• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      融合相似度和地理信息的興趣點推薦

      2019-11-05 10:20郭晨睿李平郭苗苗
      計算技術(shù)與自動化 2019年3期
      關鍵詞:相似性算法模型

      郭晨?!±钇健」缑?/p>

      摘? ?要:興趣點推薦是一種基于上下文信息的位置感知的個性化推薦。由于用戶簽到行為具有高稀疏性,為興趣點推薦的精確度帶來了很大的挑戰(zhàn)。針對該問題,提出了一種融合相似度和地理信息的興趣點推薦模型,稱為SIGFM。首先利用潛在迪利克雷分配(Laten Dirichlet Allocation,LDA)模型挖掘用戶相關興趣特征并進行相似性度量,利用Louvain Community Detection(LCD)算法與用戶簽到數(shù)據(jù)進行相似性度量,使兩種相似度相融合;然后使用地理信息獲取用戶的簽到特征;最后將融合相似度和地理信息結(jié)合到一起獲得一個新的模型。在真實數(shù)據(jù)集上的實驗結(jié)果表明,SIGFM模型有效解決了數(shù)據(jù)稀疏性與冷啟動問題,優(yōu)于其他POIs的推薦算法。

      關鍵詞:潛在狄利克雷分布;Louvain社區(qū)發(fā)現(xiàn);興趣點推薦;地理信息;相似度

      中圖分類號:TP311? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標識碼:A

      Abstract:Point-of-interests(POIs) recommendation is a personalized recommendation based on location-aware with context information.Owing to behavior of check-in from the users is highly sparse,which poses the challenge to the accuracy of the POIs recommendation.In order to solve this problem,this paper propose a new POIs recommendation called Similarity Integration Geography Fusing Model(SIGFM).Firstly,we exploit an aggregated Latent Dirichlet Allocation(LDA) model to learn the interest feature from the users,and then puts the interest feature into similarity measurement.Also,we use the Louvain Community Detection(LCD) and check-in data from the users to calculate the similarity.The similarity measurement utilizing both methods finally merge into the one.Then,a geographical influence measurement is employed to capture the check-in characteristice from the users. Finally,geographical informationin conjunction with the similarity forms the new model.Experimental results show that SIGFM can effectively mitigatethe sparse-data usually suffered and the cold-start suffer to outperforms other methods.

      Key words: latent dirichlet allocation(LDA);Louvain community detection(LCD);point-of-interests(POIs)recommendation;geographic information;similarity

      1相關工作

      隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于位置的社交網(wǎng)絡(Location Based Social Networks,LBSNs)應運而生[1-7](如Foursquare等應用),獲得了用戶們的歡迎。在LBSNs中用戶可以在目前訪問的POIs(如:餐廳等)以簽到的方式發(fā)布他們的地理位置。隨著LBSNs中POIs數(shù)量的快速增加,POIs推薦已成為人們發(fā)現(xiàn)新位置的首選方式。該方式有效幫助了LBSNs中的用戶訪問POIs,并以簽到的功能發(fā)表評論等相關信息,與其他用戶分享自己在該POIs的訪問體驗。POIs推薦旨在幫助用戶更好地發(fā)現(xiàn)感興趣的POIs,為商家提供精準營銷策略。這使得LBSNs更具有吸引力,吸引了諸多研究[8,9]。

      與傳統(tǒng)的推薦問題(如:電影推薦等)相比,POIs推薦系統(tǒng)更加復雜,面臨如下挑戰(zhàn)[1,2,7]:

      (1)豐富的上下文。用戶的移動偏好受地理位置的影響:用戶通常訪問頻繁活動區(qū)域內(nèi)的POIs;用戶每天可以訪問相同的POIs;用戶的偏好依賴于時間;其他的上下文信息包括POIs評論等。

      (2)數(shù)據(jù)稀疏。與傳統(tǒng)推薦系統(tǒng)相比,POIs推薦的數(shù)據(jù)嚴重稀疏。POIs推薦實驗研究 中使用的數(shù)據(jù)密度通常在0.1%左右,而Netflix電影推薦數(shù)據(jù)密度為1.2%[7]。

      [4]? ? WANG B,HUANG J,OU L,et al. A collaborative filtering algorithm fusing user-based,item-based and social networks[C]// IEEE International Conference on Big Data. IEEE,2015:2337—2343.

      [5]? ? MENG X W,LIU S D,ZHANG Y J,HU X. Research on social recommender systems[J]. Ruan Jian Xue Bao/Journal of Software,2015,26(6):1356—1372 (in Chinese).

      [6]? ? 劉樹棟,孟祥武.? 基于位置的社會化網(wǎng)絡推薦系統(tǒng)[J]. 計算機學報,2015,38(2):322—336.

      [7]? ? LIU Y,PHAM N,GAO C,et al. An experimental evaluation of point-of-interest recommendation in location-based social networks[J]. Proceedings of the Vldb Endowment,2017,10(10):1010—1021.

      [8]? BARAL R,LI T. MAPS:a multi aspect personalized POI recommender system[C]// ACM Conference on Recommender Systems. ACM,2016:281—284.

      [9]? ? YE M,YIN P,LEE W C,et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]// Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval,SIGIR 2011,Beijing,ACM,2011.

      [10]? YIN H,CUI B,SUN Y,et al. LCARS: A spatial item recommender system[J]. Acm Transactions on Information Systems,2014,32(3):11—11.

      [11]? ZHANG D C,LI M,WANG C D. Point of interest recommendation with social and geographical influence[C]// IEEE International Conference on Big Data. IEEE,2017:1070—1075.

      [12]? LIU B,XIONG H. Point-of-Interest recommendation in location based social networks with topic and location awareness[M]// Proceedings of the 2013 SIAM International Conference on Data Mining,2013.

      [13]? 任星怡,宋美娜,宋俊德. 基于位置社交網(wǎng)絡的上下文感知的興趣點推薦[J]. 計算機學報,2017,40(4):824—841.

      [14]? ZHAO G,QIAN X,XIE X. User-service rating prediction by exploring social users′ rating behaviors[J]. IEEE Transactions on Multimedia,2016,18(3):496—506.

      [15] WANG H, TERROVITIS M, MAMOULIS N. Location recommendation in location-based social networks using user check-in data[C]// ACM Sigspatial International Conference on Advances in Geographic Information Systems. ACM,2013:374—383.

      [16]? 李心茹,夏陽,張碩碩. 基于相似度融合和動態(tài)預測的興趣點推薦算法[J]. 計算機工程與應用,2018(10):105—109.

      [17]? BLONDEL V D,GUILLAUME J L,LAMBIOTTE R,et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics,2008,2008(10):155—168.

      [18]? CLAUSET A,NEWMAN M E,MOORE C. Finding community structure in very large networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,70(2):066111.

      [19]? LALWANI D,SOMAYAJULU D V L N,KRISHNA P R. A community driven social recommendation system[C]// IEEE International Conference on Big Data. IEEE,2015:821—826.

      [20]? YUAN Q,CONG G,MA Z,et al. Time-aware point-of-interest recommendation[C]// International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM,2013:363—372.

      [21]? YAO L,SHENG Q Z,QIN Y,et al. Context-aware Point-of-interest recommendation using tensor factorization with social regularization[J]. 2015:1007—1010.

      [22]? LI X,JIANG M,HONG H,et al. A time-aware personalized point-of-interest recommendation via high-order tensor factorization[J]. ACM Transactions on Information Systems,2017,35(4):1—23.

      [23]? ZHANG J D,LI Y,LI Y. LORE: exploiting sequential influence for location recommendations[C]// ACM Sigspatial International Conference on Advances in Geographic Information Systems. ACM,2014:103—112.

      [24]? 項亮. 推薦系統(tǒng)實踐[M]. 北京:人民郵電出版社,2012.

      [25]? SARWAR B,KARYPIS G,KONSTAN J,et al. Item-based collaborative filtering recommendation algorithms[C]// International Conference on World Wide Web. ACM,2001:285—295.

      [26]? YE M ,YIN P,LEE W C,et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]// Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval,SIGIR 2011,Beijing,ACM,2011.

      [27]? YE M,YIN P,LEE W C. Location recommendation for location-based social networks[C]// ACM Sigspatial International Symposium on Advances in Geographic Information Systems,ACM-GIS 2010,DBLP,2010:458—461.

      [28] WANG H,TERROVITIS M,MAMOULIS N. Location recommendation in location-based social networks using user check-in data[C]// ACM Sigspatial International Conference on Advances in Geographic Information Systems. ACM,2013:374—383.

      猜你喜歡
      相似性算法模型
      自制空間站模型
      Travellng thg World Full—time for Rree
      模型小覽(二)
      12個毫無違和感的奇妙動物組合
      學習算法的“三種境界”
      算法框圖的補全
      算法初步知識盤點
      基于隱喻相似性研究[血]的慣用句
      圓周運動與解題模型
      離散型隨機變量分布列的兩法則和三模型
      石景山区| 巴林左旗| 罗定市| 开阳县| 南郑县| 砀山县| 扎囊县| 阿拉善左旗| 行唐县| 津市市| 常德市| 新郑市| 双辽市| 兴隆县| 家居| 富平县| 临泽县| 南宁市| 竹北市| 韩城市| 渭南市| 宝兴县| 綦江县| 洪雅县| 常山县| 攀枝花市| 日土县| 玉环县| 襄汾县| 且末县| 宣化县| 正定县| 宁蒗| 含山县| 涡阳县| 怀化市| 陇川县| 大同市| 昌吉市| 嘉善县| 晋中市|