• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?

    2019-11-06 00:46:24BosenWang王鉑森YaoqingZhang張堯卿ShuxiangXu徐淑香KentoIshigakiKazuyukiMatsubayashiJinGuangCheng程金光HideoHosonoandYoshiyaUwatoko
    Chinese Physics B 2019年10期
    關(guān)鍵詞:金光

    Bosen Wang(王鉑森),Yaoqing Zhang(張堯卿),Shuxiang Xu(徐淑香),Kento Ishigaki,Kazuyuki Matsubayashi,Jin-Guang Cheng(程金光),4,Hideo Hosono,and Yoshiya Uwatoko

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Institute for Solid State Physics,University of Tokyo,Kashiwanoha 5-1-5,Kashiwa,Chiba 277-8581,Japan

    3Materials Research Center for Element Strategy,Tokyo Institute of Technology,Yokohama 226-8503,Japan

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords:new superconductor,high-pressure effect,strongly coupled superconductor

    Low energy anharmonic lattice vibration significantly affects electron–phonon coupling(λe?p)and plays an important role in exploring superconductors(SC)and revealing superconducting mechanism.[1,2]Among them,phonon softening associated with structural instabilities usually results in Fermi surface nesting and the enhancement of the electron–phonon coupling,which is believed to be much important for superconducting pairings.[3–7]Various cage-like materials have been reported and attracted much more attention.[3,6,7]The commonalities are composed of hollow covalently bonded atomic clusters and various inserted elements,offering playgrounds to explore diverse structures,exotic physics,and multifunctionalities,e.g.,multi-band SCs,[3,8–10]metal–insulator transition,[10]thermoelectricity,[11]and electrides.[12,13]But some regularity is not universal concerning the superconducting pairing mechanisms,which is also challenging to study these scientific issues.

    Hexagonal structure Mn5Si3-type derivatives are such examples.[14,15]One of the top priorities is the explorations of new SCs and superconducting mechanisms.[15–19]At present, the difficulty in synthesizing single-phase hexagonal and tetragonal materials lies in their close formation energies.[16,17,19]One common way is elementary intercalation into interstitial positions of Mn5Si3Mx(M=carbon,nitrogen,oxide,and transition metal elements,etc).[14–19]Hexagonal phase can be stabilized and the relevant studies are performed to reveal the relationships between lattice instabilities and superconductivity. For example,hexagonal Nb5Ir3is stabilized upon the insertion of the interstitial oxygen and Tcis increased as a result.It is sure that the interstitial oxygen brings great changes in electronic structures.[16]It still remains unclear whether the enhanced Tcis dominantly associated to the volume change,band fillings,structural instability,and/or disorders.[16]Another issue to be addressed is the relationship of electride and superconductivity. Theoretical calculations predicated that the electride nature of Nb5Ir3vanishes in Nb5Ir3O.As we know,eletride materials have electronic bands of anionic electron near Fermi level(EF)in many cases including C12A7: e-1 electride,Ca2N,and Y5Si3,which is the important reason why electride materials exhibit interesting properties.For SCs,Tcis enhanced along with the suppression of the electride nature and the coexistence of superconductivity and electride is firstly reported with Tc~0.16–2.4 K.[12,13]For C12A7:e-1 electride SC,Tcis increased to 2.4 K by pressure and this enhancement is attributed to the changes in electronic nature of anionic electride band crossing Fermi levels switching from s-to sd-hybridized state.[13]However,the interstitial oxygen suppresses superconducting state in other cases,hexagonal Zr5Sb3is superconductive at ~2.3 K,but Zr5Sb3O is not superconducting above 1.8 K,it is thought that larger density of states(DOS)at EFassociated with the Zr-d electrons and the larger value of λe?pis critical.[15]Analogously,in Zr5Sb(3?x)Rux,its hexagonal structure transforms into W5Si3-type one for 0.4 ≤x ≤0.6.Tcincreases from 2.3 K to 5 K in Zr5Sb2.4Ru0.6,which originates from the EFclose to the DOS peak.[17]Except for these above scientific issues,the present studies on the intercalated Mn5Si3-type materials focus on macro-correlations of crystal structure and superconductivity,and some conclusions are inadequate. In this work,Nb5Ir3O is selected to study the issues further. Another concern is to reveal superconductivity by comparative analysis of doping and high pressure,and to judge whether unconventional or not with magnetism of localized and/or itinerant iridium.[20,21]

    Fig.1.Crystal structures for(a)Nb5Ir3 and(b)Nb5Ir3O.ρ(T)for(c)Nb5Ir3 and(d)Nb5Ir3O.The enlargement of low-T data is shown in the inset.The derivative dρ/dT for(e)Nb5Ir3 and(f)Nb5Ir3O.The broad peaks are marked by T p.M(T)curves at 10 Oe under the ZFC and FC processes for(g)Nb5Ir3 and(h)Nb5Ir3O.

    High pressure is an effective and clean way to study structural chemistry and electronic phase transitions of materials by shortening bonds and reconstructing electronic bands.For SCs,high-pressure effect is valuable because the underlying mechanism can be identified by analogizing with the known SCs. In this work,Nb5Ir3O is found to be a strongly coupled SC with two s-wave gaps and phonon softening associated with interstitial oxygen is critical.

    At ambient pressure(AP),electrical transport and specific heat of Nb5Ir3and Nb5Ir3O were measured on commercial physical properties measurement system(PPMS,1.8 K≤T ≤300 K,?9 T ≤H ≤9 T).High-pressure susceptibility was measured in a piston-cylinder cell with glycerol as the pressure transmitting medium(PTM)and a small piece lead as the pressure monitor.The background contributions mainly originate from Meissner signal of Pb reference.High-pressure electrical transport was performed by the four-probe method in a cubic anvil pressure cell which generated the hydrostatic environment.[22]MgO cubes were used as the gasket and glycerol as PTM.All the measurements were carried out in4He refrigerated chambers(1.9 K ≤T ≤300 K).

    Structures of Nb5Ir3and Nb5Ir3O(1?δ)are shown in Figs.1(a)and 1(b).They have similar hexgonal symmetry except for the interstitial oxygen inserted.Nb5Ir3contains two groups of weakly connected octahedra along the c axis:one is hollow(Nb1)6octahedron connected by Nb1–Nb1 bonds,the other is side-sharing Ir(Nb2)6octahedron.Moreover,it is regarded as the network of twisted trigonal Nb1-prisms connected by the planes along the c axis,which allows the insertion of oxide ion in the“Nb1 cages”.It does not change the crystal structure,but forms covalent bonds Nb1–O.Upon changing from Nb5Ir3to Nb5Ir3O,lattice parameter c contracts by ~0.11%while a and b expand by ~0.087%. In Figs.1(c)and 1(d),ρ(T)of Nb5Ir3and Nb5Ir3O shows the metallic behavior. Two independent drops appear in the inset of Fig.1(c),which represent superconducting transitions of hexagonal and tetragonal Nb5Ir3,respectively.[20,21]andare marked where ρ(T)deviates linearly and is zero.At AP,is ~9.4 K for hexagonal Nb5Ir3and ~4.0 K for tetragonalis ~10.15 K and~is 10 K for Nb5Ir3O.In Fig.1(d),ρ(T)is shown and similar in temperature dependence for both as-grown Nb5Ir3O and annealed one(4 GPa,600?C).A clear difference is that high pressure broadens the transition anddecreases from ~10 K to ~9.6 K.A broad peak appears in dρ/dT at a critical temperature Tp,which decreases from ~62.5 K to ~53.8 K upon the increase of the interstitial oxygen. Usually,this peak reflects the information of the phonon spectrum and is closely related with Debye temperature θD.[23]

    Fig.2.The transverse resistivity ρxy vs.H at various temperatures:(a)S1#and(b)S2#.(c)Temperature dependence of Hall coefficient RH(T).

    Figure 2 displays the field-dependence of transverse resistivity ρxyat various temperatures up to 5 T.ρxyshows a linear H-dependence for each temperature. Hall coefficient RHis defined by dρxy/dH. RHis positive and almost temperature independent below 200 K,and negative above 250 K,which suggests the balance of electron-to hole-types carriers with different effective masses and velocities.Its strong temperature dependence elucidates that Nb5Ir3O has a complex multi-band electronic structure with both electron-and hole-Fermi pockets.[24,25]According to the successive changes in mangetism and electrical resistivity,we can exclude the possible structural and magnetic phase transitions.Besides,the longitudinal resistivity ρxxis measured,the magnetoresistance MR=?ρxx/ρxx(0)=(ρxx(5 T)?ρxx(0))/ρxx(0)<2%. As we know,for a multi-band structure material,it is difficult to calculate the carrier concentration by a single-band model.It is necessary to consider the mobility of two carriers and the specific Fermi surface structures and more theoretical calculations and in-depth experimental analysis are needed.Meanwhile,the carrier density by the simple estimate of the singleband model is only a lower limit of the total carrier number(electrons plus holes),such as n ~1.6×1028m?3for Nb5Ir3O at 300 K.Considering the change of sign of RH,the compensation effect at 300 K(where the one-band carrier density was calculated)is expected to still be significant.Further understandings need De-Haas–van Alphen and angle-resolved photoemission spectroscopy.

    Temperature dependence of specific heat Cp(T)is shown in Fig.3(a). On warming,Cp(T)increases and approximates 3NR above 300 K.Tc(~9.94 K)is marked by the jump in Cp/T.The inset shows Cp(T)/T and its polynomial fittingsin the temperature range of Tc≤T ≤14 K,where γnT andare electron and phonon contributions,respectively. It gives γn=34.255 mJ/mol·K2,β1=0.4489 mJ/mol·K4,β2=1.07×10?3mJ/mol·K6. Electronic contribution Ce(T)was investigated by the deduction offrom Cp(T)as in Fig.3(c). The ?C/γnTcat Tcis ~1.91,larger than 1.43 for a Bardeen–Cooper–Schrieffer(BCS)SC.[26]λe?pis 0.85 by using McMillan formula Tc=(θD/1.45)exp{?1.04(1+λe?p)/[λe?p?0.15(1+0.62λe?p)]}, which implies strong electron–phonon coupling.[26]

    Fig.3.(a)Temperature dependent Cp(T)for Nb5Ir3O,the inset shows low-T Cp(T)/T.(b)Theis the sum of Debye model CD and Einstein oscillators CE.(c)Electronic specific heat Ce(T)=Cp(T)?(β1T 3+β2T 5)is analyzed by using a single-gap model as Ce(T)/T=β1T 3+β2T 5+Bexp(??/kBT).(d)and(e)H-dependence of Cp(T).(f)The upper critical field Hc2 is given by Hc2(T)=Hc2(0)[1?(T/Tc)2]/[1+(T/Tc)2]and Hc2(0)=?0.693Tc dHc2/dT,respectively.Inset shows H-dependent γ(H)and its comparison to H1/2-behavior for d-wave SCs.

    To get more information on gap symmetry,Ce(T)was analyzed by a single-gap model C(T)=β1T3+β2T5+Bexp(??/kBT)at first,which gives 2?/kBTc=4.25. But clear deviations between experimental and mathematical fitting exist for T<5 K,which implies that isotropic s-wave is too simple. Meanwhile,an anisotropic s-wave gap is similar but not applicable to the present case. Then,two anisotropic s-waves with gaps ?1and ?2are required. The data are well duplicated with 2?L(0)/kBTc~6.56(90%)and 2?S(0)/kBTc~2.36(10%). Furthermore,H-dependence of Ce(T,H)is measured. At H=0,the linear extrapolation of Ce/T vs.gives a“residual”Sommerfeld coefficient γ0≈0 mJ·mol?1·K?2.For each H,γ(H)at T=0 K is determined by linear fitting to Ce/T vs.T2.The H-dependence of γ(H)is plotted in Fig.3(f). γ(H)increases linearly as a function of H,implying the appearance of nodeless gap.γ(H)is smaller than the H1/2dependence for d-wave SCs with line nodes.[27]Generally,in fully-gapped SCs,the excited state is seen as normal-state quasiparticles in vortex core states,which generates the γn(H)≈H at zero temperature. Thus,Nb5Ir3O is a fully-gapped s-waves SC.Moreover,using the Hdependence ofCp(T)data in Figs.3(d)and 3(e),the upper critical field Hc2(0)is 10.5(5)T and 9.5(8)T by Ginzburg–Landau equation Hc2(T)=Hc2(0)[1 ?(T/Tc)2]/[1+(T/Tc)2]and Werthamer–Helfand–Hohenberg(WHH)formula Hc2(0)=?0.693TcdHc2/dT,respectively.[28]

    To extract phonon contributions,thevs.T is plotted.It shows a broad peak at ~23 K,which manifests the existence of low-energy Einstein vibration associated with anomalies in the phonon spectrum.[29]Cp(T)is the sum of Debye mode and Einstein oscillators

    where CD(T)and CE(T)are the contributions of continuous phonon mode and localized oscillators,respectively,N,N1,and N2are the numbers of oscillators per formula,R is the gas constant,θDand θE1,θE2are Debye and Einstein temperatures,respectively.It gives θD=315.8(4)K,θE1=87.9(2)K,θE2=69.7(5)K,which are insensitive to the temperature ranges selected.As above,the Nb1O octahedron is connected with side-sharing Ir(Nb2)6one,which reminds us that Tcdepends on λe?pin materials with low-lying phonon modes.It suggests the existence of phonon softening associated with interstitial oxygen.

    Figure 4 shows ρ(T)of Nb5Ir3O under various pressures.With increasing pressure,room-temperature ρ decreases and its value at 13 GPa is nearly three times smaller than that at AP.ρ(T)has similar temperature dependence for each pressure:metallic behavior and entering into superconducting state.As shown in Fig.4(b),with increasing pressure,anddecrease and transition widthincreases,implying that the superconducting transition is broadened by pressure.As shown in Fig.4(c),susceptibility is measured in a piston pressure cell.is determined by the intersections of two straight lines. Large field shielding effect belowconfirms bulk superconductivity.The fraction is nearly 1 by subtracting the background contributions of Pb signal which is about 5%–10%of total magnetization.decreases from~9.91 K at 0.10 GPa to ~9.70 K at 1.21 GPa.The stress effect and the enhanced anisotropy by pressure are the main reasons.Besides,the broad peak at T p ~53.8 K atAP enhances to 69.4 K at 13 GPa,which is negatively correlated with Tc.

    Fig.4.(a)The ρ(T)under various pressures.(b)Low-T ρ(T)is enlarged and dρ/T in the inset.(c)M(T)under ZFC process at 10 Oe.(d)?ρ(T)under various pressures and the characteristic temperatures T ?,T ε,and T#are defined as the crossing points from T 2-to T 3-dependence,the deviation from T 3-dependence,the intersection of T 3-dependence and linear fitting,respectively.The parameters are summarized with pressures:(e),(h)ρ300 K,ρ0,(i)the A value.

    Normal-state ρ(T)is analyzed bywith residual resistivity ρ0,temperature coefficient A,and exponent n.It is found that n is ~2.±0.1 for T ≤T?,then increases up to ~3.±0.1 for T?≤T ≤Tε,and then tends to saturation for T ≥T#,where T?,Tε,and T#are defined as the crossing points of T2-to T3-dependence,the deviation from T3-dependence,the intersection of T3-dependence and linear fitting above 250 K,respectively.All the parameters are shown in Figs.4(f)and 4(g).Considering the small pressure difference and distribution(<0.5 GPa)in the cubic anvil cell cooling from 300 K to 2 K,the present analyses of temperature dependence of resistivity are reliable.increases as the pressure increases while T?reaches the maximum at 8 GPa.T2-fittings for Tc≤T ≤T?give ρ,A and their pressure dependence in Figs.4(h)and 4(i).Both ρ and ρ300Kreduce with increasing pressure.The decrease of ρ is attributed to the weakened grain boundary scatterings under pressure.The A has a positive correlation with Tc:it decreases quickly below 4 GPa,and then trends to a constant.

    Fig.5.(a)Pressure phase diagram,the color represents the changing trends of resistivity. (b)The the unit-cell volume V,and the lattice parameter ratio c/(10a)are related with the increasing nominaloxide content(1?δ)of 0,0.20,0.40,0.60,0.80,1.0 for (c)We scaled the relationship of and for The thick lines indicate the tendency.

    In Fig.5(a),we outline the high-pressure phase diagram.The color represents the changing trend of resistivity. Generally,T2-dependence for Tc≤T ≤T?shows that electron–electron scattering is the main source and T3-dependence forindicates important electron–phonon scattering.Above Tε,ρ(T)is saturated,indicating that electron–phonon scattering is comparable to the atomic lattice spacing.Thus,the increases of characteristic temperatures reflect the change of phonon contributions.[23,26,30]For,theunit-cell volume,and lattice parameters c/(10a)ratio are summarized in Fig.5(b). With increasing(1 ?δ),increases from ~9.4 K to ~10.15 K in Nb5Ir3O,the volume expands from ~272.89 mm3to ~273.05 mm3,and c/(10a)decreases from ~0.649 to ~0.647.More interestingly,and the volume have similar linear dependence on c/(10a).In Fig.5(c),the relationship ofandis also scaled.Bothanddecrease linearly with Tp.It is argued thatis proportional to the parameters closely correlated with θD,which implies that phonon contributions are different with pressures,[23,26]e.g.,the weakness of phonon scattering and the reduced value of λe?p.[5,15,17]

    Finally,we discuss the evolution of superconditing transition temperature with the interstitial oxygen and pressures.As mentioned above,with increasing concentration of the interstitial oxygen,the volume expands and Tcenhances,which seems to contradict with pressure.[16]Under pressure,Tccorrelates with the A value directly. As we know,A is proportional to the square of Sommerfeld coefficient,as an important measure of DOS at EF.Therefore,the decrease of Tcmainly originates from the reduce of N(EF),which is consistent with the phonon-mediated behavior in Nb5Ir3O.Previous studies revealed that Tcwill be higher if with larger N(EF).[15,17–19]It suggests that band filling effect is the main result of superconductivity.Or to say,high pressure and interstitial oxygen change the electronic structure and phonon spectrum in different ways.Several possible scenarios are proposed:the first case is that pressure broadens energy bands and results in the decrease of N(EF).[26]It is consistent with the fact that Nb5Ir3O is phonon-medicated SC.For Nb5Ir3O(1?δ),the monotonic increase of N(EF)may account for higher Tcwith increasing concentration of the interstitial oxygen.The second scenario is the weakness of λe?punder pressure,which can reduce Tc.[1,2]This is basically consistent with strong correlation characteristics of these SCs.[3,7,8,10]For Nb5Ir3O(1?δ),considering the strong electronegativity of oxygen,the insertion of interstitial oxygen introduces Nb1–O ionic bonds,which may enhance the electron correlations and λe?p.The third scenario is that Nb5Ir3O has an inter-band coupling considering its multi-band electronic structure,which usually appears in other multi-band SCs.[31,32]For Nb5Ir3O(1?δ),the insertion of interstitial oxygen enhances this coupling and results in an enhancement of Tc,which is in good agreement with theoretical calculations.To understand the details,further studies on band structures and phonon spectrum are also required.

    In summary,we have investigated robust superconductivity and gap symmetry of Nb5Ir3O.Nb5Ir3O is found to be strongly coupled phonon-medicated SC with double s-waves.Phonon softening and low-lying phonon modes associated with the interstitial oxygen are critical to understand the evolution of Tc.

    Acknowledgment

    We thank S.Nagasaki and Dr.Gouchi for the technical assistance.

    猜你喜歡
    金光
    午夜繁華
    Optimal driving field for multipartite quantum battery coupled with a common thermal bath
    王記寨
    Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
    金光現(xiàn)代學徒班感恩教育的實踐
    The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon
    Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers?
    呂金光
    龍的傳人
    頤和園十七孔橋再現(xiàn)“金光穿孔”景象
    澳門月刊(2018年1期)2018-01-17 08:48:45
    久久久精品94久久精品| 国产亚洲av高清不卡| 91字幕亚洲| 久热这里只有精品99| 国产精品自产拍在线观看55亚洲 | 后天国语完整版免费观看| 成人国产av品久久久| 久久久久久久大尺度免费视频| 久久久久久久大尺度免费视频| 女人高潮潮喷娇喘18禁视频| 新久久久久国产一级毛片| 亚洲精品久久成人aⅴ小说| 国产又色又爽无遮挡免费看| 美女午夜性视频免费| 日韩欧美一区视频在线观看| 搡老岳熟女国产| 国产精品影院久久| 日韩欧美国产一区二区入口| 欧美+亚洲+日韩+国产| 在线 av 中文字幕| 欧美激情久久久久久爽电影 | 色老头精品视频在线观看| 超碰成人久久| 欧美激情久久久久久爽电影 | 精品亚洲成a人片在线观看| 免费在线观看影片大全网站| 国产精品国产av在线观看| 国产一区二区三区在线臀色熟女 | 一级片免费观看大全| 色综合欧美亚洲国产小说| 国产在视频线精品| 老熟女久久久| 精品国产一区二区三区久久久樱花| 国产极品粉嫩免费观看在线| 国产免费视频播放在线视频| 97在线人人人人妻| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频 | 亚洲精品美女久久av网站| 国产精品成人在线| 亚洲精品av麻豆狂野| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 国产在线精品亚洲第一网站| 久久久精品区二区三区| a级片在线免费高清观看视频| 母亲3免费完整高清在线观看| aaaaa片日本免费| 久久人人爽av亚洲精品天堂| 国产1区2区3区精品| 欧美人与性动交α欧美软件| 亚洲七黄色美女视频| 亚洲精品中文字幕一二三四区 | 啦啦啦中文免费视频观看日本| 亚洲色图综合在线观看| 久久精品亚洲精品国产色婷小说| av不卡在线播放| 一边摸一边抽搐一进一出视频| 欧美激情久久久久久爽电影 | 日本vs欧美在线观看视频| 亚洲欧洲日产国产| 日日夜夜操网爽| 久热爱精品视频在线9| www日本在线高清视频| 日韩中文字幕视频在线看片| 久久精品成人免费网站| 欧美另类亚洲清纯唯美| 国产片内射在线| 亚洲 欧美一区二区三区| 精品福利观看| 免费在线观看影片大全网站| 国产野战对白在线观看| 亚洲中文日韩欧美视频| 欧美黄色淫秽网站| 9色porny在线观看| 免费日韩欧美在线观看| 在线亚洲精品国产二区图片欧美| 丁香欧美五月| 美女高潮喷水抽搐中文字幕| 欧美激情高清一区二区三区| 久久久国产一区二区| 亚洲综合色网址| 久久99热这里只频精品6学生| 99国产精品一区二区三区| 国产精品免费视频内射| 国产日韩欧美亚洲二区| 午夜福利,免费看| 日韩视频一区二区在线观看| 中国美女看黄片| 午夜老司机福利片| 亚洲精品国产色婷婷电影| 亚洲国产欧美网| 黄网站色视频无遮挡免费观看| 午夜福利乱码中文字幕| 欧美老熟妇乱子伦牲交| 捣出白浆h1v1| 性高湖久久久久久久久免费观看| 国产男女超爽视频在线观看| 99国产精品一区二区蜜桃av | 99国产精品一区二区蜜桃av | 在线观看免费日韩欧美大片| 黄色片一级片一级黄色片| 首页视频小说图片口味搜索| 国产人伦9x9x在线观看| 午夜91福利影院| 亚洲国产成人一精品久久久| 国产亚洲精品久久久久5区| 大码成人一级视频| 日韩中文字幕欧美一区二区| 大香蕉久久网| 午夜激情久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| a级片在线免费高清观看视频| 男人操女人黄网站| 又黄又粗又硬又大视频| 欧美+亚洲+日韩+国产| 国产精品免费一区二区三区在线 | 男女午夜视频在线观看| 日本黄色日本黄色录像| 母亲3免费完整高清在线观看| 国产成人免费观看mmmm| 国产日韩一区二区三区精品不卡| 国产av国产精品国产| 成年版毛片免费区| 国产精品久久久av美女十八| 亚洲av日韩精品久久久久久密| 亚洲一码二码三码区别大吗| bbb黄色大片| 91九色精品人成在线观看| 少妇精品久久久久久久| 久久精品亚洲av国产电影网| 啦啦啦视频在线资源免费观看| 亚洲伊人色综图| 肉色欧美久久久久久久蜜桃| 丰满迷人的少妇在线观看| 纯流量卡能插随身wifi吗| 欧美激情极品国产一区二区三区| 国产成人系列免费观看| 精品国产一区二区三区四区第35| 黄片播放在线免费| 少妇粗大呻吟视频| 91字幕亚洲| 99国产综合亚洲精品| 最新在线观看一区二区三区| 国产成人精品久久二区二区免费| 亚洲精品在线观看二区| 叶爱在线成人免费视频播放| 成年女人毛片免费观看观看9 | 日本撒尿小便嘘嘘汇集6| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 99精品久久久久人妻精品| 日韩一卡2卡3卡4卡2021年| 久久人人爽av亚洲精品天堂| 香蕉久久夜色| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 一区二区av电影网| 高清欧美精品videossex| 国产又爽黄色视频| 一边摸一边做爽爽视频免费| 男女床上黄色一级片免费看| 99热国产这里只有精品6| 亚洲av成人一区二区三| 91九色精品人成在线观看| 少妇精品久久久久久久| 久久精品国产亚洲av高清一级| 99热国产这里只有精品6| 成人18禁高潮啪啪吃奶动态图| 中文字幕高清在线视频| 一区在线观看完整版| 亚洲久久久国产精品| 国产欧美日韩一区二区精品| 国产av国产精品国产| 一区二区av电影网| 男男h啪啪无遮挡| 免费看a级黄色片| 亚洲人成77777在线视频| 色婷婷av一区二区三区视频| 精品高清国产在线一区| 精品少妇一区二区三区视频日本电影| 精品视频人人做人人爽| 19禁男女啪啪无遮挡网站| 亚洲一码二码三码区别大吗| 麻豆av在线久日| 日本撒尿小便嘘嘘汇集6| 黄色怎么调成土黄色| 热re99久久精品国产66热6| 99精品欧美一区二区三区四区| 99精国产麻豆久久婷婷| 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| 一个人免费看片子| 91成人精品电影| 免费观看人在逋| 久久九九热精品免费| 国精品久久久久久国模美| 成人特级黄色片久久久久久久 | 黄片小视频在线播放| 成人免费观看视频高清| 免费人妻精品一区二区三区视频| 大型av网站在线播放| 久久久水蜜桃国产精品网| 99riav亚洲国产免费| 欧美中文综合在线视频| 日韩免费高清中文字幕av| 国产精品香港三级国产av潘金莲| 亚洲av日韩精品久久久久久密| 视频区图区小说| 亚洲一区二区三区欧美精品| 三上悠亚av全集在线观看| 久久久欧美国产精品| 黄色视频不卡| 老司机午夜十八禁免费视频| 后天国语完整版免费观看| 日本av手机在线免费观看| 我要看黄色一级片免费的| 丝袜喷水一区| 午夜福利免费观看在线| 少妇裸体淫交视频免费看高清 | 国产精品秋霞免费鲁丝片| 国产一区二区 视频在线| 欧美亚洲日本最大视频资源| 国产不卡av网站在线观看| 欧美在线一区亚洲| 2018国产大陆天天弄谢| 亚洲久久久国产精品| 这个男人来自地球电影免费观看| 国产亚洲欧美精品永久| 香蕉久久夜色| 在线观看免费视频网站a站| 51午夜福利影视在线观看| 亚洲第一欧美日韩一区二区三区 | 久久久国产欧美日韩av| 免费女性裸体啪啪无遮挡网站| 成人国语在线视频| 欧美国产精品va在线观看不卡| 国产淫语在线视频| 久久九九热精品免费| 一级毛片精品| 久久久国产欧美日韩av| 国产精品 国内视频| 亚洲欧洲日产国产| 亚洲午夜理论影院| 欧美日韩一级在线毛片| 欧美大码av| 亚洲精品成人av观看孕妇| 蜜桃在线观看..| 欧美乱妇无乱码| 黄片播放在线免费| 三上悠亚av全集在线观看| 免费观看人在逋| 国产成人av教育| 黄色成人免费大全| 久久久久久久精品吃奶| 精品一区二区三区av网在线观看 | 最近最新中文字幕大全免费视频| 亚洲av成人一区二区三| 国产午夜精品久久久久久| 女人精品久久久久毛片| 久久国产精品影院| 母亲3免费完整高清在线观看| 午夜91福利影院| 中文字幕人妻丝袜一区二区| svipshipincom国产片| 午夜视频精品福利| 国产成人影院久久av| 国产亚洲精品一区二区www | 午夜免费成人在线视频| 又黄又粗又硬又大视频| 亚洲第一青青草原| 91成人精品电影| 国产精品成人在线| 欧美日韩国产mv在线观看视频| 一个人免费看片子| 18禁美女被吸乳视频| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 色94色欧美一区二区| 性少妇av在线| 老熟妇乱子伦视频在线观看| 啦啦啦 在线观看视频| 亚洲国产欧美在线一区| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 国产一区二区三区视频了| 久久久国产精品麻豆| 久久久久视频综合| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品美女久久久久99蜜臀| 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 国产又色又爽无遮挡免费看| 香蕉国产在线看| 国产精品免费大片| 日韩一区二区三区影片| 亚洲第一青青草原| 久久这里只有精品19| 免费在线观看视频国产中文字幕亚洲| 91成人精品电影| 午夜福利在线观看吧| av国产精品久久久久影院| 涩涩av久久男人的天堂| av超薄肉色丝袜交足视频| 91老司机精品| 丰满饥渴人妻一区二区三| 亚洲精品粉嫩美女一区| 我的亚洲天堂| 日本精品一区二区三区蜜桃| 青青草视频在线视频观看| 成年动漫av网址| 久久精品亚洲av国产电影网| 丰满饥渴人妻一区二区三| 久久天躁狠狠躁夜夜2o2o| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲 | av国产精品久久久久影院| 亚洲第一青青草原| 9色porny在线观看| 深夜精品福利| 午夜免费鲁丝| 久久久水蜜桃国产精品网| 9色porny在线观看| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 亚洲精品久久成人aⅴ小说| 老司机午夜福利在线观看视频 | 成年人免费黄色播放视频| 一区在线观看完整版| 国产激情久久老熟女| 久久99一区二区三区| 视频区图区小说| 色老头精品视频在线观看| 国产精品免费一区二区三区在线 | www.自偷自拍.com| 久久99一区二区三区| 亚洲欧美日韩高清在线视频 | 成人手机av| 久久精品国产综合久久久| 成年动漫av网址| 超色免费av| 国产1区2区3区精品| 搡老岳熟女国产| 丝袜人妻中文字幕| 久久青草综合色| 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| av网站在线播放免费| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女 | 18禁美女被吸乳视频| 久久青草综合色| 国产主播在线观看一区二区| 高清在线国产一区| 一进一出好大好爽视频| 国产精品一区二区免费欧美| 精品人妻熟女毛片av久久网站| 91大片在线观看| 蜜桃在线观看..| av天堂久久9| 18禁国产床啪视频网站| 国产一区二区 视频在线| a级片在线免费高清观看视频| 免费av中文字幕在线| tube8黄色片| 中文字幕色久视频| av欧美777| 一级片'在线观看视频| 丁香欧美五月| 法律面前人人平等表现在哪些方面| 久久精品熟女亚洲av麻豆精品| 欧美成人免费av一区二区三区 | 美女午夜性视频免费| 老司机福利观看| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡动漫免费视频| 韩国精品一区二区三区| aaaaa片日本免费| 精品人妻1区二区| 极品人妻少妇av视频| 日韩中文字幕欧美一区二区| 成人免费观看视频高清| 国产熟女午夜一区二区三区| 男女免费视频国产| 午夜成年电影在线免费观看| 久久久久久久大尺度免费视频| 69av精品久久久久久 | 精品一品国产午夜福利视频| 女警被强在线播放| 女同久久另类99精品国产91| 成年人免费黄色播放视频| 美女扒开内裤让男人捅视频| av天堂在线播放| 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| 精品免费久久久久久久清纯 | 极品少妇高潮喷水抽搐| 欧美一级毛片孕妇| 他把我摸到了高潮在线观看 | 天堂动漫精品| 国产99久久九九免费精品| 国产三级黄色录像| 国产免费视频播放在线视频| 久久国产精品大桥未久av| 色综合婷婷激情| 久久中文字幕一级| 欧美日韩精品网址| 两性夫妻黄色片| 亚洲国产成人一精品久久久| 女警被强在线播放| 国产精品久久久av美女十八| 一级片'在线观看视频| 久久久精品免费免费高清| 国产片内射在线| 91麻豆精品激情在线观看国产 | 久久久精品国产亚洲av高清涩受| 建设人人有责人人尽责人人享有的| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 久久亚洲真实| 亚洲va日本ⅴa欧美va伊人久久| 欧美精品一区二区大全| 中文亚洲av片在线观看爽 | 老鸭窝网址在线观看| 成人国产av品久久久| netflix在线观看网站| tube8黄色片| 亚洲人成电影免费在线| 建设人人有责人人尽责人人享有的| 大型av网站在线播放| 日韩免费高清中文字幕av| 国产免费现黄频在线看| 国产成人av激情在线播放| 国产真人三级小视频在线观看| 一级,二级,三级黄色视频| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| av超薄肉色丝袜交足视频| 国产精品国产高清国产av | www.999成人在线观看| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 国产男女内射视频| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 人人妻,人人澡人人爽秒播| 亚洲人成电影免费在线| 欧美 日韩 精品 国产| 中亚洲国语对白在线视频| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| 天堂8中文在线网| 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 大型黄色视频在线免费观看| 操出白浆在线播放| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 国产亚洲一区二区精品| 精品福利永久在线观看| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 久久青草综合色| 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 精品亚洲成国产av| 两人在一起打扑克的视频| 在线亚洲精品国产二区图片欧美| 嫁个100分男人电影在线观看| 757午夜福利合集在线观看| 俄罗斯特黄特色一大片| 午夜福利视频精品| kizo精华| 欧美另类亚洲清纯唯美| videos熟女内射| 热99re8久久精品国产| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| 午夜福利在线免费观看网站| 一级毛片女人18水好多| 久久久精品免费免费高清| 国产97色在线日韩免费| 亚洲全国av大片| 精品国产乱码久久久久久小说| 国产亚洲一区二区精品| 一边摸一边抽搐一进一小说 | 久久青草综合色| 香蕉丝袜av| 成年版毛片免费区| 国产亚洲精品久久久久5区| av天堂久久9| 多毛熟女@视频| 国产精品久久久久久精品古装| 丝袜人妻中文字幕| 国产精品亚洲一级av第二区| 99国产精品一区二区蜜桃av | 桃花免费在线播放| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| 大型黄色视频在线免费观看| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 亚洲精品自拍成人| 国产精品久久久久久精品电影小说| 天堂中文最新版在线下载| 热99国产精品久久久久久7| 亚洲黑人精品在线| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 久久久久网色| 母亲3免费完整高清在线观看| 亚洲专区国产一区二区| 十八禁人妻一区二区| 黄网站色视频无遮挡免费观看| 欧美精品一区二区大全| a级毛片黄视频| 欧美精品一区二区大全| 色老头精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 免费一级毛片在线播放高清视频 | 一边摸一边抽搐一进一小说 | 亚洲伊人色综图| 十分钟在线观看高清视频www| 好男人电影高清在线观看| 大香蕉久久成人网| 欧美精品亚洲一区二区| cao死你这个sao货| 女性被躁到高潮视频| 精品国产乱码久久久久久男人| 老司机深夜福利视频在线观看| 18禁美女被吸乳视频| 激情在线观看视频在线高清 | 嫁个100分男人电影在线观看| 伦理电影免费视频| 国产精品久久久久成人av| 久久久国产精品麻豆| 日日夜夜操网爽| 国产欧美亚洲国产| av天堂久久9| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 精品一品国产午夜福利视频| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 高潮久久久久久久久久久不卡| 欧美av亚洲av综合av国产av| 国产伦理片在线播放av一区| 在线播放国产精品三级| 国产不卡一卡二| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 日本撒尿小便嘘嘘汇集6| 丝袜喷水一区| svipshipincom国产片| 深夜精品福利| 成人精品一区二区免费| 成在线人永久免费视频| 757午夜福利合集在线观看| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| a级毛片在线看网站| 热re99久久精品国产66热6| 国产成人av教育| 亚洲成人免费av在线播放| 可以免费在线观看a视频的电影网站| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 1024香蕉在线观看| 国产av国产精品国产| 91成年电影在线观看| 亚洲国产欧美网| 少妇裸体淫交视频免费看高清 | 色视频在线一区二区三区| 欧美午夜高清在线| 黑人巨大精品欧美一区二区mp4| 18在线观看网站| 国产精品国产高清国产av | 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦 在线观看视频| 777久久人妻少妇嫩草av网站| 国产一区二区在线观看av| 91麻豆精品激情在线观看国产 | 午夜精品久久久久久毛片777| 国产成人欧美| 国产成人一区二区三区免费视频网站| 极品少妇高潮喷水抽搐| 人妻久久中文字幕网| 极品少妇高潮喷水抽搐| 2018国产大陆天天弄谢| 亚洲成人国产一区在线观看| 国产1区2区3区精品| 性色av乱码一区二区三区2| 女性被躁到高潮视频| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 日韩一卡2卡3卡4卡2021年| 久久亚洲精品不卡| 亚洲色图综合在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一级a爱视频在线免费观看| 久9热在线精品视频| 91字幕亚洲| 91麻豆av在线| 黄片小视频在线播放| 美女福利国产在线| 天堂中文最新版在线下载| 国产精品亚洲一级av第二区| 99香蕉大伊视频| 丁香六月天网|