• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于自抗擾-動態(tài)矩陣的油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速控制

      2019-09-24 11:44:58張學(xué)軍朱興亮馬少騰
      關(guān)鍵詞:油葵脫粒收獲機(jī)

      張學(xué)軍,李 茜,朱興亮,馬少騰

      基于自抗擾-動態(tài)矩陣的油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速控制

      張學(xué)軍,李 茜,朱興亮,馬少騰

      (新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052)

      針對油葵聯(lián)合收獲機(jī)的脫粒滾筒控制方法的實(shí)時(shí)性、準(zhǔn)確性和適應(yīng)性問題,該文以油葵聯(lián)合收獲機(jī)行走速度為控制量,滾筒轉(zhuǎn)速為目標(biāo)建立油葵聯(lián)合收獲機(jī)脫粒滾筒速度動力學(xué)模型,并將模型變換為適于自抗擾控制的仿射系統(tǒng),設(shè)計(jì)了基于自抗擾和動態(tài)矩陣模型的控制系統(tǒng),并對聯(lián)合收獲機(jī)的時(shí)變干擾進(jìn)行在線估計(jì),對脫粒滾筒的控制延遲進(jìn)行基于動態(tài)矩陣模型預(yù)測控制,實(shí)現(xiàn)對其控制延遲的抵消和滾筒轉(zhuǎn)速的實(shí)時(shí)控制。對所設(shè)計(jì)的脫粒滾筒控制器進(jìn)行了仿真、臺架試驗(yàn)和田間試驗(yàn)。結(jié)果表明,在自抗擾-動態(tài)矩陣控制器作用下,當(dāng)喂入量較小時(shí),隨著收獲機(jī)行走速度慢慢增加滾筒轉(zhuǎn)速穩(wěn)定在最優(yōu)轉(zhuǎn)速430 r/min;當(dāng)喂入量加大時(shí),滾筒轉(zhuǎn)速降低;當(dāng)喂入量有小幅度隨機(jī)干擾時(shí),滾筒實(shí)時(shí)控制轉(zhuǎn)速與最優(yōu)轉(zhuǎn)速430 r/min的靜態(tài)誤差保持在5%之內(nèi),自抗擾-動態(tài)矩陣控制器能夠使脫粒滾筒獲得平穩(wěn)的速度控制效果。研究結(jié)果可為油葵作物聯(lián)合收獲機(jī)控制提供參考。

      農(nóng)業(yè)機(jī)械;收獲機(jī);控制;滾筒轉(zhuǎn)速;自抗擾控制器;動態(tài)矩陣;油葵

      0 引 言

      油葵是世界四大油料作物之一,中國東北、華北、西北等地約有300 萬km2的地區(qū)種植油葵。油葵聯(lián)合收獲機(jī)是一種大型聯(lián)合收獲機(jī),隨著農(nóng)業(yè)自動化技術(shù)的發(fā)展,對其自動控制的要求也越來越高,脫粒滾筒轉(zhuǎn)速系統(tǒng)作為油葵聯(lián)合收獲機(jī)主要子系統(tǒng)之一呈現(xiàn)出強(qiáng)非線性、多干擾、控制時(shí)滯等特點(diǎn)[1-6]。

      在實(shí)際生產(chǎn)中,聯(lián)合收獲機(jī)的控制模型參數(shù)往往存在不確定性,如復(fù)雜多變的地形和收割對象會給收獲機(jī)的行走速度和脫粒裝置的控制帶來干擾,這對控制器的魯棒性和自適應(yīng)性提出了更高的要求[7]。目前,已有相關(guān)文獻(xiàn)對其他作物的聯(lián)合收割機(jī)脫粒滾筒的轉(zhuǎn)速控制進(jìn)行了研究,如,陳進(jìn)等[8]針對聯(lián)合收獲機(jī)工作過程中的非線性、時(shí)變、大滯后特性,提出了采用灰色預(yù)測模糊控制方法,對聯(lián)合收獲機(jī)的前進(jìn)速度進(jìn)行自動控制;并以切縱流聯(lián)合收獲機(jī)為研究對象[9],設(shè)計(jì)了一種基于聯(lián)合收獲機(jī)前進(jìn)速度的模糊自適應(yīng)控制系統(tǒng),建立了融合多個(gè)變量的自適應(yīng)控制參考模型和模糊控制規(guī)則,但這2種方法針對不同地塊及收割對象需要首先建立輸入、輸出量的偏差、偏差變化量的量化表和模糊規(guī)則查詢表,工作量繁瑣。寧小波等[10]在文獻(xiàn)[9]基礎(chǔ)上建立了控制性能和收獲性能的優(yōu)化目標(biāo)函數(shù)來衡量聯(lián)合收獲機(jī)的作業(yè)性能,并利用多目標(biāo)遺傳算法對模糊控制系統(tǒng)的隸屬度函數(shù)和輸送槽、割臺螺旋輸送器和切流滾筒對前進(jìn)速度的影響因子進(jìn)行優(yōu)化;寧小波等[11]以XG610 型聯(lián)合收獲機(jī)為應(yīng)用對象,在對運(yùn)動機(jī)構(gòu)動力學(xué)分析和脫粒分離試驗(yàn)數(shù)據(jù)的基礎(chǔ)上,分析了其他工作部件運(yùn)動對脫粒滾筒轉(zhuǎn)速變化的影響,建立了脫粒系統(tǒng)動力學(xué)模型,并與模糊邏輯控制器相結(jié)合構(gòu)建了調(diào)速控制系統(tǒng)仿真模型;李鑫等[12]利用傳感器采集滾筒信息,形成了滾筒轉(zhuǎn)速的閉環(huán)反饋調(diào)節(jié)機(jī)制,并采用小波神經(jīng)網(wǎng)絡(luò)算法對轉(zhuǎn)速精度進(jìn)行調(diào)節(jié);宿敬肖[13]等利用新型液壓-機(jī)械控制方案,結(jié)合神經(jīng)網(wǎng)絡(luò)PID控制器,設(shè)計(jì)了一種新的小麥?zhǔn)崭顧C(jī)械式行走裝置。但這幾種方法沒有考慮控制時(shí)滯問題,即收割對象被收割后需要在傳送槽內(nèi)運(yùn)送一定時(shí)間才能到達(dá)脫粒滾筒,使得脫粒滾筒不能達(dá)到實(shí)時(shí)控制。

      對于油葵聯(lián)合收獲機(jī)而言,由于實(shí)際收割中油葵聯(lián)合收獲機(jī)的模型參數(shù)的不確定性和其他時(shí)變的隨機(jī)干擾,其脫粒滾筒轉(zhuǎn)速控制系統(tǒng)呈現(xiàn)出強(qiáng)非線性、多干擾、控制時(shí)滯等特點(diǎn),大范圍調(diào)速時(shí)非線性表現(xiàn)更加嚴(yán)重,且油葵盤傳送帶也引入控制的延遲,使得收獲機(jī)行走速度改變不能很快調(diào)節(jié)脫粒滾筒的喂入量,難以達(dá)到真正的實(shí)時(shí)性、準(zhǔn)確性和適應(yīng)性,對滾筒控制器的魯棒性提出了更高要求[14-18]。

      近年來,自抗擾控制器(active disturbance rejection controller,ADRC)[19-21]得到了眾多學(xué)者的重視,發(fā)展迅速,并在電機(jī)調(diào)速系統(tǒng)、傳動裝置的運(yùn)動控制、精密控制領(lǐng)域以及機(jī)器人、兵器、航天等領(lǐng)域[22-26]獲得了廣泛應(yīng)用。本文在分析油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速控制系統(tǒng)數(shù)學(xué)模型的基礎(chǔ)上,引入自抗擾控制器并將其與動態(tài)矩陣模型預(yù)測控制方法相結(jié)合,設(shè)計(jì)一個(gè)基于自抗擾控制器的脫粒滾筒轉(zhuǎn)速控制系統(tǒng),實(shí)現(xiàn)了“大誤差,小增益”、“小誤差,大增益”的非線性控制[27],將系統(tǒng)的內(nèi)擾、外擾以及速度張力之間的耦合影響等視為系統(tǒng)總擾動,由擴(kuò)張狀態(tài)觀測器統(tǒng)一觀測并加以補(bǔ)償,并進(jìn)一步利用動態(tài)矩陣預(yù)測控制方法(dynamic matrix predictive control,DMC)對控制延遲進(jìn)行處理,以實(shí)現(xiàn)滾筒轉(zhuǎn)速和收獲機(jī)行走速度的解耦,并有效克服隨機(jī)擾動對轉(zhuǎn)速的影響。

      1 脫粒滾筒轉(zhuǎn)速控制模型

      當(dāng)收獲機(jī)結(jié)構(gòu)一定時(shí),脫粒滾筒的轉(zhuǎn)速主要依賴于滾筒的輸入功率、收獲機(jī)的行進(jìn)速度、作物密度以及地表地貌等。本文采用文獻(xiàn)[11-12]中基于滾筒角速度、作物密度、發(fā)動機(jī)功率和收獲機(jī)行走速度的脫粒滾筒轉(zhuǎn)速控制模型。

      不同地塊作物種植密度具有時(shí)變性和不確定性,是隨機(jī)變量,不可控制,發(fā)生變化會導(dǎo)致喂入量的變化而使得脫粒滾筒工作狀態(tài)發(fā)生改變,此時(shí)可以通過調(diào)節(jié)收獲機(jī)行走速度實(shí)施對脫粒滾筒工作狀態(tài)的控制。

      2 滾筒轉(zhuǎn)速ADRC控制策略

      2.1 ADRC

      ADRC是一種不依賴系統(tǒng)模型的新型控制技術(shù),它能實(shí)時(shí)估計(jì)并補(bǔ)償系統(tǒng)運(yùn)行時(shí)受到的各種“外擾”和“內(nèi)擾”的總和作用,并結(jié)合特殊的非線性反饋結(jié)構(gòu)實(shí)現(xiàn)良好的控制品質(zhì),具有超調(diào)小、響應(yīng)快、精度高、抗干擾能力強(qiáng)、算法簡單等特點(diǎn),可以非常有效地解決由式(1)描述的對象的控制問題[26-28]。

      式中為狀態(tài)變量,()為外部擾動,為控制量,()為控制量放大系數(shù),為輸出,(,(),)是對象“總擾動”。自抗擾控制器主要包括:非線性跟蹤微分器(tracking differentiator,TD)、擴(kuò)張狀態(tài)觀測器(extended state observer,ESO)和非線性組合(nonlinear state error feedback law,NLC)。對于該二階對象,其ADRC控制器的標(biāo)準(zhǔn)結(jié)構(gòu)參見文獻(xiàn)[20-21]。

      2.2 二階滾筒轉(zhuǎn)速ADRC控制策略

      由此得到:

      脫粒滾筒轉(zhuǎn)速的干擾是時(shí)變的,根據(jù)ADRC設(shè)計(jì)思想,將式(5)中的視為系統(tǒng)的未知擾動,通過設(shè)計(jì)擴(kuò)張狀態(tài)觀測器(ESO)將其估計(jì)出來,并通過控制量對其進(jìn)行補(bǔ)償,實(shí)現(xiàn)對滾筒轉(zhuǎn)速系統(tǒng)內(nèi)外干擾的克服,提高控制器的魯棒性。

      2.3 ADRC控制律設(shè)計(jì)

      1)由跟蹤微分器(TD)安排過渡過程

      參考輸入信號0(本文中參考輸入信號為最優(yōu)滾筒轉(zhuǎn)速0),經(jīng)TD后輸出為1和2,1為參考輸入0的跟蹤信號,2為跟蹤信號1的微分信號,1能很快跟蹤參考輸入0。

      2)計(jì)算擴(kuò)張狀態(tài)觀測器(ESO)的輸出

      2.4 脫粒滾筒轉(zhuǎn)速控制延遲的處理

      文獻(xiàn)[31-33]對動態(tài)矩陣模型預(yù)測控制(DMC, dynamic matrix predictive control)的基本原理已有敘述,本文根據(jù)油葵聯(lián)合收獲機(jī)脫粒滾筒的特點(diǎn)和作業(yè)參數(shù)構(gòu)建模型方程。

      互聯(lián)網(wǎng)時(shí)代打破了傳統(tǒng)信息壁壘,形成了信息共享、結(jié)構(gòu)重塑、透明開放、突破時(shí)空的互聯(lián)互通格局。在這樣的大環(huán)境下,客服人員招聘的弊端更易化解,人崗匹配度更為精準(zhǔn),總體而言互聯(lián)網(wǎng)時(shí)代招聘客服人員有以下幾個(gè)特點(diǎn):

      將其代入脫粒滾筒轉(zhuǎn)速控制模型,得到對應(yīng)的個(gè)滾筒轉(zhuǎn)速:

      若優(yōu)化性能指標(biāo)為

      式中cr是加權(quán)系數(shù),c表示對滾筒給定轉(zhuǎn)速的跟蹤誤差的抑制,r表示控制作用變化的抑制。

      圖1 油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速自抗擾控制流程

      3 軟硬件設(shè)計(jì)

      基于上述控制算法設(shè)計(jì)了基于DSP的ADRC非線性控制器硬件系統(tǒng),包括主系統(tǒng)模塊、電源模塊、基于A/D的轉(zhuǎn)換模塊和液晶顯示模塊,如圖2所示。

      圖2 基于DSP的控制器主系統(tǒng)

      為使系統(tǒng)運(yùn)行速度快,硬件系統(tǒng)選用TI公司的浮點(diǎn)DSP芯片TMS320C6713作滾筒轉(zhuǎn)速控制算法處理器(將ADRC-DMC控制器程序通過編程下載到DSP中),TMS320C6713是32位高性能浮點(diǎn)數(shù)字信號處理器(DSP),貼片式封裝,集成度高,體積小且DSP的主頻很高,運(yùn)算速度高達(dá)2 400 MFLOPS(每秒百萬次浮點(diǎn)運(yùn)算)、200 MIPS(每秒百萬次指令)。算法解算系統(tǒng)模塊電路由狀態(tài)監(jiān)控、系統(tǒng)恢復(fù)、微處理器I、微處理器II和DSP電路組成,微處理器I和微處理器II均選用C8051F120。TMS320C6713設(shè)置成微機(jī)工作模式,具有自主引導(dǎo)功能??刂瞥绦蚬袒贔LASH ROM中,該器件提供了256 K的內(nèi)部存儲器空間,整個(gè)運(yùn)算全部是在器件內(nèi)部進(jìn)行,省去了DSP器件外擴(kuò)RAM。各傳感器的信號由運(yùn)放調(diào)理后輸入給ADS8364,經(jīng)ADS8364采集后送給微處理器I,并進(jìn)行簡單的平滑濾波后送給微處理器II。微處理器II擴(kuò)展了串口芯片TL16C554,外接數(shù)據(jù)存儲模塊存儲原始數(shù)據(jù)和最終數(shù)據(jù),并預(yù)留2個(gè)接口,以便初始時(shí)獲取初始參數(shù),并可將系統(tǒng)運(yùn)行時(shí)的數(shù)據(jù)實(shí)時(shí)傳送給筆記本電腦進(jìn)行實(shí)時(shí)曲線顯示。各傳感器信息通過微處理器II將數(shù)據(jù)傳輸給滾筒轉(zhuǎn)速控制處理器(DSP),經(jīng)解算后將轉(zhuǎn)速等信息送往顯示單元。

      為使控制器能正常工作且保證脫粒滾筒的最佳喂入量和最佳轉(zhuǎn)速,設(shè)計(jì)了油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速控制系統(tǒng)軟件,包括系統(tǒng)軟件和功能軟件,主要由自檢模塊、初始化模塊、數(shù)據(jù)預(yù)處理模塊、算法解算模塊、中斷服務(wù)程序模塊和軟件看門狗模塊組成。在系統(tǒng)硬件配置的基礎(chǔ)上,以DSP為算法運(yùn)行環(huán)境,對系統(tǒng)軟件進(jìn)行檢測、信息傳輸、數(shù)據(jù)處理和算法解算。

      4 仿真試驗(yàn)

      為驗(yàn)證本文所建立的油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速控制器的正確性,選取約翰迪爾W210油葵聯(lián)合收割機(jī)的脫粒滾筒為對象進(jìn)行仿真驗(yàn)證試驗(yàn),仿真參數(shù)設(shè)置見表1[7,11-12]。在MATLAB環(huán)境下設(shè)計(jì)了ADRC-DMC控制器,為了驗(yàn)證其速度響應(yīng)效果,根據(jù)前期試驗(yàn)結(jié)果,分別作如下仿真:1)假設(shè)喂入量為2.45 kg/s,最佳轉(zhuǎn)速為430 r/min,采用階躍輸入信號對脫粒滾筒轉(zhuǎn)速控制系統(tǒng)進(jìn)行啟動速度控制仿真;2)假設(shè)某時(shí)刻喂入量由2.45增加到3.01 kg/s,脫粒滾筒轉(zhuǎn)速由430突變?yōu)?90.2 r/min。速度響應(yīng)曲線如圖3所示。

      表1 仿真參數(shù)

      圖3 基于ADRC的脫粒滾筒啟動轉(zhuǎn)速和變化轉(zhuǎn)速仿真曲線

      從圖3a中可以看出,在沒有隨機(jī)干擾的情況下,系統(tǒng)的速度響應(yīng)曲線比較光滑,且沒有超調(diào)量,響應(yīng)時(shí)間為4.078 s,響應(yīng)速度比較快。從圖3b可以看出,當(dāng)喂入量突然加大時(shí),系統(tǒng)進(jìn)行自我調(diào)整,滾筒轉(zhuǎn)速開始下降,經(jīng)過約1.2 s穩(wěn)定在390.2 r/min,速度響應(yīng)曲線比較光滑,系統(tǒng)能及時(shí)對滾筒轉(zhuǎn)速做出有效調(diào)節(jié),避免出現(xiàn)堵塞現(xiàn)象。

      5 臺架試驗(yàn)與結(jié)果分析

      為了在田間試驗(yàn)前驗(yàn)證所設(shè)計(jì)的軟硬件的正確性,本文進(jìn)行了臺架試驗(yàn),試驗(yàn)地點(diǎn)新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院機(jī)庫,試驗(yàn)樣機(jī)為油葵聯(lián)合收獲機(jī)脫粒裝置,其結(jié)構(gòu)圖如圖4a所示。試驗(yàn)物料為“油葵5號”,摘盤時(shí)油葵盤含水率為18%~23%。試驗(yàn)參照GB/T5982-2017《脫粒機(jī)試驗(yàn)方法》。在電動機(jī)和電源之間安裝變頻器,通過調(diào)整變頻器頻率改變電動機(jī)的轉(zhuǎn)速,在脫粒滾筒輸入軸一端安裝扭矩傳感器,測定滾筒轉(zhuǎn)速、扭矩、功率,將所設(shè)計(jì)的硬件系統(tǒng)通過ATV38HD12N4型號變頻器連接到Y(jié)E2-112M-4型號三相異步電機(jī),然后通過聯(lián)軸器連接到LKN-205型號扭矩傳感器,再將扭矩傳感器連接到脫粒滾筒,喂入量為2.45 kg/s左右(為保證喂入量,事先計(jì)算并稱量好放入多個(gè)容器,試驗(yàn)時(shí)平均每2秒快速倒入1次),在第15 s之后隨機(jī)多投入0.15 kg左右的油葵盤改變喂入量,驗(yàn)證干擾信號下滾筒速度控制效果。臺架試驗(yàn)現(xiàn)場如圖4b所示。速度響應(yīng)曲線如圖5所示。

      圖4 脫粒裝置及臺架試驗(yàn)

      從圖5可以看出,基于ADRC的滾筒轉(zhuǎn)速控制方法能使脫粒滾筒的轉(zhuǎn)速穩(wěn)定在最佳轉(zhuǎn)速430 r/min附近,當(dāng)有隨機(jī)干擾(喂入量變化)時(shí)可小范圍(0.5 r/min)調(diào)節(jié)脫粒滾筒的轉(zhuǎn)速,對于農(nóng)作物不確定性或隨機(jī)干擾有較好抑制效果,能及時(shí)對滾筒轉(zhuǎn)速做出有效調(diào)節(jié)。

      圖5 有干擾信號的滾筒轉(zhuǎn)速控制曲線

      6 田間試驗(yàn)與結(jié)果分析

      將所設(shè)計(jì)的硬件系統(tǒng)安裝在約翰迪爾W210油葵聯(lián)合收獲機(jī)上于2018年9月進(jìn)行田間試驗(yàn),試驗(yàn)地點(diǎn)選在新疆生產(chǎn)建設(shè)兵團(tuán)農(nóng)六師103團(tuán)油葵試驗(yàn)田,如圖6所示。將霍爾傳感器安裝在約翰迪爾W210油葵聯(lián)合收獲機(jī)相應(yīng)部件上獲取滾筒轉(zhuǎn)速和收獲機(jī)行走速度,通過采用MP057NB213型步進(jìn)電機(jī)連接減速器對操縱桿進(jìn)行控制,收獲機(jī)機(jī)手只需控制割臺和收獲機(jī)的行走方向,設(shè)置壓力傳感器采樣周期0.25 s。

      圖6 田間試驗(yàn)

      初始試驗(yàn)選擇油葵種植密度較為均勻且地面較為干燥的地塊,油葵品種為“油葵5號”,初始時(shí)收割寬度為6行(根據(jù)收獲機(jī)行走速度和種植密度,對應(yīng)喂入量為2.36~2.53 kg/s),行距37~40 cm,株距20~25 cm,株高約130 cm,盤高約112 cm,留茬高度約85 cm,籽粒含水率16.2%~17.8%,通過調(diào)整收獲機(jī)行走速度調(diào)節(jié)喂入量,通過采用變割幅(收割寬度由6行增加到7行)的收割方法增加收獲機(jī)相同行走速度下的喂入量,驗(yàn)證控制器的控制效果;選用種植情況相同的地塊進(jìn)行7次驗(yàn)證試驗(yàn)。其中1次的試驗(yàn)結(jié)果如圖7所示。圖7a為啟動時(shí)滾筒轉(zhuǎn)速跟蹤曲線,圖7b為喂入量為6行作業(yè)時(shí)滾筒轉(zhuǎn)速和收獲機(jī)行走速度控制曲線,圖7c為喂入量由6行增加到7行時(shí)的滾筒轉(zhuǎn)速和收獲機(jī)行走速度控制曲線(穩(wěn)定狀態(tài)的喂入量在2.39~2.51 kg/s之間)。

      圖7 田間試驗(yàn)的速度響應(yīng)曲線

      從圖7a可以看出,在ADRC控制器作用下,由于隨機(jī)干擾的存在,在油葵聯(lián)合收獲機(jī)啟動時(shí),滾筒轉(zhuǎn)速有一定的超調(diào),但超調(diào)量和超調(diào)時(shí)間很小,滾筒轉(zhuǎn)速很快達(dá)到最優(yōu)轉(zhuǎn)速430 r/min左右,總體誤差在5%(20 r/min)內(nèi),滿足實(shí)際作業(yè)要求。

      從圖7b可以看出,收獲機(jī)開始自動控制收割油葵后,由于喂入量較小,收獲機(jī)行走速度慢慢加快而滾筒轉(zhuǎn)速穩(wěn)定在430 r/min;隨著收獲機(jī)行走速度繼續(xù)加快,喂入量逐漸增加,達(dá)到設(shè)置的最優(yōu)喂入量左右,控制器開始調(diào)節(jié),滾筒轉(zhuǎn)速降低同時(shí)調(diào)節(jié)收獲機(jī)行走速度,經(jīng)過小幅調(diào)節(jié)后,由于所選地塊種植密度較均勻,滾筒轉(zhuǎn)速和收獲機(jī)行走速度均保持穩(wěn)定,大約在5.1 s開始種植密度稍微增加,喂入量有小幅度的隨機(jī)干擾,但經(jīng)過調(diào)節(jié)后滾筒轉(zhuǎn)速控制與最優(yōu)轉(zhuǎn)速430 r/min保持在5%的靜態(tài)誤差之內(nèi),運(yùn)行穩(wěn)定。

      從圖7c可以看出,當(dāng)收割寬度增大到7行后,喂入量增加(約3.93 kg/s),已超出設(shè)置的最佳喂入量,如果收獲機(jī)仍以當(dāng)前速度行走,有可能使得脫粒滾筒堵塞,但經(jīng)控制器調(diào)整后,收獲機(jī)行走速度開始減小,滾筒轉(zhuǎn)速也開始減小,控制器能實(shí)時(shí)的對收獲機(jī)行走速度和滾筒轉(zhuǎn)速進(jìn)行調(diào)節(jié),響應(yīng)時(shí)間約為0.5 s,能很好處理控制延遲問題,實(shí)現(xiàn)滾筒轉(zhuǎn)速的實(shí)時(shí)控制果。

      7 結(jié) 論

      本文針對油葵聯(lián)合收獲機(jī)脫粒滾筒系統(tǒng)的強(qiáng)非線性和控制延遲的特性,設(shè)計(jì)了基于自抗擾和動態(tài)矩陣控制預(yù)測控制方法的脫粒滾筒轉(zhuǎn)速ADRC-DMC控制器。對于控制延遲現(xiàn)象,本文在ADRC控制器的反饋回路中添加一個(gè)以喂入量為參數(shù)的動態(tài)矩陣控制預(yù)測控制器,以消除控制延遲的影響,并設(shè)計(jì)了相關(guān)軟硬件。通過仿真、臺架試驗(yàn)和田間試驗(yàn)驗(yàn)證了所設(shè)計(jì)控制器的有效性。試驗(yàn)結(jié)果表明,收獲機(jī)開始自動控制收割油葵后,收獲機(jī)自動調(diào)整行走速度改變喂入量并最終穩(wěn)定在2.45 kg/s左右,滾筒轉(zhuǎn)速穩(wěn)定在430 r/min左右,當(dāng)收割行數(shù)有6行突變?yōu)?行時(shí),經(jīng)過約0.5 s,控制器開始對收獲機(jī)行走速度和滾筒轉(zhuǎn)速進(jìn)行調(diào)節(jié),響應(yīng)速度較快,說明本文所設(shè)計(jì)的控制器能很好的對油葵聯(lián)合收獲機(jī)的脫粒滾筒轉(zhuǎn)速進(jìn)行實(shí)時(shí)有效的控制。

      [1] Chen J, Ning X, Li Y, et al. A fuzzy control strategy for the forward speed of a combine harvester based on KDD[J]. Applied Engineering in Agriculture, 2017, 33(1): 15-22.

      [2] Sutisna S P, Setiawan R P A, Subrata I D M, et al. System identification and steering control characteristic of rice combine harvester Model[J]. IOP Conference Series Earth and Environmental Science, 2018, 147(1): 1-7.

      [3] 李茜,張學(xué)軍,朱興亮. 基于因素空間的油葵聯(lián)合收獲機(jī)故障診斷推理機(jī)制[J]. 農(nóng)機(jī)化研究,2019(7):19-23.

      Li Xi, Zhang Xuejun, Zhu Xingliang. Study on fault diagnosis reasoning mechanism of oil sunflower combine harvester based on factor space[J]. Journal of Agricultural Mechanization Research, 2019(7): 19-23. (in Chinese with English abstract)

      [4] 劉正懷,戴素江,李明強(qiáng),等. 半喂入聯(lián)合收割機(jī)活動?xùn)鸥癜及逖b置設(shè)計(jì)與試驗(yàn)[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2018,39(5):13-18.

      Liu Zhenghuai, Dai Sujiang, Li Mingqiang, et al. Design and test of the head-feeding harvester’s moving grate concave unit[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(5): 13-18. (in Chinese with English abstract)

      [5] Rahman M M, Ishii K. Heading estimation of robot combine harvesters during turning maneuveres[J]. Sensors, 2018, 18(5): 1390-.

      [6] 王剛,關(guān)卓懷,沐森林,等. 油菜聯(lián)合收獲機(jī)種子籽粒脫粒裝置結(jié)構(gòu)及運(yùn)行參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):52-57.

      Wang Gang, Guan Zhuohuai, Mu Senlin, et al. Optimization of operating parameter and structure for seed thresher device for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(24): 52-57. (in Chinese with English abstract)

      [7] 張軍,趙德安,沈慧良. 一種聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速的魯棒預(yù)測控制[J]. 控制工程,2011,18(4):568-571.

      Zhang Jun, Zhao Dean, Shen Huiliang. robust predictive palstance control of combine cylinder threshing[J]. Control Engineering, 2011, 18(4): 568-571. (in Chinese with English abstract)

      [8] 陳進(jìn),鄭世宇,李耀明,等. 聯(lián)合收獲機(jī)前進(jìn)速度灰色預(yù)測模糊控制系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(10):110-115.

      Chen Jin, Zheng Shiyu, Li Yaoming, et al. Grey predictive fuzzy control system of forward speed for combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(10): 110-115. (in Chinese with English abstract)

      [9] 陳進(jìn),寧小波,李耀明,等. 聯(lián)合收獲機(jī)前進(jìn)速度的模型參考模糊自適應(yīng)控制系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):87-91.

      Chen Jin, Ning Xiaobo, Li Yaoming, et al. Fuzzy adaptive control system of forward speed for combine harvester based on model reference[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 87-91. (in Chinese with English abstract)

      [10] 寧小波,陳進(jìn),李耀明,等. 聯(lián)合收獲機(jī)前進(jìn)速度模糊控制系統(tǒng)多目標(biāo)遺傳優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(5):68-74.

      Ning Xiaobo, Chen Jin, Li Yaoming, et al. Multi-objective genetic algorithm optimization of forward speed of fuzzy control system for combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 68-74. (in Chinese with English abstract)

      [11] 寧小波,陳進(jìn),李耀明,等. 聯(lián)合收獲機(jī)脫粒系統(tǒng)動力學(xué)模型及調(diào)速控制仿真與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):25-34.

      Ning Xiaobo, Chen Jin, Li Yaoming, et al. Kinetic model of combine harvester threshing system and simulation and experiment of speed control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 25-34. (in Chinese with English abstract)

      [12] 李鑫,孫祥云,李凌雁. 聯(lián)合收獲機(jī)脫粒滾筒角速度控制優(yōu)化設(shè)計(jì)-基于小波神經(jīng)網(wǎng)絡(luò)[J]. 農(nóng)機(jī)化研究,2016(11):64-68.

      Li Xin, Sun Xianggun, Li Lingyan. Ptimization Design of angular velocity control of threshing cylinder in combine harvester based on wavelet neural network[J]. Journal of Agricultural Mechanization Research, 2016(11): 64-68. (in Chinese with English abstract)

      [13] 宿敬肖,張賓,林海霞,等. 基于神經(jīng)網(wǎng)絡(luò)PID的小麥?zhǔn)崭顧C(jī)械式行走裝置設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2016,38(7):55-59.

      Su Jingxiao, Zhang Bin, Lin Haixia, et al. Fuzzy control of constant load of combine threshing cylinder[J]. Journal of Agricultural Mechanization Research, 2016, 38(7): 55-59. (in Chinese with English abstract)

      [14] 尤惠媛,李武興. 聯(lián)合收獲機(jī)脫粒滾筒的模糊恒負(fù)荷控制[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2015,36(5):33-35.

      You Huiyuan, Li Wuxing. Fuzzy control of constant load of combine threshing cylinder[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 33-35. (in Chinese with English abstract)

      [15] 李菊,趙德安,秦云. 聯(lián)合收割機(jī)脫粒滾筒的雙閉環(huán)負(fù)荷控制[J]. 中國機(jī)械工程,2013,24(7):873-877.

      Li Ju, Zhao De'an, Qin Yun. Double closed-loop load control of a combine cylinder[J]. China Mechanical Engineering, 2013, 24(7): 873-877. (in Chinese with English abstract)

      [16] 崔勇, 翟旭軍, 陶德清. 聯(lián)合收割機(jī)撥禾輪轉(zhuǎn)速自動控制系統(tǒng)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究, 2018, 40(3):129-133.

      Cui Yong, Zhai Xujun, Tao Deqing. Design of automatic speed control system of combine reel[J]. Journal of Agricultural Mechanization Research, 2018, 40(3):129-133. (in Chinese with English abstract)

      [17] Kassen D, Kelkar A. Combine harvester header height control via robust feedback linearization[C]//Control Conference (ICC), 2017 Indian. IEEE, 2017: 1-6.

      [18] Omid M, Lashgari M, Mobli H, et al. Design of fuzzy logic control system incorporating human expert knowledge for combine harvester[J]. Expert Systems with Applications, 2010, 37(10): 7080-7085.

      [19] Tian C, Yan P, Zhang Z. Inter-sample output predictor based sampled-data ADRC supporting high precision control of VCM servo systems[J]. Control Engineering Practice, 2019, 85: 138-148.

      [20] 丁力,馬瑞,單文桃,等. 小型無人直升機(jī)航向線性自抗擾控制[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):22-27.

      Ding Li, Ma Rui, San Wentao, et al. Linear active disturbance rejection control for yaw channel of a small-scale unmanned helicopter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 22-27. (in Chinese with English abstract)

      [21] 劉敏,吉月輝,李俊芳,等. 四旋翼飛行器自抗擾姿態(tài)控制[J]. 計(jì)算機(jī)仿真,2016,33(3):71-75.

      Liu Min, Ji Yuehui, Li Junfang, et al. Active disturbance rejection attitude control for quadrotor aircraft[J]. Computer Simulation, 2016, 33(3): 71-75. (in Chinese with English abstract)

      [22] Xia Y, Pu F, Li S, et al. Lateral path tracking control of autonomous land vehicle based on ADRC and differential flatness[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3091-3099.

      [23] Casta?eda L A, Luviano-Juárez A, Ochoa-Ortega G, et al. Tracking control of uncertain time delay systems: An ADRC approach[J]. Control Engineering Practice, 2018, 78: 97-104.

      [24] Lotufo M A , Colangelo L , Perez-Montenegro C , et al. UAV quadrotor attitude control: An ADRC-EMC combined approach[J]. Control Engineering Practice, 2019, 84: 13-22.

      [25] Luo S, Sun Q, Sun M, et al. On decoupling trajectory tracking control of unmanned powered parafoil using ADRC-based coupling analysis and dynamic feedforward compensation[J]. Nonlinear Dynamics, 2018, 92(4): 1619-1635.

      [26] 楊立本,章衛(wèi)國,黃得剛. 基于ADRC姿態(tài)解耦的四旋翼飛行器魯棒軌跡跟蹤[J]. 北京航空航天大學(xué)學(xué)報(bào):自然版,2015,41(6):1026-1033.

      Yang Liben, Zhang Weiguo, Huang Degang. Robust trajectory tracking for quadrotor aircraft based on ADRC attitude decoupling control[J]. Journal of Beijing University of Aeronautics & Astronautics, 2015, 41(6): 1026-1033. (in Chinese with English abstract)

      [27] 黃大山,張進(jìn)秋,劉義樂,等. 車輛懸掛系統(tǒng)自抗擾控制器改進(jìn)及其性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):61-72.

      Huang Dashan, Zhang Jinqiu, Liu Yile, et al. Improved active disturbance rejection controller on suspension system and its performance analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 61-72. (in Chinese with English abstract)

      [28] 張彬文,譚文,李健. 水輪機(jī)負(fù)荷頻率控制系統(tǒng)的線性自抗擾整定[J]. 電機(jī)與控制學(xué)報(bào),2019,23(1):117-124.

      Zhang Binwen, Tan Wen, Li Jian. Tuning of linear active disturbance rejection control for load frequency control systems with hydro turbines[J]. Electric Machines and Control, 2019, 23(1): 117-124. (in Chinese with English abstract)

      [29] 肖澤民,朱景偉,夏野,等. 基于自抗擾控制器的PMSM伺服控制系統(tǒng)研究[J]. 微電機(jī),2018,51(3):57-61.

      Xiao Zemin, Zhu Jingwei, Xia Ye, et al. Investigation of PMSM servo system based on active disturbance rejection controller[J]. Micromotors, 2018, 51(3): 57-61. (in Chinese with English abstract)

      [30] 姬江濤,王榮先,符麗君. 聯(lián)合收獲機(jī)喂入量灰色預(yù)測模糊PID控制[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(3):63-66.

      Ji Jiangtao, Wang Rongxian, Fu Lijun. Grey prediction fuzzy PID control of the feeding quantity in combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(3): 63-66. (in Chinese with English abstract)

      [31] 高強(qiáng),李航. 基于單變量與多變量系統(tǒng)的模型預(yù)測控制研究[J]. 計(jì)算機(jī)工程與設(shè)計(jì),2013,34(9):3266-3272.

      Gao Qiang, Li Hang. Research of model predictive control based on SISO and MIMO system[J]. Computer Engineering & Design, 2013, 34(9): 3266-3272. (in Chinese with English abstract)

      [32] 杜德偉,鄒濤,李永民,等. 一種面向輸入輸出故障的變結(jié)構(gòu)模型預(yù)測控制方法[J]. 信息與控制,2016,45(6):653-659.

      Du Dewei, Zou Tao, Li Yongmin, et al. Model predictive control method with variable structure to input-output faults[J]. Information & Control, 2016, 45(6): 653-659. (in Chinese with English abstract)

      [33] 邢小軍,黃龍亮,范東生,等. 關(guān)于四旋翼無人機(jī)姿態(tài)優(yōu)化控制仿真研究[J]. 計(jì)算機(jī)仿真,2017,34(4):110-114.

      Xing Xiaojun, Huang Longliang, Fan Dongsheng, et al. The simulation research on optimizing attitude control for quadrotor[J]. Computer Simulation, 2017, 34(4): 110-114. (in Chinese with English abstract)

      Rotational speed control of threshing cylinder of oil sunflower combine harvester based on active disturbance rejection controller-dynamic matrix predictive

      Zhang Xuejun, Li Xi, Zhu Xingliang, Ma Shaoteng

      (,,830052,)

      Aiming at the real-time, accuracy and adaptability requirements of threshing cylinder control method of oil sunflower combine harvester, the mathematical model ofrotational speed control of threshing cylinder for oil sunflower harvesting is given in this paper. The walking speed of oil sunflower combine harvest was selected as the control variable and the rotational speed of threshing cylinder wasselected as controlled variable. The rotational speed dynamic model of the threshing cylinder was converted to a affine system which is suitable for ADRC (active disturbance rejection controller), and then the control system based on the ADRC. The internal disturbance, external disturbance and the coupling effect between velocity tension of the system are considered as the total disturbance of the system, the extended state observer is used to observe and compensate the control delay, and the dynamic matrix predictive (DMC) control method is further used to process the control delay. The DMC predictor continuously collects feeding quantity at the current time to predict the feeding quantity at the time according to the predictor. When the predicted value exceeded the setting range, the control system would adjust the walking speed of harvester and the rotational speed of threshing cylinder in time, i.e. to increase the walking speed of the harvester, to increase the feeding quantity, to improve the efficiency or to reduce the walking speed of the harvester, to reduce the feeding quantity and to avoid the blockage of the threshing cylinder, thus the feeding quantity is always kept within the setted optimum range, so that the speed of threshing cylinder can be controlled in advance. The hardware and software system of DSP based on ADRC-DMC nonlinear controller was designed, the simulations, laboratory test and field test were carried out for the designed threshing cylinder controller. Simulation results showed that in the absence of random disturbance, system response curve was smooth, and no overshoot, faster response and system could adjust itself when feeding quantity increased suddenly, the rotational speed of threshing cylinder began to decrease and stabilized at 390.2 r/min after about 1.2 s, and the system response curve was smooth. In the bench test,when the threshingcylinder ran at the optimum speed of 430 r/min, the optimum feeding quantity was 2.45 kg/s, after 15 s, randomly invested about 0.15 kg oil sunflower tray and stem to change the feeding quantity, the test results showed that the rotational speed control method based on ADRC-DMC could adjust the speed in a small range and had a good inhibitory effect on crop uncertainty or random interference, the rotation speed of the threshing cylinder could be adjusted in a small range (0.5 r/min). In order to further verify the effect of the controller, field tests were carried out. The feeding quantity was adjusted by adjusting the traveling speed of the harvester by changing the cutting width, i.e. the cutting width was increased from 6 rows to 7 rows. The results showed that the overall change trend of the record data curve of the rotational speed of threshing cylinder and walking speed of the combine harvester was in good agreement with the simulation results, and the speed response time was about 0.5 s, which can deal with the control delay problem well and realize the real-time control of the rotational speed of the threshing cylinder, ADRC-DMC controller could make the threshing cylinder achieve stable effect.

      agricultural machinery; harvester; control; rotational speed of threshing cylinder; active disturbance rejection controller; dynamic matrix; oil sunflower

      10.11975/j.issn.1002-6819.2019.15.002

      S225.31

      A

      1002-6819(2019)-15-0009-08

      2019-02-16

      2019-05-06

      國家重點(diǎn)研發(fā)計(jì)劃(2016YFD0702104-3)

      張學(xué)軍,博士,教授,主要研究方向?yàn)檗r(nóng)業(yè)裝備工程技術(shù)。Email:tuec@163.com

      張學(xué)軍,李 茜,朱興亮,馬少騰. 基于自抗擾-動態(tài)矩陣的油葵聯(lián)合收獲機(jī)脫粒滾筒轉(zhuǎn)速控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):9-16. doi:10.11975/j.issn.1002-6819.2019.15.002 http://www.tcsae.org

      Zhang Xuejun, Li Xi, Zhu Xingliang, Ma Shaoteng. Rotational speed control of threshing cylinder of oil sunflower combine harvester based on active disturbance rejection controller-dynamic matrix predictive[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 9-16. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.002 http://www.tcsae.org

      猜你喜歡
      油葵脫粒收獲機(jī)
      種一片油葵
      莫愁(2024年7期)2024-03-28 23:38:53
      基于人工擊打脫粒原理的食葵脫粒裝置設(shè)計(jì)與試驗(yàn)
      山東聊城東昌府區(qū)26.67公頃油葵盛開“致富花”
      甘蔗收獲機(jī)提升機(jī)構(gòu)的運(yùn)動學(xué)與動力學(xué)分析
      脫粒分離裝置的研究現(xiàn)狀及發(fā)展趨勢
      自走式油葵收割機(jī)研發(fā)成功
      柔性差速帶式單株大豆脫粒裝置設(shè)計(jì)與試驗(yàn)
      多滾筒脫粒分離裝置脫粒參數(shù)試驗(yàn)與分析
      拖拉機(jī)與玉米收獲機(jī)的保養(yǎng)與維修
      整稈式甘蔗收獲機(jī)斷尾機(jī)構(gòu)虛擬試驗(yàn)研究
      鲁山县| 如皋市| 邢台市| 伊金霍洛旗| 天峻县| 安化县| 麻栗坡县| 册亨县| 扎鲁特旗| 平阴县| 北碚区| 盈江县| 太湖县| 桂平市| 通江县| 威宁| 内丘县| 郓城县| 黔江区| 綦江县| 望奎县| 临夏市| 泰兴市| 馆陶县| 营山县| 桃江县| 罗山县| 澜沧| 神池县| 佳木斯市| 闽侯县| 湘乡市| 绵竹市| 琼中| 行唐县| 台南县| 稷山县| 晋宁县| 石泉县| 资阳市| 林甸县|