• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一種新型發(fā)動機功率試飛數(shù)據(jù)處理和代理模型建模方法

      2019-12-05 02:10:14周靈玲邱良軍
      直升機技術(shù) 2019年4期
      關(guān)鍵詞:活門臺架損失

      周靈玲,邱良軍

      (中國直升機設(shè)計研究所,江西 景德鎮(zhèn) 333001)

      0 引言

      計算直升機的基本飛行性能主要是確定直升機的飛行需用功率和發(fā)動機可用功率,當(dāng)兩者相等時就可得到相應(yīng)狀態(tài)的基本飛行性能。因此,準確計算發(fā)動機可用功率是正確分析直升機基本飛行性能的前提。傳統(tǒng)的發(fā)動機可用功率處理方法主要采用發(fā)動機參數(shù)換算和基于百分比的安裝損失扣除,無法考慮現(xiàn)代渦輪軸發(fā)動機性能曲線的非線性變化,與實測發(fā)動機性能曲線特點有所差別。本文提出一種新的發(fā)動機功率試飛數(shù)據(jù)處理方法,并建立發(fā)動機可用功率代理模型。通過直升機實際試飛驗證,新的發(fā)動機功率試飛數(shù)據(jù)處理方法相比傳統(tǒng)的發(fā)動機可用功率處理方法,可以考慮發(fā)動機性能曲線的非線性變化;運用建立的發(fā)動機可用功率代理模型,不僅可以提高發(fā)動機功率數(shù)據(jù)處理和計算的精度,同時還可以考慮發(fā)動機安裝損失和實際試飛中所需留取的余量。此外,可以使用海平面的發(fā)動機試驗數(shù)據(jù)推算發(fā)動機安裝損失和高原發(fā)動機功率,有效提高了高原基本飛行性能的計算精度。

      1 傳統(tǒng)發(fā)動機功率分析方法的弊端

      發(fā)動機的主要性能參數(shù)包括動力渦輪前溫度ITT、壓氣機轉(zhuǎn)速Ng和輸出功率Pw,通過給定ITT和Ng閾值限制發(fā)動機的工作狀態(tài)。根據(jù)理想循環(huán)的發(fā)動機模型可以推導(dǎo)得到如下的發(fā)動機性能參數(shù)換算公式(1)-(3),其中ITTN為換算動力渦輪前溫度,NgN為換算壓氣機轉(zhuǎn)速,PwN為換算輸出功率,θ為溫度比,Δ為壓力比[1]。

      (1)

      (2)

      (3)

      傳統(tǒng)發(fā)動機可用功率處理方法主要通過將不同高度的發(fā)動機性能數(shù)據(jù)點換算后進行數(shù)據(jù)擬合,獲得發(fā)動機的性能曲線,再進行反向換算得到所需壓力高度和大氣溫度的發(fā)動機性能,然后通過固定的百分比扣除發(fā)動機安裝損失和功率修正,最終得到發(fā)動機可用功率。

      對于典型現(xiàn)代民用直升機,平飛狀態(tài)占其總使用時間超過55%,大部分時間發(fā)動機工作在低于最大連續(xù)功率的巡航功率狀態(tài)。以加拿大普惠公司的PT6B發(fā)動機(應(yīng)用于AC313直升機)和法國透博梅卡的Arrius2K2發(fā)動機(應(yīng)用于3噸機)為代表的現(xiàn)代渦輪軸發(fā)動機針對這一使用特點,在壓氣機和燃燒室之間采用放氣活門設(shè)計,以調(diào)節(jié)進入發(fā)動機后段(包括燃燒室和動力渦輪等)的氣流流量,減小壓氣機能力需求,提高其功重比和經(jīng)濟性[2]。其典型發(fā)動機性能曲線如圖1所示。在最大連續(xù)功率之前的A段,放氣活門打開,放走多余氣流,保證發(fā)動機后段處于效率最高的狀態(tài),降低巡航狀態(tài)的發(fā)動機油耗。在最大連續(xù)功率之后的B段,放氣活門關(guān)閉,壓氣機全力工作以獲得更高的起飛功率和應(yīng)急功率,但是壓氣機流量仍小于發(fā)動機后段所需的最佳流量,燃燒室和渦輪工作效率下降,輸出功率隨渦輪前溫度增長的速度相比A段減小。

      圖1 某現(xiàn)代渦軸發(fā)動機放氣活門打開和關(guān)閉的

      因此,現(xiàn)代渦輪軸發(fā)動機的性能曲線通常分為兩段,存在兩個不同斜率,中間出現(xiàn)拐點,即放氣活門關(guān)閉點。該放氣活門關(guān)閉點設(shè)計在最大連續(xù)功率之前,以提高燃燒室和渦輪效率,降低巡航狀態(tài)的發(fā)動機油耗,并以此點優(yōu)化壓氣機設(shè)計,減小發(fā)動機重量,相比以往根據(jù)最大功率設(shè)計的老式渦輪軸發(fā)動機,可以提高發(fā)動機的功重比和經(jīng)濟性。

      使用傳統(tǒng)換算方法處理此類現(xiàn)代渦輪軸發(fā)動機數(shù)據(jù),設(shè)發(fā)動機功率隨渦輪前溫度ITT增大為線性關(guān)系,則可設(shè)放氣活門打開狀態(tài)下的發(fā)動機輸出功率和放氣活門關(guān)閉狀態(tài)下的發(fā)動機輸出功率為下式(4)和(5)。其中,放氣活門關(guān)閉前后的截距b開≠b閉,斜率k開≠k閉。

      Pw開=k開ITT+b開

      (4)

      Pw閉=k閉ITT+b閉

      (5)

      根據(jù)(1)和(3)式,可推導(dǎo)得換算功率為:

      (6)

      (7)

      則可以得到如下關(guān)系式(8)和(9),表明放氣活門關(guān)閉前后的發(fā)動機性能換算曲線不相等,前述通過換算處理發(fā)動機功率的傳統(tǒng)方法僅適用于性能曲線線性一致的老式渦輪軸發(fā)動機。對于現(xiàn)代渦輪軸發(fā)動機,雖然海平面下放氣活門關(guān)閉前后斜率和截距差別相對較小,但是對比后續(xù)第2節(jié)的算例,高原條件下的放氣活門關(guān)閉前斜率比關(guān)閉后大30%,截距相差40%,強行使用換算方法處理將引入較大的方法誤差。

      (8)

      (9)

      此外,發(fā)動機性能曲線的斜率k和截距b是隨壓力高度和溫度變化的,傳統(tǒng)換算方法同樣無法考慮由于大氣環(huán)境導(dǎo)致的發(fā)動機換算性能曲線的非線性變化。

      因此,理論分析和型號實踐都表明使用該方法處理現(xiàn)代渦輪軸發(fā)動機數(shù)據(jù)將帶來顯著誤差,無法滿足工程精度要求。

      2 發(fā)動機性能曲線建模

      根據(jù)第一節(jié)的分析,現(xiàn)代渦輪軸發(fā)動機的性能曲線可以抽象成兩段相交直線或者二階多項式的幾何模型。根據(jù)這個特點可以建立發(fā)動機試飛數(shù)據(jù)的處理方法,并建立發(fā)動機功率代理模型,其具體求解流程如下:

      1)根據(jù)發(fā)動機廠商提供的放氣活門參考關(guān)閉點,對給定壓力高度和溫度的發(fā)動機數(shù)據(jù)進行分類,區(qū)分放氣活門關(guān)閉前的和關(guān)閉后的數(shù)據(jù);

      2)通過對放氣活門關(guān)閉點前后的發(fā)動機數(shù)據(jù)分別進行最小二乘法擬合,確定兩段直線的截距b閉、b開與斜率k閉、k開,或者二階多項式系數(shù)。設(shè)現(xiàn)有n個相同放氣活門狀態(tài)的數(shù)據(jù)點,對于第i個數(shù)據(jù)點,其渦輪前溫度為ITTi,壓氣機轉(zhuǎn)速為Ngi,輸出功率為Pwi,如使用最小二乘法進行線性回歸,可建立數(shù)據(jù)矩陣AITT與BPw,待求系數(shù)矩陣xITT,定義如下:

      (10)

      如使用最小二乘法進行二階多項式回歸,則可建立數(shù)據(jù)矩陣AITT與BPw,待求系數(shù)矩陣xITT,定義如下:

      (11)

      使用QR分解和最小二乘法求解AITTxITT=BPw,可得渦輪前溫度ITT的系數(shù)矩陣xITT,確定兩段直線的截距b閉、b開與斜率k閉、k開,或者二階多項式系數(shù)。相似方法可算得壓氣機轉(zhuǎn)速Ng的系數(shù)矩陣xNg及其系數(shù);

      3)根據(jù)發(fā)動機廠商提供的發(fā)動機功率狀態(tài)設(shè)定ITT和Ng參數(shù)限制;

      4)由發(fā)動機功率狀態(tài)對應(yīng)的參數(shù)限制求得對應(yīng)的發(fā)動機功率Pw。對于考慮實際飛行操作中給飛行員留予一定的余量的問題,也可以通過直接給定ITT和Ng,求得對應(yīng)發(fā)動機功率Pw;

      5)對各個高度和溫度組合完成1)到3)的步驟,得到系數(shù)矩陣。對于給定的壓力高度和溫度,通過對數(shù)據(jù)矩陣進行二維插值得到相應(yīng)的直線的截距b閉、b開與斜率k閉、k開,或者二階多項式系數(shù),進而算得發(fā)動機功率,從而建立發(fā)動機輸出功率代理模型。

      圖2為某現(xiàn)代渦軸發(fā)動機高原無地效懸停實測數(shù)據(jù)算例,可以看出性能曲線拐點前后的曲線斜率和截距有明顯差別。使用本文方法可以算得截距b閉=-2890.1和b開=-5059.3,斜率k閉=5.2441和k開=7.9604,對應(yīng)發(fā)動機功率的ITT限制,最大連續(xù)功率的PwN為1410kW,最大起飛功率的PwN為1619kW。

      圖2 某現(xiàn)代渦軸發(fā)動機高原無地效懸停實測數(shù)據(jù)算例

      3 發(fā)動機安裝損失的扣除

      傳統(tǒng)發(fā)動機可用功率處理方法是直接給定各功率狀態(tài)臺架功率,再按固定百分比扣除發(fā)動機安裝損失后得到發(fā)動機的可用功率,如下式所示,其中δ為固定的安裝損失百分比,發(fā)動機安裝損失功率隨發(fā)動機功率增大而增大。

      Pw安裝后=Pw臺架(1-δ)

      (12)

      圖3為無地效懸停時的典型發(fā)動機性能實測數(shù)據(jù)與臺架性能曲線對比,兩者之間的差異就是發(fā)動機的安裝損失??梢钥闯鰧崪y性能曲線與臺架性能曲線之間不是固定百分比的關(guān)系,而是近似平行偏移的關(guān)系,發(fā)動機的安裝損失功率近似為一個常數(shù),發(fā)動機安裝損失功率隨發(fā)動機功率增大而保持不變或者略微減小,與傳統(tǒng)按固定百分比扣除的方法的損失變化特性相反。傳統(tǒng)方法將高估大功率狀態(tài)下的安裝損失,特別是對于主要對應(yīng)于大功率狀態(tài)的基本飛行性能分析,將導(dǎo)致性能損失。此外,傳統(tǒng)直接給定各功率狀態(tài)臺架功率的方法也難以根據(jù)平行偏移關(guān)系計算可用功率。因此,需要使用第2節(jié)的方法建立發(fā)動機臺架性能曲線模型,根據(jù)實測數(shù)據(jù)與發(fā)動機基準性能曲線對比獲得性能曲線平行偏移量,對發(fā)動機臺架性能曲線模型進行平行偏移后得到扣除安裝損失后的發(fā)動機性能曲線。設(shè)發(fā)動機臺架功率為ITT的函數(shù),記為Pw臺架(ITT),則扣除發(fā)動機安裝損失后得到發(fā)動機的可用功率函數(shù)Pw安裝后為:

      Pw安裝后(ITT)=Pw臺架(ITT-ITT偏移量)

      (13)

      其中ITT偏移量為相同輸出功率下,臺架性能曲線的對應(yīng)ITT與實測性能曲線對應(yīng)ITT之差。

      圖4為發(fā)動機在不同壓力高度無地效懸停實測性能曲線ITT偏移量對比。

      由圖4可以看出海平面的平行偏移量和高原的平行偏移量大致相當(dāng)。在只有海平面試驗數(shù)據(jù)時,可以使用海平面的發(fā)動機試驗數(shù)據(jù)推算ITTN平均偏移量,進而獲得高原發(fā)動機可用功率,有效提高高原基本飛行性能的計算精度。在獲得高原試飛數(shù)據(jù)后,可以對ITTN偏移量進行線性擬合,從而進一步考慮發(fā)動機安裝損失隨壓力高度的變化。

      圖3 某現(xiàn)代渦軸發(fā)動機無地效懸停實測性能曲線和臺架性能曲線對比

      圖4 某現(xiàn)代渦軸發(fā)動機不同壓力高度無地效懸停實測性能ITT偏移量對比

      4 計算結(jié)果與實測性能對比

      圖5為新的發(fā)動機功率處理結(jié)果、傳統(tǒng)換算方法處理結(jié)果以及實測數(shù)據(jù)對比圖。

      圖5 新的發(fā)動機功率模型起飛功率計算結(jié)果和傳統(tǒng)換算方法計算結(jié)果對比圖

      可以看出,傳統(tǒng)方法在低高度的計算結(jié)果,發(fā)動機功率隨高度減小反而減小,計算結(jié)果不合理。新的發(fā)動機可用功率處理方法相比傳統(tǒng)方法能夠更準確地描述發(fā)動機可用功率隨壓力高度的變化,處理結(jié)果更加準確有效。

      5 結(jié)論

      本文提出一種新的發(fā)動機功率試飛數(shù)據(jù)處理方法,并建立發(fā)動機可用功率代理模型。型號驗證表明,該方法相比傳統(tǒng)分析方法主要有如下優(yōu)點:

      1)可以考慮發(fā)動機性能曲線的非線性變化,顯著提高發(fā)動機可用功率計算精度,計算結(jié)果的性能曲線趨勢合理;

      2)發(fā)動機安裝損失處理方法與實測損失特性相符,可以使用海平面的發(fā)動機試驗數(shù)據(jù)推算安裝損失和高原發(fā)動機可用功率,有效提高高原試飛數(shù)據(jù)處理精度和高原基本飛行性能的計算精度;

      3)可以更簡便地考慮實際試飛中所需留取的余量,方便試飛任務(wù)仿真計算。

      猜你喜歡
      活門臺架損失
      少問一句,損失千金
      發(fā)動機臺架排放測試影響因素
      P2離合器摩擦片磨損率臺架測試方法
      胖胖損失了多少元
      可變進氣歧管(VIS)切換點的臺架標定方法研究
      調(diào)節(jié)器上的聯(lián)鎖活門彈簧計算分析
      燃油泵某活門組件卡滯故障仿真及參數(shù)優(yōu)化
      液壓與氣動(2019年9期)2019-09-17 11:26:26
      玉米抽穗前倒伏怎么辦?怎么減少損失?
      一種KYN61-40.5可移開式開關(guān)柜平移式活門機構(gòu)設(shè)計
      一般自由碰撞的最大動能損失
      子洲县| 鹿邑县| 卓尼县| 永安市| 四平市| 海城市| 新余市| 益阳市| 遵义县| 措美县| 波密县| 甘谷县| 万山特区| 罗江县| 昂仁县| 普定县| 黄陵县| 遵义县| 登封市| 沅陵县| 崇义县| 资兴市| 怀远县| 汤原县| 乡宁县| 嘉义县| 工布江达县| 麻江县| 福建省| 伊春市| 临潭县| 介休市| 宜州市| 德清县| 宁陕县| 泰和县| 拉萨市| 罗田县| 莎车县| 巢湖市| 石阡县|