李世鵬 李會云 郭明欣 趙旭升
摘要:水稻是中國重要的糧食作物之一,在人口飛速增長和耕地面積急劇下降的今天,通過遺傳改良提升其產量和品質顯得尤其重要。隨著分子生物學和基因組學的發(fā)展,大量產量性狀基因通過圖位克隆和突變體篩選等方法得到克隆,產量形成分子調控逐步被解析,部分功能基因在育種中得到運用。對上述內容進行了綜述,并對該領域的研究方向進行了展望。
關鍵詞:水稻;產量;功能基因;分子育種
中圖分類號:S511? ? ? ? ?文獻標識碼:A
文章編號:0439-8114(2019)16-0005-05
DOI:10.14088/j.cnki.issn0439-8114.2019.16.001? ? ? ? ? ?開放科學(資源服務)標識碼(OSID):
水稻是世界上最重要的糧食作物之一。從2004年以來中國水稻的種植面積逐年增加,2017年中國水稻的種植面積達到了0.30億hm2,在中國糧食生產中占有舉足輕重的地位。水稻產量是由多因素決定的復雜形狀,主要由三大主要因素構成,包括單株的穗數(shù)、每穗粒數(shù)和千粒重。穗數(shù)主要由植株的分蘗能力決定,穗數(shù)的多少主要由一級和二級分蘗數(shù)決定。每穗粒數(shù)則是由每穗穎花數(shù)和結實率決定的,其中每穗穎花數(shù)主要取決于一次枝梗和二次枝梗數(shù)。而分蘗和枝梗的發(fā)育形成均由頂端分生組織的活性決定。千粒重由粒型和灌漿率兩個因素決定,其中粒型又由粒長、粒寬和粒厚三個因素決定。而這三個因素是通過細胞分裂、細胞擴增和極性分化來決定種子的最終性狀[1-3]。
1? 水稻穗數(shù)、每穗粒數(shù)相關基因克隆及調控機理
近些年來,通過圖位克隆、突變體篩選和同源基因克隆的方法,多個控制水稻分蘗發(fā)育和枝梗發(fā)育的基因被克隆。隨著越來越多控制水稻穗粒數(shù)的基因被克隆,水稻分蘗發(fā)育和分枝發(fā)育的調控路徑逐漸清晰[4,5]。
1.1? 水稻分蘗發(fā)育調控機理
目前已克隆的水稻分蘗發(fā)育相關基因主要包括調控分蘗的發(fā)生、形成以及葉原基形成間隔期三類基因。
MOC1、LAX1和LAX2基因調控水稻分蘗的發(fā)生。通過對水稻分蘗突變體的研究,克隆了一系列控制水稻分蘗的基因,如MOC1、D3、DWARF10、D17/HTD1等。MOC1是第一個在水稻中被克隆的控制水稻分蘗的基因。moc1突變體表現(xiàn)為沒有任何分蘗,只有一個主莖且花序軸和小穗也明顯減少。MOC1編碼一個GRAS家族的轉錄因子正向調控葉腋分生組織分化和腋芽的形成,并且還促進腋芽的向外生長[6]。Tillering and Dwarf 1基因編碼的蛋白質(TAD1)與APC/C、OsAPC10形成APC/CTAD1復合體,該復合體與靶基因MOC1結合從而降低MOC1蛋白質的活性。而Tiller enhancer基因編碼的蛋白質(TE)與APC/C、OsCDC27形成APC/CTE,該復合體與靶基因MOC1結合通過泛素-26S蛋白酶體途徑降解MOC1蛋白質,同時該復合體還抑制組織特征基因OSH1的表達[7,8]。lax1和lax2突變體具有相似的表型,即分蘗數(shù)明顯減少,而二者均在葉腋分生組織中高表達。lax1、lax2雙突變體比其單突變體分蘗數(shù)減少更為明顯。spa單突變體分蘗數(shù)比其野生型沒有明顯下降,但lax1、spa雙突變體幾乎沒有任何分蘗。上述研究表明,LAX1、LAX2和SPA正向調控水稻分蘗的發(fā)生,而三者屬于同一調控路徑[9,10]。
獨腳金內酯(SLs)是植物生產的關鍵因子,控制次生莖的形成和調控根的分岔。擬南芥中MAX1、MAX3和MAX4是獨腳金內酯合成過程中的重要參與酶,而MAX2參與感應獨腳金內酯調控通路信號。水稻中的MAX2、MAX3和MAX4同源基因均已被分離,分別命名為D3、D17/HTD1和D10。D3編碼產物與擬南芥MAX2/ORE9同源,含有F-box和富含亮氨酸重復等結構域[11]參與獨腳金內酯通路信號的接收。D3蛋白質抑制水稻分蘗芽的活性,維持它們的休眠性。通過對葉綠素降解、細胞膜離子滲漏和衰老相關基因的表達量檢測表明,D3蛋白質也參與黑暗誘導的植物葉片衰老過程和過氧化氫誘導的植物葉片細胞死亡過程[12]。D14編碼一個酯酶,抑制水稻分枝的發(fā)生,其作為獨腳金內酯的受體參與感應獨腳金內酯通路信號[13]。而D27、D17/HTD1和D10參與獨腳金內酯前體的合成過程調控分枝的發(fā)生[14,15]。D53負調控獨腳金內酯合成信號通路。潛在的獨腳金內酯受體D14和D3形成D14-D3復合體參與獨腳金內酯通路信號,而D14-D3復合體通過調節(jié)D53的活性來調控獨腳金內酯通路信號[16,17]。
PLA1編碼一個細胞色素P450 CYP78A11,調節(jié)營養(yǎng)生長期葉片起始發(fā)育的速率。PLA1在發(fā)育中的葉原基中行使功能,影響葉片起始發(fā)育時間以及營養(yǎng)生長的終止,葉原基形成間隔期影響葉片的數(shù)目和分蘗數(shù),從而影響穗數(shù)[18]。PLA2調節(jié)水稻葉片起始發(fā)育和葉片成熟[19]。PLA1和PLA2均作為GA信號轉導的下游基因正向調控葉片的成熟[20]。IPA1編碼一個含SBP-box的轉錄因子,由miRNA156調節(jié)參與調控多個生長發(fā)育過程[21,22]。全基因組染色質免疫共沉淀-測序分析表明,水稻莖尖和幼穗含有一系列IPA1互作蛋白質。IPA1蛋白質可以通過SBP-box結構域直接與受調控基因的核心基序GTAC相結合調控株型發(fā)育相關基因。IPA1與控制水稻分蘗側芽生長的負調控因子OsTB1的啟動子直接結合,抑制水稻分蘗發(fā)生,還通過直接正調控水稻株型重要基因DEP1調控水稻的株高和穗長。IPA1蛋白質也可以通過與TCP家族的轉錄因子PCF1和PCF2相互作用與TGGGCC/T基序間接相結合,調控一系列發(fā)育相關基因[23]。IPA1還受上游基因qWS8/ipa1-2D調控,該基因與IPA1啟動子區(qū)的DNA甲基化程度減低和染色質開放程度相關,通過上調表達IPA1改變水稻株型[24]。
1.2? 水稻枝梗發(fā)育調控機理
目前已發(fā)現(xiàn)的調控水稻分枝發(fā)育的基因主要分為調控枝梗原基的形成和穗大小兩類基因。許多調控分蘗發(fā)育的基因同樣調控分枝的發(fā)育。例如,調控分蘗發(fā)生的主要基因MOC1、LAX1和LAX2同樣調控枝梗原基的形成。
Gn1a是水稻第一個被克隆的控制穗粒數(shù)的QTL,也是水稻第一個通過圖位克隆的方法成功克隆的數(shù)量性狀基因。Gn1a編碼一個細胞分裂素氧化酶/脫氫(OsCXK2),下調調控細胞分裂素的磷酸化程度[25]。OsCXK2的下調表達導致細胞分裂素在花序分生組織中的積累。而細胞分裂素的積累增加導致繁殖器官數(shù)目的增加,最終導致穗粒數(shù)的增加。而DEP1通過調控OsCXK2的表達來調控水稻的穗粒數(shù)[26]。SP1編碼一個可能的多肽轉運蛋白質(Peptide transporter,PTR),影響水稻穗長[27]。
1.3? 水稻開花期基因對穗粒數(shù)的影響
開花期基因在改變抽穗期的同時也影響了水稻株型的相關性狀。Ghd7同時調控水稻每穗粒數(shù)、株高和抽穗期3個性狀[28]。在長日照條件下,單獨的phyA或者phyB、phyC共同作用可以誘導Ghd7 mRNA的積累,Ghd7的增強表達抑制下游基因Ehd1的表達,從而推遲抽穗、增加株高和每穗粒數(shù)。而單獨的phyB降低Ghd7 mRNA的水平,或者在短日照條件下Ehd1通過誘導FT-like基因的表達來促進短日照下提早抽穗。此外,Hd2與Ghd7在長日照條件下也存在遺傳互作[29]。Ghd8是另一個同時影響穗粒數(shù)、株高和抽穗期的重要基因。長日照條件下,Ghd8下調表達Ehd1、RFT1和Hd3a,延遲水稻開花,但在短日照條件下并不抑制這些基因的表達。Ghd8通過上調調控MOC1基因的表達,從而增加水稻的分蘗數(shù)、一次枝梗和二次枝梗數(shù)[30]。
2? 水稻千粒重相關基因的克隆及調控機理
水稻粒重屬于復合性狀,一般將其分解成粒長、粒寬、粒厚和填充度四個要素進行研究。Xing等[31]將目前已克隆的粒重相關基因分為3類:第一類是通過影響種子縱軸生長的細胞數(shù)量和細胞大小來調控粒長;第二類是通過影響種子橫軸生長的細胞數(shù)量和細胞大小來調控粒寬;第三類是調控填充度相關基因。
2.1? 水稻粒長相關基因的克隆
目前已克隆的粒長相關基因可分為兩類。第一類基因主要是從水稻突變體庫中篩選獲得。D1、D2、D11和D61均篩選自油菜素內酯信號(Brassinosteroid,BR)相關突變體。這些基因的突變均導致植株變矮,子粒變短。D1基因參與調控GA和BR兩條傳導途徑[32,33]。D2和D11參與BR的合成[34,35]。D61則編碼BR受體蛋白[36]。SMG1基因調控細胞的增殖,參與BR信號傳導途徑[37]。油菜素內酯在生理濃度下誘導激活赤霉素合成基因的表達并抑制激活赤霉素失活基因的表達,導致赤霉素的積累,從而促進植物生長[38]。SRS1、SRS3、SRS5和DSG1是從突變體庫中篩選到的另一類基因。這些基因的突變導致子粒變小、變短。SRS1的突變造成縱向生長的細胞變短、變小[39],SRS3和SRS5的突變僅造成縱向生長的細胞變短[40,41]。已有研究表明,SRS1、SRS3和SRS5與BR信號傳導途徑無關。而DSG1編碼1個有絲分裂原活化蛋白激酶,參與調控BR信號傳導途徑[42]。第二類主要通過QTL定位的方法克隆到粒長相關基因。GS3是第一個克隆的粒型基因。GS3編碼一個含有3個結構域的跨膜蛋白質,負調控粒長和粒重[43,44]。GL3.1通過調控細胞周期蛋白T1;3負調控子粒大小[45]。TGW6編碼IAA-葡萄糖水解酶,TGW6能將IAA-葡萄糖水解成游離的IAA和葡萄糖。而當TGW6功能缺失時,會增加抽穗前子粒中碳水化合物的積累,從而增加產量[46]。qTGW3/TGW3編碼1個糖原合成酶激酶(OsGSK5)負調控粒長和粒重[47,48]。
2.2? 水稻粒寬相關基因的克隆
目前已克隆的粒寬基因包括GW2、GW5/qSW5、GW7、GW8、GS5、GS6、GS9等。GW2和GW5/qSW5功能相似,均是通過泛素-蛋白酶體負調控粒寬和粒重。GW2或GW5/qSW5功能缺失將導致泛素不能被轉移到靶蛋白質,使得本應降解的底物不能被識別降解,進而激活穎花外殼細胞的分裂,從而增加穎花外殼的寬度,最終粒重得到增加[49,50]。GS6和GW7也是通過負調控穎殼細胞數(shù)影響水稻粒寬和粒重[51,52]。而GS5、GW8和GS9則是正向調控子粒的大小。GS5能夠上調5個G1/S期基因(CDKA1、CAK1、CAK1A、CYCT1和H1)的表達量,從而促進細胞分裂并且增加細胞的橫向生長[53]。GW8則是上調多個G1/S期基因的表達量,從而促進細胞的增殖并且提高灌漿速率[54]。后續(xù)研究表明,GW8抑制GW7的表達[55]。GS9編碼一個未知蛋白質,正向調控細胞分裂[56]。
2.3? 水稻填充度相關基因的克隆
G1F1是第一個被發(fā)現(xiàn)的調控水稻灌漿的基因。G1F1負調控蔗糖酶的活性,在水稻子粒發(fā)育時,調控蔗糖的運輸卸載和灌漿[52]。RISBZ1和RPBF協(xié)同調控種子儲藏蛋白質基因的表達,調節(jié)種子蛋白質、淀粉和脂類的含量[57]。此外,OsAGSW1和WTG1綜合調控水稻粒長、粒寬和填充度[58,59]。
3? 產量性狀基因在水稻育種中的應用
早期人們利用野生稻高產QTL位點yld1.1和yld2.1育成了遠恢611和Y兩優(yōu)7號水稻[60,61]。隨著大量水稻產量相關性狀基因的克隆為水稻分子育種提供了豐富的基因資源。Li等[62]通過分子標記輔助育種將粒重增效基因GW6轉育到秈稻品種“9311”和粳稻品種中花11。從以“9311”為輪回親本構建的近等基因系中篩選出1個優(yōu)良品系SSL-1。該品系比“9311”粒長增加了11%、粒重增加了19%,最終單株產量增加了6.7%。從以中花11為輪回親本構建的近等基因系中篩選出3個優(yōu)良品系R1、R2和R3,三者千粒重增加均超過30%,產量增加均超過7%。基因編輯技術的發(fā)展為水稻改良提供了新的途徑。Li等[63]以中花11為試驗材料,利用CRISPR/Cas9技術對Gn1a、DEP1、GS3和IPA1 4個產量性狀相關基因進行基因編輯。gn1a、dep1和gs3 3種突變體均表現(xiàn)出穗數(shù)、每穗粒數(shù)和粒重增加,而ipa1突變體由于編輯位點不同表現(xiàn)出分蘗增多和減少2種截然不同的類型。
4? 問題及展望
根據(jù)統(tǒng)計,水稻中已克隆產量相關的基因占總數(shù)的29%[64]。然而,水稻分子育種上取得的成效卻主要集中在質量性狀基因的轉育和基因聚合上,特別是抗稻瘟病基因和白葉枯病基因的轉育??傮w來看,水稻產量相關基因在育種上的運用較少,主要原因在于:①產量調控機制認識有限。產量是由復雜的多性狀、多基因控制,單一的改良某一個或幾個基因不一定能達到預期的育種目標。②對育種有利用價值的基因或等位基因尚少。多數(shù)已克隆基因已在長期的馴化或育種實踐中得到應用,如gs3、gw5和gw8等。③在育種過程中,對有利基因轉移中可能遇到與不利性狀存在連鎖累贅的問題[65]。
要解決上述問題,就需要深入挖掘和利用更多的產量相關基因的遺傳變異。Huang等[66]基于全基因組關聯(lián)分析和全基因組預測在作物中的研究進展提出了新的分子設計育種策略。隨著越來越多的水稻功能基因被克隆,利用不同性狀的優(yōu)異等位基因,綜合改良水稻產量和品質性狀已成為水稻功能基因組學的重要研究內容之一。
參考文獻:
[1] 酈? 娟.水稻突變體庫的篩選及控制水稻開花和粒重基因HGW的功能研究[D].武漢:華中農業(yè)大學,2012.
[2] WANG D Y,XU C M,YUAN J,et al. Changes in agronomic traits of indica hybrid rice during genetic improvement[J].Chinese journal of rice science,2010,24(2):157-161.
[3] JIANG Y H,CAI Z X,XIE W B,et al. Rice functional genomics research:Progress and implications for crop genetic improvement[J].Biotechnology advances,2012,30(5):1059-1070.
[4] LIANG W H,SHANG F,LIN Q T,et al. Tillering and panicle branching genes in rice[J]. Gene,2014,537(1):1-5.
[5] WANG Y H,LI J. Branching in rice[J].Current opinion in plant biology,2011,14(1):94-99.
[6] LI X,QIAN Q,F(xiàn)U Z,et al. Control of tillering in rice[J].Nature,2003,422:618-621.
[7] LIN Q B,WANG D,DONG H,et al. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1[J].Nature communications,2012,3:752.
[8] XU C,WANG Y H,YU Y C,et al. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering[J].Nature communications,2012,3:750.
[9] KOMATSU K,MAEKAWA M,UJIIE S,et al. LAX and SPA:Major regulators of shoot branching in rice[J].Proceedings of the national academy of sciences,2003,100(20):11765-11770.
[10] TABUCHI H,ZHANG Y,HATTORI S,et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J].The plant cell,2011,23(9):3276-3287.
[11] ISHIKAWA S,MAEKAWA M,ARITE T,et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J].Plant and cell physiology,2005,46(1):79-86.
[12] YAN H F,SAIKA H,MAEKAWA M,et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J].Genes & genetic systems,2007,82(4):361-366.
[13] ARITE T,UMEHARA M,ISHIKAWA S,et al. d14,a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J].Plant and cell physiology,2009,50(8):1416-1424.
[14] ARITE T,IWATA H,OHSHIMA K,et al. DWARF10,an RMS1/MAX4/DAD1 ortholog,controls lateral bud outgrowth in rice[J].The plant journal,2007,51(6):1019-1029.
[15] ZOU J,ZHANG S,ZHANG W,et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J].The plant journal,2006,48(5):687-698.
[16] JIANG L,LIU X,XIONG G S,et al. DWARF53 acts as a repressor of strigolactone signalling in rice[J].Nature,2013,504:401-405.
[17] ZHOU F,LIN Q B,ZHU L H,et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J].Nature,2013,504:406-410.
[18] ITOH J I,HASEGAWA A,KITANO H,et al. A recessive heterochronic mutation, plastochron1,shortens the plastochron and elongates the vegetative phase in rice[J].The plant cell,1998, 10(9):1511-1521.
[19] KAWAKATSU T,ITOH J I,MIYOSHI K,et al. PLASTOCHRON2 regulates leaf initiation and maturation in rice[J].The plant cell,2006,18(3):612-625.
[20] MIMURA M,NAGATO Y,ITOH J I. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway[J].Planta,2012,235(5):1081-1089.
[21] JIAO Y,WANG Y,XUE D,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nature genetics,2010,42(6):541-544.
[22] MIURA K,IKEDA M,MATSUBARA A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J].Nature genetics,2010,42(6):545-549.
[23] LU Z,YU H,XIONG G,et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture[J].The plant cell,2013,25(10):3743-3759.
[24] ZHANG L,YU H,MA B,et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J].Nature communications,2017,8:14789.
[25] ASHIKARI M,SAKAKIBARA H,LIN S,et al. Cytokinin oxidase regulates rice grain production[J].Science,2005,309(5735):741-745.
[26] HUANG X,QIAN Q,LIU Z,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J].Nature genetics,2009,41(4):494-497.
[27] LI S B,QIAN Q,F(xiàn)U Z M,et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J].The plant journal,2009,58(4):592-605.
[28] XUE W Y,XING Y Z,WENG X Y,et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J].Nature genetics,2008,40(6):761-767.
[29] OSUGI A,ITOH H,IKEDA-KAWAKATSU K,et al. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice[J].Plant physiology,2011,157(3):1128-1137.
[30] YAN W H,WANG P,CHEN H X,et al. A major QTL,Ghd8,plays pleiotropic roles in regulating grain productivity,plant height,and heading date in rice[J].Molecular plant,2011,4(2):319-330.
[31] XING Y Z,ZHANG Q F. Genetic and molecular bases of rice yield[J].Annual review of plant biology,2010,61:421-442.
[32] ASHIKARI M,WU J Z,YANO M,et al. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein[J].Proceedings of the national academy of sciences,1999,96(18):10284-10289.
[33] FUJISAWA Y,KATO T,OHKI S,et al. Suppression of the heterotrimeric G protein causes abnormal morphology,including dwarfism,in rice[J].Proceedings of the national academy of sciences,1999,96(13):7575-7580.
[34] HONG Z,UEGUCHI-TANAKA M,UMEMURA K,et al. A rice brassinosteroid-deficient mutant,ebisu dwarf (d2),is caused by a loss of function of a new member of cytochrome P450[J].The plant cell online,2003,15(12):2900-2910.
[35] TANABE S,ASHIKARI M,F(xiàn)UJIOKA S,et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length[J].The plant cell,2005,17(3):776-790.
[36] YAMAMURO C,IHARA Y,WU X,et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J].The plant cell,2000,12(9):1591-1605.
[37] DUAN P,RAO Y,ZENG D,et al. SMALL GRAIN 1,which encodes a mitogen-activated protein kinase kinase 4,influences grain size in rice[J].The plant journal,2014,77(4):547-557.
[38] TONG H N,XIAO Y H,LIU D P,et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J].The plant cell,2014,114:132092.
[39] ABE Y,MIEDA K,ANDO T,et al. The SMALL AND ROUND SEED1(SRS1/DEP2) gene is involved in the regulation of seed size in rice[J].Genes & genetic systems,2010,85(5):327-339.
[40] KITAGAWA K,KURINAMI S,OKI K,et al. A novel kinesin 13 protein regulating rice seed length[J].Plant and cell physiology,2010,51(8):1315-1329.
[41] SEGAMI S,KONO I,ANDO T,et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice[J].Rice,2012,5(1):1-10.
[42] LIU S,HUA L,DONG S,et al. OsMAPK 6,a mitogen-activated protein kinase,influences rice grain size and biomass production[J].The plant journal,2015,84(4):672-681.
[43] FAN C,XING Y,MAO H,et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J].Theoretical and applied genetics,2006,112(6):1164-1171.
[44] MAO H,SUN S,YAO J,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J].Proceedings of the national academy of sciences, 2010,107(45):19579-19584.
[45] QI P,LIN Y S,SONG X J,et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J].Cell research,2012,22(12):1666-1680.
[46] ISHIMARU K,HIROTSU N,MADOKA Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J].Nature genetics,2013,45(6):707-711.
[47] HU Z J,LU S J,WANG M J,et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J].Molecular plant,2018,11(5):736-749.
[48] YING J Z,MA M,BAI C,et al. TGW3,a major QTL that negatively modulates grain length and weight in rice[J].Molecular plant,2018,11(5):750-753.
[49] SONG X J,HUANG W,SHI M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nature genetics,2007,39(5):623-630.
[50] WENG J,GU S,WAN X,et al. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J].Cell research,2008,18(12):1199-1209.
[51] SUN L,LI XJ,F(xiàn)U YC,et al. GS6,A member of the GRAS gene family,negatively regulates grain size in rice[J].Journal of integrative plant biology,2013,55(10):938-949.
[52] WANG E,WANG J,ZHU X,et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J].Nature genetics,2008,40(11):1370-1374.
[53] LI Y,F(xiàn)AN C,XING Y,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J].Nature genetics,2011,43(12):1266-1269.
[54] WANG S,WU K,YUAN Q,et al. Control of grain size,shape and quality by OsSPL16 in rice[J].Nature genetics,2012,44(8):950-954.
[55] WANG S,LI S,LIU Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J].Nature genetics,2015,47(8):949.
[56] ZHAO D S,LI Q F,ZHANG C Q,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J].Nature communications,2018,9(1):1240.
[57] KAWAKATSU T,YAMAMOTO M P,TOUNO S M,et al. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J].The plant journal,2009,59(6):908-920.
[58] LI T,JIANG J,ZHANG S,et al. OsAGSW1,an ABC1-like kinase gene,is involved in the regulation of grain size and weight in rice[J].Journal of experimental botany,2015,66(19):5691-5701.
[59] HUANG K,WANG D K,DUAN P G,et al. WIDE AND THICK GRAIN 1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice[J].The plant journal,2017,91(5):849-860.
[60] 吳? 俊,莊? 文,熊躍東,等.導入野生稻增產QTL育成優(yōu)質高產雜交稻新組合Y兩優(yōu)7號[J].雜交水稻,2010(4):20-22.
[61] 楊益善,鄧啟云,陳立云,等.野生稻高產QTL導入晚稻恢復系的增產效果[J].分子植物育種,2006,4(1):59-64.
[62] LI Y,TAO H,ZHAO X,et al. Molecular improvement of grain weight and yield in rice by using GW6 Gene[J].Rice science,2014,21(3):127-132.
[63] LI M R,LI X X,ZHOU Z J,et al. Reassessment of the four yield-related genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system[J].Frontiers in plant science,2016,7:377.
[64] CHEN H,HE H,ZHOU F,et al. Development of genomics-based genotyping platforms and their applications in rice breeding[J].Current opinion in plant biology,2013,16(2):247-254.
[65] ZHOU P,TAN Y,HE Y,et al. Simultaneous improvement for four quality traits of Zhenshan 97,an elite parent of hybrid rice, by molecular marker-assisted selection[J].Theoretical and applied genetics,2003,106(2):326-331.
[66] HUANG X,HAN B. Natural variations and genome-wide association studies in crop plants[J].Annual review of plant biology,2014,65:531-551.