• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類非線性離散擾動(dòng)系統(tǒng)的反周期解

      2019-09-10 07:22:44孟鑫

      摘要:研究了一類具有指數(shù)型二分性非線性離散擾動(dòng)系統(tǒng)的反周期解.應(yīng)用Banach不動(dòng)點(diǎn)定理,給出了非線性離散擾動(dòng)系統(tǒng)存在唯一反周期解的充分條件,并通過例子說明了主要結(jié)論在實(shí)際問題中的應(yīng)用.

      關(guān)鍵詞:擾動(dòng)系統(tǒng); 指數(shù)型二分性; 反周期解;Banach不動(dòng)點(diǎn)定理

      中圖分類號(hào):0175.7

      文獻(xiàn)標(biāo)志碼:A DOI: 10.3969/j.issn.1000-5641.2019.06.001

      0 引言

      指數(shù)型二分性是線性自治方程雙曲率概念在非自治方程中的推廣,它是研究非線性微分方程以及非自治離散動(dòng)力系統(tǒng)的重要工具.指數(shù)型二分性理論是由Lyapunov和Poincare最先提出的,隨后指數(shù)型二分性理論被廣泛應(yīng)用到微分方程定性與穩(wěn)定性等領(lǐng)域之中[1-4].離散動(dòng)力系統(tǒng)的指數(shù)型二分性理論同樣是眾多學(xué)者所研究的重要問題,關(guān)于指數(shù)型二分性在離散動(dòng)力系統(tǒng)中的應(yīng)用,已經(jīng)有了一些基本的結(jié)論[5-9].

      近年來,反周期系統(tǒng)的反周期解問題引起了國內(nèi)外一些學(xué)者的關(guān)注[10-17].動(dòng)力系統(tǒng)的反周期問題常出現(xiàn)在物理過程的數(shù)學(xué)模型中以及偏微分方程和抽象微分方程的研究中.但是,由于離散動(dòng)力系統(tǒng)不僅可能存在一些更復(fù)雜的動(dòng)力學(xué)行為,并且缺少必要的研究工具.所以關(guān)于離散動(dòng)力系統(tǒng)反周期解問題的研究結(jié)果不多見.如文獻(xiàn)[10-11].

      [參考文獻(xiàn)]

      [1]COPPEL W A. Dichotomies in Stability Theory [M]. New York: Springer-Verlag, 1978.

      [2]CHURCH K, LIU X. Bifurcation of bounded solutions of impulsive differential equations [J] . International Journalof Bifurcation and Chaos, 2016, 26(14): 1-20.

      [3]PINTO M. Dichotomy and existence of periodic solutions of quasilinear functional differential equations [J].Nonlinear Analysis, 2010, 72(3): 1227-1234.

      [4]RODRIGUES H M, SILVERIA M. On the relationship between exponential dichotomies and the Fredholmalternative [J]. J Differential Equations, 1988, 73(3): 78-81.

      [5] BEREZANSKY L, BRAVERMAN E. On exponential dichotomy, Bohl-Perron type thorems and stability ofdifference equations [J]. J Math Anal Appl, 2005, 304(2): 511-530.

      [6]DRAGICEVIC D. A note on the nonuniform exponential stability and dichotomy for nonautonomous differenceequations [J]. Linear Algebra and Its Applications, 2018, 552(1): 105-126.

      [7]AULBACH B, MINH N. The concept of spctral dichotomy for linear difference equations [J] . J Math Anal Appl,1994, 185(2): 275-287.

      [8]HUY N T, MINH N V. Exponential dichotomy of difference equations and applications to evolution equations on the half-line [Jl Computers & Mathematics with Applications, 2001, 42(3/5): 301-311.

      [9]ZHANG J, FAN M, ZHU H. Existence and roughness of exponential dichotomies of linear dynamic equations ontime scales [J]. Computers & Mathematics with Applications, 2010, 59(8): 2658-2675.

      [10]AGARWAL R P, CABADA A, OTERO-ESPINAR V. Existence and uniqueness results for n-th order nonlineardifference equations in presence of lower and upper solutions [Jl Arch Inequal Appl, 2003: 1(3/4): 421-431.

      [11] AGARWAL R P, CABADA A, OTERO-ESPINAR V, et al. Existence and uniqueness of solutions for anti- periodic difference equations [J]. Arch Inequal Appl, 2004, 2(4): 397-412.

      [12] KUANG J, YANG Y. Variational approach to anti-periodic boundary value problems involving the discretep-Laplacian [J]. Boundary Value Problems, 2018(1): 86.

      [13] LU X, YAN P, LIU D. Anti-periodic solutions for a class of nonlinear second-order Rayleigh equations withdelays [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(11): 3593-3598.

      [14] CHEN Y Q, CHO J, O'REGAN D. Anti-periodic solutions for evolution equations [J]. Math Nachr, 2005: 278(4) :356362.

      [15] HADJIAN A, HEIDARKHANI S. Existence of one non-trivial anti-periodic solution for second-order impulsivedifferential inclusions [Jl Mathematical Methods in the Applied Science, 2017, 40(14): 5009-5017.

      [16] PU H, YANG J. Existence of anti-periodic solutions with symmetry for some high-order ordinary differentialequations [J]. Boundary Value Problems, 2012(1): 108.

      [17] CHEN Z. Global exponential stability of anti-periodic solutions for neutral type CNNs with D operator [J].International Journal of Machine Learning and Cybernetics, 2018, 9(7): 1109-1115.

      收稿日期:2018-09-13

      基金項(xiàng)目:國家自然科學(xué)基金(10971084);吉林省教育廳“十三五”科學(xué)技術(shù)項(xiàng)目(JJKH20170368KJ);吉林師范大學(xué)博士啟動(dòng)項(xiàng)目(吉師博2016002號(hào))

      作者簡介:孟鑫,男,博士,副教授,研究方向?yàn)閯?dòng)力系統(tǒng).E-mail: mqym@sina.cn.

      凤冈县| 仲巴县| 神池县| 定州市| 二连浩特市| 泾源县| 筠连县| 平昌县| 海阳市| 南丰县| 常宁市| 锦屏县| 布尔津县| 读书| 临泽县| 故城县| 永善县| 桃源县| 那坡县| 淳化县| 鹿邑县| 忻城县| 犍为县| 南木林县| 民乐县| 察隅县| 昭通市| 台南县| 泽普县| 宁城县| 玛纳斯县| 武冈市| 常山县| 顺义区| 从江县| 汾西县| 临泽县| 婺源县| 道真| 聂拉木县| 平泉县|