石維平 蔡杰 楊雅妮 羅歡歡 劉冰倩 付秋平
4 結(jié) 論
利用Hg2+和T堿基特異性結(jié)合形成THg2+T堿基錯(cuò)配,以Fe3O4納米磁珠為反應(yīng)平臺(tái),富T單鏈DNA和葡萄糖氧化酶標(biāo)記的金納米顆粒為信號(hào)傳導(dǎo)標(biāo)簽,建立了基于便攜式血糖儀檢測Hg2+的新方法。本方法操作簡單,具有良好的靈敏度和特異性,攜帶性好,成本低,可用于自來水樣本中Hg2的檢測。本研究不僅為樣品篩選提供了有效方案,也為便攜式Hg2+檢測儀的開發(fā)提供了新思路。
References
1 Chen G Q, Guo Z, Zeng G M, Tang L. Analyst, 2015, 140(16): 5400-5443
2 Hadi P, To M H, Hui C W, Lin C S K, Mc Kay G. Water Res., 2015,? 73(15): 37-55
3 Chen C H, Lin Y C, Chang H H, Lee A S Y. Anal. Chem., 2015,? 87(8): 4546-4551
4 Baughman T A. Environ. Health Perspect., 2006,? 114(2): 147-152
5 Erxleben H, Rμzicka J. Anal. Chem., 2005,? 77(16): 5124-5128
6 Luis G, Rubio C, Revert C, Espinosa A, GonzálezWeller D, Gutiérrez A J, Hardisson A. J. Food Compos. Anal., 2015,? 39: 48-54
7 Zhu Z Q, Su Y Y, Li J, Li D, Zhang J, Song S P, Zhao Y, Li G X, Fan C H. Anal. Chem., 2009,? 81(18): 7660-7666
8 Sun Z Z, Zhang N, Si Y M, Li S, Wen J W, Zhu X B, Wang H. Chem. Commun., 2014, 50(65):? 9196-9199
9 Shih T T, Hsu I H, Chen S N, Chen P H, Deng M J, Chen Y, Lin Y W, Sun Y C. Analyst, 2015,? 140(2): 600-608
10 Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A. J. Am. Chem. Soc., 2006,? 128(7): 2172-2173
11 Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A. J. Am. Chem. Soc., 2007,? 129(2): 244-245
12 Li L Y, Wen Y L, Xu L, Xu Q, Song S P, Zuo X L, Yan J, Zhang W J, Liu G. Biosens. Bioelectron., 2016,? 75(15): 433-445
13 Zhan S S, Xu H C, Zhang D W, Xia B, Zhan X J, Wang L M, Lv J, Zhou P. Biosens. Bioelectron., 2015,? 72(15): 95-99
14 Xiong E, Wu L, Zhou J W, Yu P, Zhang X H, Chen J H. Anal. Chim. Acta, 2015,? 853(1): 242-248
15 Qiu Z L, Shu J, Jin G X, Xu M D, Wein Q H, Chen G N, Tang D P. Biosens. Bioelectron., 2016,? 77(15) : 681-686
16 Zhao Y T, Du D, Lin Y H. Biosens. Bioelectron., 2015,? 72(15): 348-354
17 Zhang J, Tang Y, Teng L M, Lu M H, Tang D P. Biosens. Bioelectron., 2015,? 68(15): 232-238
18 Liang X L, Wang L, Wang D, Zeng L G, Fang Z Y. Chem. Commun., 2016,? 52(10): 2192-2194
19 Cao L L, Zhang Q, Dai H, Fu Y C, Li Y B. Electroanalysis, 2018,? 30(3): 517-524
20 Gao Z Q, Xu M D, Hou L, Chen G N, Tang D P. Anal. Chem., 2013,? 85(14): 6945-6952
21 Zhang J, Tang Y, Teng L M, Lu M H, Tang D P. Biosens. Bioelectron., 2015,? 68(15): 232-238
22 Liu B Q, Zhang B, Chen G N, Yang H H, Tang D P. Anal. Chem., 2014,? 86(15): 7773-7781
23 Liu Y L, Li J, Chang G, Zhu R Z, He H P, Zhang X H, Wang S F. New J. Chem., 2018,? 42(12): 9757-9763
24 Zhang J, Tang Y, Teng L M, Lu M H, Tang D P. Biosens. Bioelectron., 2015,? 68(15): 232-238
25 Lin Y X, Zhou Q, Lin Y P, Tang D P, Niessner R, Knopp D. Anal. Chem., 2015,? 87(16): 8531-8540
26 EPA 816F02013, National Primary Drinking Water Regulations, USA.
27 GB/57492006, Standards for Drinking Water Quality. National Standards of the People's Republic of China
生活飲用水衛(wèi)生標(biāo)準(zhǔn). 中華人民共和國國家標(biāo)準(zhǔn). GB/5749-2006
28 Sun C Y, Sun R, Chen Y Q, Tong Y, Zhu J W, Bai H, Zhang S Y, Zheng H R, Ye H Q. Sens. Actuators B, 2018,? 255(1): 775-780
29 Nguyen H L, Cao H H, Nguyen D T, Nguyen V A. Electroanalysis, 2017,? 29(2): 595-601
30 Chun H J, Kim S, Han Y D, Kim D W, Kim K R, Kim H S, Kim J H, Yoon H C. Biosens. Bioelectron., 2018,? 104(1): 138-144
31 Wang G F, Huang H, Zhang X J, Wang L. Biosens. Bioelectron., 2012,? 35(1): 108-114
32 LIU ChenGuang, WANG JiuJun, ZHANG XingPing, YANG HuaLin. Chinese J. Anal. Chem., 2017,? 45(2): 163-168
劉晨光, 王久軍, 張興平, 楊華林. 分析化學(xué), 2017,? 45(2): 163-168
33 Zhang Y L, Tang L N, Yang F, Sun Z Y, Zhang G J. Microchim. Acta, 2015,? 182(7): 1535-1541
34 ZHANG Guo, FENG JianJun, CHAI RuiTao, ZHU WeiHuang, KANG QianWen, LI Hui. Chinese J. Anal. Chem., 2019,? 47(4): 583-590
張 國, 馮建軍, 柴瑞濤, 朱維晃, 康倩文, 李 卉. 分析化學(xué), 2019,? 47(4): 583-590
35 Huang L J, Zhu Q R, Zhu J, Luo L P, Pu S H, Zhang W T, Zhu W X, Sun J, Wang J L. Inorg. Chem., 2019,? 58(2): 1638-1646
36 Wang L N, Liu F Y, Sui N, Liu M H, Yu W W. Microchim. Acta, 2016,? 183(11): 2855-2860
Abstract Based on the specific recognition of THg2+T mismatched for mercury ions (Hg2+), a simple and sensitive method for detecting Hg2+ was developed by using Fe3O4 nanomagnetic beads (MB) as reaction platform and portable blood glucose meter (PGM) as detection means. Gold nanoparticles (AuNPs) were prepared by sodium citrate reduction. The surface of AuNPs was modified with sulfhydryl terminalrich thymine (T) oligonucleotide probe (S1) and glucose oxidase (GOx). In the presence of Hg2+, functionalized AuNPs were captured by captureprobe (S2)modified MB due to THg2+T coordination. The labeled GOx oxidized glucose (Glu) to gluconic acid and H2O2. Thus, the concentration of Glu in the reaction solution was reduced and could be detected quantitatively by PGM. The optimal conditions of the assay were as follows: the volume ratio of S2 and GOx was 1∶3, the reaction time of Hg2+ was 2 h, and the hydrolysis time of Glu was 1 h. Under optimized conditions, the PGM response of the system had a good linear relationship with the logarithm of Hg2+ concentration. The linear range was 0.05-8.00 nmol/L, and the detection limit was 0.02 nmol/L (3σ). The recovery of Hg2+ in actual water samples was 97.8%-113.7%, and the relative standard deviation was 0.2%-1.3%, which met the detection requirements of Hg2+ in actual water samples.
Keywords ThymineHg2+Thymine; Fe3O4 nanomagnetic beads; Gold nanoparticles; Portable glucose meter; Mercury ion