatment, a short survival time, and a poor prognosis. The patients with MLL gene abnormalities were frequently diagnosed with B-progenitor acute lymphoblastic leukemia, acute monocytic leukemia, or biphenotypic acute leukemia. A high expression of CD34 was observed in acute lymphoblastic leukemia, while a high expression of CD117, CD56, CD11b, and CD64 along with obvious dysplasia was observed in acute myeloid leukemia. The patients with MLL amplifications had an older age of onset, a relatively low white blood cell count, and more obvious dysplasia.
Conclusion There are similar clinical features between AL patients with MLL translocations and MLL amplifications. The MLL gene develops gain-of-function abnormalities in the pathogenesis of AL.
[KEY WORDS] leukemia, biphenotypic, acute; translocation, genetic; gene amplification
急性白血病(AL)伴混合系列白血?。∕LL)基因重排是常見的重現(xiàn)性細(xì)胞遺傳學(xué)異常。常規(guī)細(xì)胞遺傳學(xué)分析(CCA)檢出11q23異常占全部AL病人的5%~10%。MLL基因異常的形式較多,包括易位、擴(kuò)增、部分串連重復(fù)(PTD)和PHD結(jié)構(gòu)域缺失等 [1-3]。伴11q23/MLL基因異常的AL病人臨床上往往表現(xiàn)有外周血白細(xì)胞計(jì)數(shù)增高、髓外浸潤(rùn)發(fā)生率增高、對(duì)細(xì)胞毒藥物敏感性低、治療后早期復(fù)發(fā)率高、生存期短、預(yù)后不良。病人通常診斷為B-祖細(xì)胞急性淋巴細(xì)胞白血病(pro-B ALL)、急性單核
細(xì)胞白血?。ˋMoL)或雙表型急性白血病(BAL)。
急性淋巴細(xì)胞白血?。ˋLL)和BAL高表達(dá)CD34,急性髓系白血?。ˋML)高表達(dá)CD117、CD56和CD64并常有明顯骨髓病態(tài)造血[4-7]。熒光原位雜交(FISH)結(jié)合分子生物學(xué)和細(xì)胞遺傳學(xué)技術(shù),可有效揭示染色體易位和基因擴(kuò)增[8]。本文使用位點(diǎn)特異性識(shí)別(LSI) 11q23/MLL雙色分離DNA探針,對(duì)112例AL病人行FISH檢測(cè),分析11q23/MLL易位和基因擴(kuò)增病人的臨床特點(diǎn),為AL臨床診治提供參考?,F(xiàn)將結(jié)果報(bào)告如下。
1?資料和方法
1.1?病例選擇
AL病人112例為已行CCA檢查的初治病人,男73例,女39例;年齡12~78歲,中位年齡36歲。形態(tài)學(xué)+免疫學(xué)診斷:AML 67例,其中M1 4例,M219例,M4a5例,M4b7例,M4C3例,M5a9例,M5b17例,M63例;ALL 22例,其中pro-B ALL 4例,普通型B細(xì)胞 ALL(com-B ALL)12例 (其中ph+3例),前B細(xì)胞ALL(pre-B ALL)3例,T淋巴細(xì)胞ALL(T-ALL)3例;BAL 14例,其中My+B 標(biāo)志10例,My+T 標(biāo)志4例;慢性粒細(xì)胞白血病急變期(CML-BC)9例,其中轉(zhuǎn)變?yōu)锳LL者 4例,轉(zhuǎn)變?yōu)锳ML者 5例。
1.2?骨髓細(xì)胞分裂間期FISH(interphase-FISH)篩選MLL基因異常信號(hào)
冷凍保存的CCA檢查標(biāo)本氣干法滴片,系列乙醇梯度脫水,氣干過夜。選擇細(xì)胞分散良好的區(qū)域作雜交部位,73.5 ℃變性3 min,系列乙醇梯度脫水,溫箱烘干。使用LSI 11q23/MLL雙色分離信號(hào)DNA探針(美國(guó)Vysis公司)行FISH檢測(cè)MLL基因異常信號(hào),按說明書操作。橡皮泥密封,37 ℃濕盒中恒溫雜交過夜,DAPⅡ/antifade復(fù)染。Olympus熒光顯微鏡觀察間期細(xì)胞熒光信號(hào),計(jì)數(shù)1 000個(gè)間期細(xì)胞。正常為黃色重疊信號(hào),紅色與綠色信號(hào)分離為易位,黃色信號(hào)數(shù)量增加為擴(kuò)增。
1.3?骨髓細(xì)胞分裂中期FISH(metaphase-FISH)確定MLL基因異常
冷凍保存的CCA檢查標(biāo)本使用R顯帶技術(shù)按標(biāo)椎方法制作染色體玻片,選擇分散較好、帶型清晰的分裂象,記錄坐標(biāo)并攝像。然后,二甲苯脫油,甲醇脫色,新鮮固定液浸泡10 min,系列乙醇梯度脫水,氣干過夜。75~78 ℃變性5 min,其他條件同常規(guī)FISH。根據(jù)先前記錄的坐標(biāo),在Olympus熒光顯微鏡下找到相應(yīng)的分裂象并攝像。對(duì)照相應(yīng)分裂象確定異常信號(hào)的位點(diǎn)。
1.4?臨床特點(diǎn)分析
查閱病人病歷資料,記錄初診時(shí)的病史、體格檢查、影像學(xué)檢查、血常規(guī)、骨髓細(xì)胞學(xué)、白血病免疫分型和CCA結(jié)果以及治療反應(yīng),總結(jié)后續(xù)治療的療效和臨床經(jīng)過。
2?結(jié)?果
2.1?interphase-FISH篩選11q23/MLL異常信號(hào)
本文112例AL病人9例(8.04%)存在累及11q23/MLL的易位,8例(7.14%)存在MLL基因的擴(kuò)增,MLL基因拷貝數(shù)3~17個(gè)。
2.2?metaphase-FISH確定11q23/MLL異常
本文3例t(4;11)(q21;q23)易位者2例診斷為BAL,1例診斷為ALL;其余3例t(6;11)(q27;q23)、1例ins(9;11)(p23;q23) 和1例t(10;11)(q11;q23) 易位者診斷為AML,1例因標(biāo)本量少未行metaphase-FISH,也診斷為AML。8例MLL基因擴(kuò)增者同源染色區(qū)(hsr)1例,雙微染色體(dmin)1例,片段跳躍性易位(SJT)1例,三倍體4例,四倍體1例。見表1。
2.3?11q23/MLL異常病人的免疫表型
本文9例MLL易位者根據(jù)分化抗原表達(dá),1例診斷為pro-B ALL,2例診斷為BAL,6例診斷為AML。所有ALL病人均表達(dá)CD34、CD19以及HLA-DR。診斷為com-B ALL的病人還同時(shí)表達(dá)CD10,應(yīng)診斷為pro-B ALL伴CD10表達(dá)。12例診斷AML的病人均表達(dá)CD34、CD117和HLA-DR,6例表達(dá)CD56,8例表達(dá)CD64,5例表達(dá)CD11b,4例表達(dá)CD14。11q23q/MLL易位和基因擴(kuò)增有極為相似的免疫學(xué)表型,均分化阻滯在造血的早期階段。見表2。
2.4?11q23/MLL異常病人的外周血和骨髓細(xì)胞學(xué)特點(diǎn)
本文3例MLL易位的ALL病人,1例WBC為187.32×109/L,外周血幼稚細(xì)胞98%,骨髓增生極度活躍,骨髓原幼淋巴細(xì)胞比例98%。2例BAL病人WBC分別為18.06×109/L和133.24×109/L,外周血幼稚細(xì)胞分別為42%和64%,骨髓增生明顯活躍,骨髓原幼淋巴細(xì)胞比例分別為49%和
94%。其中WBC較低者化療前連續(xù)復(fù)查血常規(guī)呈快速增加趨勢(shì)。以上3例病人骨髓均無明顯髓系病態(tài)造血。
本文2例MLL基因擴(kuò)增的ALL病人外周血WBC相對(duì)較低,幼稚細(xì)胞也較少。診斷ALL的病人WBC 18.85×109/L,外周血幼稚細(xì)胞2%,骨髓增生活躍,原幼淋巴細(xì)胞比例47.5%,伴有明顯髓系病態(tài)造血,MLL基因擴(kuò)增形式為hsr。診斷為BAL的病人WBC 61.50×109/L,外周血幼稚細(xì)胞84%,骨髓增生極度活躍,原始粒細(xì)胞比例84%,MLL基因擴(kuò)增形式為三倍體。此病人因MPO染色陽性,細(xì)胞形態(tài)學(xué)曾確認(rèn)為原始粒細(xì)胞。病人因原始細(xì)胞極高,無法確認(rèn)有無病態(tài)造血。
本文6例MLL易位的AML病人中,2例病人的WBC>100×109/L,2例WBC為(30~100)×109/L,1例在正常范圍內(nèi),1例低于正常值,外周血幼稚細(xì)胞比例0~98%;骨髓增生極度活躍者3例,明顯活躍者2例,明顯減低者1例,6例病人均有不同程度的單核細(xì)胞分化傾向,原始和幼稚單核細(xì)胞比例16%~97%。4例伴有明顯的髓系病態(tài)造血,表現(xiàn)為粒細(xì)胞顆粒過多或過少、核漿發(fā)育不平衡、Auer小體、成熟粒細(xì)胞分葉過少、多種形態(tài)的巨核細(xì)胞(包括淋巴樣小巨核細(xì)胞)、外周血出現(xiàn)有核紅細(xì)胞等。白細(xì)胞增高的病人乳酸脫氫酶(LDH)和羥丁酸脫氫酶(HBDH)增高。
本文6例AML擴(kuò)增病人中,除1例WBC為87.85×109/L、1例為14.62×109/L外,其余4例WBC均<5×109/L,WBC與MLL基因拷貝數(shù)無明顯相關(guān)性。骨髓增生極度活躍者2例,明顯活躍者3例,增生減低者1例,其中4例有明顯髓系病態(tài)造血。WBC較低者病態(tài)造血更明顯,WBC高者可能是因?yàn)楣撬柙技?xì)胞比例極高無法辨認(rèn)病態(tài)造血。5例有明顯的單核細(xì)胞分化傾向。1例AML病人骨髓原始粒細(xì)胞50.5%,紅系細(xì)胞40.5%,形態(tài)學(xué)診斷為AML-M6,但免疫分型高表達(dá)CD64,說明也有單核細(xì)胞分化傾向。MLL基因擴(kuò)增的病人較MLL易位的病人外周血白細(xì)胞計(jì)數(shù)低,但骨髓病態(tài)造血更為明顯。
2.5?11q23/MLL異常病人的臨床特點(diǎn)
11q23/MLL異常病人的FAB分型和初診時(shí)的主要表現(xiàn)見表3。3例MLL易位的ALL病人平均年齡41.7歲(分別為25、36和64歲),2例治療過程中早期復(fù)發(fā)(CR1期分別為3個(gè)月和4個(gè)月)后死于疾病進(jìn)展,1例在骨髓抑制期自動(dòng)出院后失訪。2例MLL基因擴(kuò)增的ALL病人平均年齡36.5歲(分別為57和16歲),1例經(jīng)VDLP方案化療獲完全緩解(CR),但8個(gè)月后在治療過程中復(fù)發(fā)。BAL病人經(jīng)1個(gè)VDCP和1個(gè)VDLP方案化療未獲CR,放棄治療。
本文6例MLL易位的AML病人平均年齡為31.7歲(分別為30、47、26、28、19和40歲),1例入院后很快發(fā)生彌散性血管內(nèi)凝血(DIC)而死亡,2例在治療過程中早期復(fù)發(fā)(CR1期分別為3個(gè)月和5
個(gè)月)后死于疾病進(jìn)展,1例誘導(dǎo)化療骨髓抑制期死于敗血癥,1例誘導(dǎo)化療骨髓抑制期自動(dòng)出院,1例未在本院治療。6例AML病人平均年齡為50.7歲(分別為57、44、38、39、54和72歲),2例病人有骨髓增生異常綜合征(MDS)病史。2例誘導(dǎo)化療2療程未獲CR,1例誘導(dǎo)化療中長(zhǎng)期骨髓抑制期第64天因顱內(nèi)出血死亡,1例治療過程中早期復(fù)發(fā)(CR1期4個(gè)月)后死于疾病進(jìn)展,2例未在本院治療。MLL基因擴(kuò)增的AML病人平均年齡較MLL易位的AML者大,療效均極差,有很低的緩解率和很高的早期復(fù)發(fā)率。
3?討?論
人類的MLL(也稱為MLL1、ALL1、HTRX、HRX、TRX1、KMT2A)基因位于11q23,編碼為3 969個(gè)氨基酸的大分子蛋白質(zhì),具有甲基轉(zhuǎn)移酶活性,是表觀遺傳學(xué)修飾的重要因子。MLL蛋白在蘇氨酸-門冬氨酸酶-1(taspase-1)作用下裂解為N-端的MLLN和C-端的MLLC兩個(gè)片段,通過FYR及SET結(jié)構(gòu)域形成自身二聚體。二聚化的MLL蛋白結(jié)合于已被始動(dòng)轉(zhuǎn)錄因子作用的DNA序列,至少募集29種蛋白質(zhì),形成一個(gè)復(fù)雜的多蛋白復(fù)合體。MLL雖不始動(dòng)轉(zhuǎn)錄,但維持已活化基因的持續(xù)轉(zhuǎn)錄狀態(tài)[9-10]?,F(xiàn)已發(fā)現(xiàn)MLL的靶基因有100多種,但最重要的是維持同源盒(HOX)基因及其共因子MEIS1的轉(zhuǎn)錄激活,在正常胚胎發(fā)育和成人造血細(xì)胞的自我更新中起重要作用[9-12]。
在AL中研究較多的是累及11q23/MLL的易位,造成不同染色體或不同區(qū)段的兩個(gè)基因重排形成融合基因,轉(zhuǎn)錄翻譯成一種新的融合蛋白。致病性MLL融合蛋白均包含N-端的AT吊鉤、SNL1、SNL2和MT結(jié)構(gòu)域,C-端連接伙伴基因。在所有累及MLL基因重排的AL病人,都造成MLL基因功能的異?;罨瑥亩鴮?dǎo)致HOX及MEIS1的異常表達(dá),促使造血細(xì)胞發(fā)生惡性轉(zhuǎn)化[1-3,13]。細(xì)胞學(xué)和動(dòng)物實(shí)驗(yàn)研究結(jié)果均表明,在髓系前體細(xì)胞單獨(dú)導(dǎo)
入MLL融合基因足以促使細(xì)胞自我更新和自主增
殖,抑制細(xì)胞定向分化和凋亡[14],這種轉(zhuǎn)化作用(轉(zhuǎn)化為ALL或是AML)還受到發(fā)育環(huán)境的影響[15]。而11q23/MLL重排則主要見于AL病人,尤其是嬰兒ALL、成人AML和治療相關(guān)的AL(t-AL),也可見于MDS[1-3]。
已發(fā)現(xiàn)11q23/MLL重排的位點(diǎn)多達(dá)80余個(gè),幾乎累及了各條染色體,CCA只能檢出少數(shù)形態(tài)變化明顯的易位。除易位外,MLL基因異常還有基因擴(kuò)增、PTD和PHD結(jié)構(gòu)域缺失[1-3]。CCA不能檢出這3種基因異常,因此需要多種方法加以確定。隨著表觀遺傳學(xué)和靶向藥物的研究進(jìn)展,確定各種形式的MLL基因異常具有更重要和更現(xiàn)實(shí)的意義[16-18]。應(yīng)用11q23/MLL雙色分離DNA探針進(jìn)行FISH檢測(cè),可同時(shí)檢出累及11q23/MLL的各種易位而不需預(yù)先明確伙伴基因,易于在分裂間期細(xì)胞確定易位的存在,在中期分裂象明確伙伴基因的位點(diǎn),同時(shí)還有效揭示MLL基因的擴(kuò)增。文獻(xiàn)報(bào)道AML伴t(8;21)(q22;q22)/AML1-ETO、t(15;17)(q22;q11~12)/PML-RARa、inv(16)(p13;q22)/CBFβ-MYH11的病人未見11q23/MLL基因重排[19]。本研究使用LSI 11q23/MLL雙色分離DNA探針對(duì)112例成人AL病人進(jìn)行FISH檢測(cè),結(jié)果顯示9例存在累及11q23/MLL的易位(檢出率8.04%),8例存在MLL基因的擴(kuò)增(檢出率7.14%)。一方面說明FISH檢測(cè)MLL基因易位具有高效性和針對(duì)性,另一方面說明MLL基因擴(kuò)增在成人AL中發(fā)生率高。如果加上PTD和PHD結(jié)構(gòu)域缺失,則MLL基因異常在AL中發(fā)生率可能會(huì)很高,尤其pro-BALL和AML M1、M2、M4、M5、M6病人更應(yīng)注意MLL基因異常。同時(shí),有些累及11q/23的細(xì)胞遺傳學(xué)異常不一定是MLL基因異常[19-21]。理想的方法是在一張玻片上能同時(shí)檢測(cè)以上4種異常,但目前尚無此項(xiàng)技術(shù)。
本文重點(diǎn)討論11q23/MLL易位和MLL基因擴(kuò)增的臨床和實(shí)驗(yàn)室特點(diǎn)。相關(guān)研究顯示,伴MLL基因擴(kuò)增的AML病人占全部AML病人的1%~2%,發(fā)病年齡較大、外周血WBC較低、骨髓病態(tài)造血更明顯、常為復(fù)雜核型(通常有5q-、7q-、17p-等),但均有單核細(xì)胞分化傾向、治療反應(yīng)差、預(yù)后不良等特征[22-31]。目前,ALL病人伴MLL基因擴(kuò)增的報(bào)道極少。
本文對(duì)11q23/MLL易位和MLL基因擴(kuò)增病人的分化抗原標(biāo)志檢測(cè)顯示,二者具有幾乎完全相同的免疫表型。本文11q23/MLL易位和MLL基因擴(kuò)增的ALL和BAL病人均表達(dá)pro-B細(xì)胞標(biāo)志CD34、CD19、HLA-DR,均可以看作是pro-B ALL伴有其他系列表面標(biāo)志的異常表達(dá)。11q23/MLL易位和MLL基因擴(kuò)增的AML病人均表達(dá)干/祖細(xì)胞表面標(biāo)志CD34、CD117、HLA-DR,表明白血病細(xì)胞分化阻滯在造血干/祖細(xì)胞的早期階段。髓系標(biāo)志除CD13、CD33外,CD56、CD64、CD11b和CD14呈現(xiàn)高表達(dá)率,說明單核細(xì)胞分化傾向,與文獻(xiàn)報(bào)道相符[19-31]。細(xì)胞轉(zhuǎn)化和動(dòng)物實(shí)驗(yàn)的研究表明,轉(zhuǎn)導(dǎo)MLL融合基因后髓系細(xì)胞“返祖”停留在粒-單核祖細(xì)胞階段,并且不需要其他異?;虻膮⑴c[14],轉(zhuǎn)化細(xì)胞檢測(cè)到高水平的HOXA9和MEIS1的表達(dá)[12-13]。也有研究結(jié)果表明,轉(zhuǎn)化細(xì)胞主要是自我更新能力增加和凋亡減少而不影響其分化,其結(jié)果是粒-單核祖細(xì)胞數(shù)量增多和逐步出現(xiàn)的正常造血被抑制。伴MLL基因異常的AML病人診斷為M1、M2、M4、M5和M6,極少數(shù)診斷為M7,但免疫分型均有單核細(xì)胞分化傾向[25-27],也說明MLL基因主要影響粒-單核祖細(xì)胞。
本文11q23/MLL易位和MLL基因擴(kuò)增的成人ALL病人因檢出例數(shù)較少、年齡分布范圍較大,很難進(jìn)行對(duì)照。MLL基因擴(kuò)增的成人AML病人較11q23/MLL易位的成人AML病人發(fā)病年齡大,白細(xì)胞計(jì)數(shù)低,與相關(guān)文獻(xiàn)報(bào)道相符[28-30]。但文獻(xiàn)報(bào)道MLL基因擴(kuò)增標(biāo)本主要是有特殊染色體異常如hsr、dmin、SJT、環(huán)形染色體和標(biāo)記染色體者,本文研究事先不關(guān)心染色體核型。也就是說本文研究更有隨機(jī)性。骨髓病態(tài)造血是11q23/MLL基因異常的AML病人最明顯的特征。無論是11q23/MLL易位還是MLL基因擴(kuò)增的病人,白細(xì)胞計(jì)數(shù)較低、骨髓中白血病細(xì)胞較少者病態(tài)造血更明顯,可能是因?yàn)榘籽〖?xì)胞較多者分化細(xì)胞的數(shù)量較少,對(duì)病態(tài)造血的描述較為困難。MLL基因擴(kuò)增者較11q23/MLL易位者形態(tài)學(xué)異常更明顯。有研究報(bào)道MLL基因擴(kuò)增者細(xì)胞遺傳學(xué)多存在復(fù)雜核型(常伴有5q-、7q-、17p-等)[31],本文研究并沒有發(fā)現(xiàn)該特點(diǎn)。單獨(dú)的MLL基因擴(kuò)增可能足以致細(xì)胞轉(zhuǎn)化,而且在MDS中也常可檢測(cè)到MLL基因擴(kuò)增,說明伴MLL基因擴(kuò)增的AML與MDS有更密切的關(guān)聯(lián)性,也容易解釋其他的臨床特點(diǎn)。伴MLL基因擴(kuò)增的ALL也可能與MDS有密切關(guān)聯(lián)性。
綜上所述,MLL基因擴(kuò)增和11q23/MLL易位的成人AL病人具有幾乎完全相同的免疫學(xué)表型,極差的治療反應(yīng)和不良預(yù)后。但MLL基因擴(kuò)增較11q23/MLL重排的成人AL病人也有其特點(diǎn):病人發(fā)病年齡較大,外周血白細(xì)胞計(jì)數(shù)較低,骨髓增生程度較低,病態(tài)造血更明顯,與MDS的關(guān)系可能更密切。成人AL病人MLL基因擴(kuò)增的發(fā)生率較高。
[參考文獻(xiàn)]
[1]KRIVTSOV A V, HOSHII T, ARMSTRONG S A. Mixed-lineage leukemia fusions and chromatin in leukemia[J].?Cold Spring Harbor Perspectives in Medicine, 2017,7(11):1-21.
[2]SLANY R K. The molecular mechanics of mixed lineage leukemia[J].?Oncogene, 2016,35(40):5215-5223.
[3]MARSCHALEK R. Systematic classification of Mixed-Lineage leukemia fusion partners predicts additional cancer pathways[J].?Annals of Laboratory Medicine, 2016,36(2):85-100.
[4]ISHIZAWA S, SLOVAK M L, POPPLEWELL L, et al. High frequency of pro-B acute lymphoblastic leukemia in adults with secondary leukemia with 11q23 abnormalities[J].?Leukemia, 2003,17(6):1091-1095.
[5]SUN Y N, HU Y X, GAO L, et al. The therapeutic efficacy of pediatric ALL patients with MLL gene rearrangement treated with CCLG-ALL2008 protocol[J].?European Review for Medical and Pharmacological Sciences, 2018,22(18):6020-6029.
[6]BAER M R, STEWART C C, LAWRENCE D, et al. Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry[J].?Leukemia, 1998,12(3):317-325.
[7]GRIMWADE D, WALKER H, HARRISON G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1 065 patients entered into the United Kingdom Medical Research Council AML11 trial[J].?Blood, 2001,98(5):1312-1320.
[8]VAN DER BURG M, BEVERLOO H B, LANGERAK A W, et al. Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set[J].?Leukemia, 1999,13(12):2107-2113.
[9]MARSCHALEK R, NILSON I, LOCHNER K, et al. The structure of the human ALL-1/MLL/HRX gene[J].?Leukemia & Lymphoma, 1997,27(5/6):417.
[10]COSGROVE M S, PATEL A. Mixed lineage leukemia: a structure-function perspective of the MLL1 protein[J].?FEBS Journal, 2010,277(8):1832-1842.
[11]YIP B H, SO C W. Mixed lineage leukemia protein in normaland leukemic stem cells[J].?Experimental Biology and Medi-cine, 2013,238(3):315-323.
[12]LUESCHER F J, CHATAIN N, KUO C C, et al. Hemato-poietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l[J].?Scientific Reports, 2019,9(1):1-16.
[13]FABER J, KRIVTSOV A V, STUBBS M C, et al. HOXA9 is required for survival in human MLL-rearranged acute leuke-
mias[J].?Blood, 2009,113(11):2375-2385.
[14]KRIVTSOV A V, FENG Z, ARMSTRONG S A. Transformation from committed progenitor to leukemia stem cells[J].?Annals of the New York Academy of Sciences, 2009(1176):144-149.
[15]WEI J P, WUNDERLICH M, FOX C, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia[J].?Cancer Cell, 2008,13(6):483-495.
[16]CHAN A K N, CHEN C W. Rewiring the epigenetic networks in mll-rearranged leukemias: epigenetic dysregulation and pharmacological interventions[J].?Front Cell Dev Biol, 2019,7:81. doi:10.3389/fcell.2019.00081.
[17]AHO E R, WEISSMILLER A M, FESIK S W, et al. Targeting WDR5: a WINning anti-cancer strategy[J]? Epigenet Insights, 2019,18(12):1-5.
[18]ROOLF C, RICHTER A, KONKOLEFSKI C, et al. Deci-
tabine demonstrates antileukemic activity in B cell precursor acute lymphoblastic leukemia with MLL rearrangements[J].?Journal of Hematology & Oncology, 2018,11(1):1-13.
[19]ARNAUD B, DOUET-GUILBERT N, MOREL F, et al Screening by fluorescence in situ hybridization for MLL status at diagnosis in 239 unselected patients with acute myeloblastic leukemia[J]. Cancer Genet Cytogenet, 2005,161(2):110-115.
[20]KIM H J, CHO H I, KIM E C, et al. A study on 289 conse-
cutive Korean patients with acute leukaemias revealed fluorescence in situ hybridization detects the MLL translocation wi-
thout cytogenetic evidence both initially and during follow-up[J].?British Journal of Haematology, 2002,119(4):930-939.
[21]CUTHBERT G, THOMPSON K, MCCULLOUGH S, et al. MLL amplification in acute leukaemia:a United Kingdom Cancer Cytogenetics Group (UKCCG) study[J].?Leukemia, 2000,14(11):1885-1891.
[22]MICHAUX L, WLODARSKA I, STUL M, et al. MLL amplification in myeloid leukemias:a study of 14 cases with multiple copies of 11q23[J].?Genes Chromosomes & Cancer, 2000,29(1):40-47.
[23]RAYEROUX K C, CAMPBELL L J. Gene amplification in myeloid leukemias elucidated by fluorescence in situ hybridization[J].?Cancer Genetics and Cytogenetics, 2009,193(1):44-53.
[24]ZATKOVA A, MERK S, WENDEHACK M, et al. AML/MDS with 11q/MLL amplification show characteristic gene expression signature and interplay of DNA copy number changes[J].?Genes Chromosomes & Cancer, 2009,48(6):510-520.
[25]KOKA R, MAINOR C B, BANERJEE A, et al. Concomitant amplification of the MLL gene on a ring chromosome and a homogeneously staining region (hsr) in acute myeloid leuke-
mia: mechanistic implications[J].?Leukemia & Lymphoma, 2017,58(5):1250-1253.
[26]REDDY K S, PARSONS L, MAK L, et al. Segmental amplification of 11q23 region identified by fluorescence in situ hybridization in four patients with myeloid disorders: a review[J].?Cancer Genetics and Cytogenetics, 2001,126(2):139-146.
[27]HERRY A, DOUET-GUILBERT N, GUGANIC N, et al. Del(5q) and MLL amplification in homogeneously staining region in acute myeloblastic leukemia: a recurrent cytogenetic association[J].?Annals of Hematology, 2006,85(4):244-249.
[28]TANG G L, DINARDO C, ZHANG L P, et al. MLL gene amplification in acute myeloid leukemia and myelodysplastic syndromes is associated with characteristic clinicopathological findings and TP53 gene mutation[J].?Human Pathology, 2015,46(1):65-73.
[29]DE OLIVEIRA F M, LUCENA-ARAUJO A R, SANTOS G A, et al. Segmental amplification of MLL gene associated with high expression of AURKA and AURKB genes in a case of acute monoblastic leukemia with complex karyotype[J].?Can-
cer Genetics and Cytogenetics, 2010,198(1):62-65.
[30]MAITTA R W, CANNIZZARO L A, RAMESH K H. Association of MLL amplification with poor outcome in acute myeloid leukemia[J].?Cancer Genetics and Cytogenetics, 2009,192(1):40-43.
[31]POPPE B, VANDESOMPELE J, SCHOCH C, et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies[J].?Blood, 2004,103(1):229-235.