• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sonochemically assisted synthesis of nano HMX

    2020-01-07 09:10:34HemaSinghNileshJahagirdarShaibalBanerjee
    Defence Technology 2019年6期

    Hema Singh,Nilesh Jahagirdar,Shaibal Banerjee

    Department of Applied Chemistry,Defence Institute of Advanced Technology(DU),Girinagar,Pune,411025,India

    ABSTRACT Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)nanoparticles were prepared by sonochemically assisted solvent-antisolvent spray technique focussing the reduction in its size so as to improve its energetic properties.In order to fabricate nano HMX various parameters such as different solvents and temperature were investigated.Sonication is one of the strategies recently explored in this regard;so time dependent study of sonication using probe sonicator was performed.It has been postulated that bubble formed during sonication when collapses generate high temperature and many nucleation sites which leads to the formation of uniform spherical particles with small size and fast transition phase.XRD studies depicted phase transformation from α to β as a result of sonication.The TEM images revealed that the rise in the sonication time resulted into decrease in the particle size from 300 to 10 nm.Differential scanning calorimetry(DSC)was employed to determine the heat release of the samples and enhancement in the heat release with the decrease in the particle size.A decrease in the spark sensitivity was observed from 2J(regular HMX)to 50 mJ(nano HMX).

    Keywords:Sonication Spray technique Nano HMX Probe sonicator Impact sensitivity

    1. Introduction

    High energy materials are continually being explored with the intention to enhance their explosive parameters ranging from density,stored energy and transportation etc.One of the most promising compounds holding significant advantages in these aspects is HMX (Octagon). HMX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(C4H8N8O8)is a nitramine based explosive and due to its higher molecular weight,it is one of the most potent explosives to be manufactured[1-4].It has a higher velocity of detonation(VoD)(9100 m s-1Vs 8700 m s-1for RDX Vs 6900 m s-1for TNT).Moreover,it has a detonation pressure higher than conventional explosives(38.7 GPa Vs 34 GPa for RDX Vs 21 GPa for TNT).Its higher density(Specific Gravity:1.91 Vs 1.78 of RDX Vs 1.60 of TNT)[5]permits better loading of explosives especially when volume of the weapons is restricted.Having defined with above advantages,still it has poor sensitivity to impact,friction and electrical sparks thus forestall its use in military and civilian sector[6,7].

    In the present era of nanotechnology,it is perceived that the reduction in size of particles lowers the sensitivity of the energetic materials without hampering the energetic content of the materials[8].Consequently,preparation of nano size HMXs is an area of current research in the development of new high-energy materials.Few strategies involved in the fabrication of nanoparticles are solvent-antisolvent[9],recrystallization process[10],spray flash evaporation[11,12],ultrasonication[13]and mechanical demulsification shearing[14].Yongxu[15],Bayat[16]and Kumar[17]sprayed the acetone solution of HMX in a non-solvent(water)to control the mean size of the HMX crystals and thus,this approach seems to be the simplest technique for tuning the size of these nanoparticles. In this process, the solution containing organic compound is sprayed under pressure into an antisolvent(water)which generates high supersaturation resulting in precipitation due to dissociation of the hydrophobic active compound.

    Scheme 1.Schematic preparation of nano HMX.

    Fig.1.SEM of HMX particles prepared in different solvent:(a)Acetone,(b)DMSO and(c)DMF.

    The spraying may be an interesting method but it usually synthesize micron sized particles and accounts towards the agglomeration and non uniformity of fine particles.Thus,necessity of exploring the techniques which would leads to uniformity and mass transfer in the solution more rapidly than the conventional methods.Ultrasonication finds its inevitable application in synthesis and modifications of nanomaterials.High intensity ultrasound generates large number of bubbles which grows,collapses and produces hot spot with a high transient temperature(5000°C)and pressure(500 atm).The rapid increase in pressure and temperature causes variation in the concentration of solution and temperature,thereby favours the lowering of nucleation[18-22].Although there are reports in which bath sonicator is explored for reducing the size of materials however it has certain limitation such as uneven and uncontrollable cavitations in the bath.While in probe sonicator whole material is processed by same intensity.The power and duration of sonication could be varied so as to tailor the crystallite size distribution.

    In this work, nano HMX were prepared by a simple reprecipitation method using solvent and antisolvent method assisted by probe sonicator.The effects of changing experimental parameters such as different solvents,temperature of antisolvent during injection and time of sonication on particle size are accounted.It also includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent-antisolvent process.The size and morphology of these particles were characterized by field emission scanning electron microscopy(FESEM)and TEM.

    2. Experimental

    2.1. Chemicals

    Dimethyl sulphoxide(DMSO),acetone, dimethyl formamide(DMF)of AR grade was purchased and use as supplied without any purification.Ultra-pure water(18.2 M??cm)from double stage water purifier(ELGA,PURELAB Option-R7)was used throughout.

    2.2. Synthesis of HMX

    Accurately weighed HMX was dissolved in three different solvents i.e.DMSO,DMF and acetone up to saturation level.The respective solutions were then quickly sprayed into distilled water(antisolvent)at room temperature through a needle HD 130 having a micronic sized pore.A standard laboratory pump was used to ensure sufficient pressure for the injection.This was done separately for each solvent.

    The precipitate of HMX was allowed to settle and the excess water-DMSO/DMF/Acetone solution was drained off.The resulting HMX particles were centrifuged.The three samples that resulted from this experiment were then given for SEM analysis.The size of the HMX particles was not found to be in nano regime from above experimental combinations.Therefore,in order to ensure the formation of nano-sized HMX particles,the following modification was made:Water used for further experimentation was maintained at 5°C instead of room temperature.This was done in order to ensure faster attainment of saturation of water-DMSO solution causing faster precipitation of HMX particles by DMSO being dissolved in water.Further,the water volume was restricted to 50 ml and this was agitated in a Petri dish using a magnetic stirrer at 750 rpm.This solution containing HMX particles suspended in DMSO-water system was sonicated in a probe sonicator with a frequency of 20 kHz and a potency of 750 W for duration of 10,30 and 60 min.This was consisted of multiple cycles,each having sonication of 20 s duration followed by a gap of 5 s.The sonication was at 20 kHz and 750 W.A blank sample without sonication was also prepared(HMX-ws)(see Scheme 1).

    Fig.2.SEM of(a)raw HMX(b)HMX-ws,(c)HMX-10m,(d)HMX-20m,(e)HMX-30m and(f)HMX-60m.

    Fig.3.XRD of HMX,HMX-ws,HMX-10m,HMX-20m,HMX-30m and HMX-60m.Inset shows data an expanded form of HMX,HMX-10m and HMX-60m.

    Fig.4.FT-IR of HMX,HMX-ws,HMX-10m,HMX-20m,HMX-30 m and HMX-60m.Inset shows data on expanded form.

    2.3. Characterizations

    The structural phase analysis of the samples was carried out using Bruker advanced TA with Cu-Kα radiation(λ=1.5406 A°)XRay Powder diffractrometer.The FTIR spectra was recorded by PerkinElmer Carl Leiss Field emission scanning electron microscopy(FESEM)(Sigma 03-18,Germany)was employed to study the morphology of the samples.The TEM measurements were performed using Philips CM-200.The thermal analysis was studied out with PerkinElmer,Pyris DSC-7.The DSC experiments were performed in nitrogen atmosphere with a flow rate of 50 ml min-1and a heating rate of 10 K min-1.The TGA was performed with PerkinElmer STA 6000 in nitrogen atmosphere.The sensitivity of the samples to impact stimuli was determined by the BAM hammer method.

    3. Results and discussion

    3.1. Effect of organic solvent on the solvent-antisolvent process

    Fig.5.TGA curves of HMX,HMX-ws,HMX-30m and HMX-60m

    The SEM of HMX samples prepared in presence of acetone,DMSO and DMF-water as solvent-antisolvent using spray technique at room temperature are presented in Fig.1.The particles obtained in presence of acetone depicted rod like morphology along with the spherical particles unlike the particles prepared using DMSO and DMF thus, showing mixed morphology. These results are in agreement with Kim et al. [23] work which reports that the morphology of HMX particles is greatly affected by the organic solvent.The particle size of these particles was observed to be varying widely in the range of 1-10 μm hence,we concluded that the aim of preparing nano HMX was not achieved.

    3.2. Effect of time dependent sonication studies

    Fig.6.DSC curves of HMX,HMX-ws,HMX-30m and HMX-60m

    Table 1DSC phenomenological data.

    Further,the solvent DMSO was chosen since the solubility of HMX in DMSO was found to be higher in comparison to that in other solvents.The temperature of the antisolvent(water)was lowered to 5°C.The solution containing HMX particles suspended in DMSO-water system was sonicated for 10 min,20 min,30 min and 60 min.Fig.2 illustrates the SEM of raw HMX(HMX),sprayed and without sonicated(HMX-ws)and sonicated for 10 min(HMX-10m),20 min(HMX-20m),30 min(HMX-30m)and 60 min(HMX-60m).The SEM images of all the samples prepared in DMSO indicate cube-like morphology but with different sizes.The raw HMX was found to be 300-450 μm in size while when it was sprayed in cold water the size was reduced to 1-3 μm.Further,the sprayed sample was probe sonicated for 10,20,30 and 60 min and the approximate sizes obtained are 1-2 μm,1-1.5 μm,90-60 nm and 10-40 nm respectively.It was observed that increase the time of sonication,leads to decease in the size of HMX crystals which can be attributed to the bubbles formed during sonication when collapses generate high temperature and creates many nucleation sites which lead to decrease in agglomeration and enhance the controllability of the crystallization process[24].Thus,by tailoring the ultrasonic duration with proper concentration and temperature,the size of the particles would be reduced.The size and the morphology were further confirmed by TEM analysis.

    3.3. Composition analysis of HMX samples

    HMX crystals exist in four different polymorphs:α(orthorhombic),β(monoclinic),γ(monoclinic)and δ(hexagonal)phases[25].β-HMX is the most preferred from military point of view due to its highest density,impact sensitivity and detonation velocity in comparison with other polymorphs[26].The XRD pattern of raw HMX shows peaks with 2θ values at 13.84°,14.82°,16.16°,20.55°,22.99°,26.17°,29.66°,31.88°and 32.11°which are assigned to(220),(040),(111),(131),(400),(080),(171),(022)and(202)planes respectively for α-HMX(JCPDS no.00-025-1748).Similarly,XRD pattern of HMX sprayed in presence of DMSO(HMX-ws)was obtained but the peak at 2θ=16°seem to split into two peaks(2θ=16.00°and 16.32°)along with some additional peaks.This indicate that along with α-HMX some amount of γ-form may also be present which is consistent with the Lee et al.[27]report which states that the gamma polymorph is obtained by cold antisolvent precipitation.On the other hand,XRD of samples sonicated at 10 min,30 min and 60 min samples depict peaks at 2θ=14.8°,16.0°,18.33°,20.57°,21.83°,22.81°,26.15°,27.00°,29.66°and 31.83°corresponding to(011),(020),(110),(02),(12),(120),(012)(031)(020) and (32) Miller indices for β-HMX form (JCPDS no.45-1539).Soni et al.have reported that converting fine particles of γ to β form is a great challenge.The polymorphic transformation is reported in the literature by heating or pressing of pellets of nanosize materials[28].In another work,Lee et al.have found that β-HMX would be formed by recrystallizing HMX from acetone[29].In the present case,we have found that ultrasonication resulted in the phase transformation.The slight increase in the width of the peaks of 60 min sonicated sample(Fig.3(inset))implies a reduction in the particle size.

    Fig.7.TEM of(a)HMX-ws,(b)HMX-10m,(c)HMX-20m,(d)HMX-30m and(e)HMX-60m.

    The FT-IR analysis of raw HMX,HMX-ws,HMX-10m,HMX-20m,HMX-30m and HMX-60m are shown in Fig.4.The major IR bands for HMX samples are at 1564 cm-1, 1145 cm-1, 964 cm-1and 946 cm-1, 843 cm-1and 761 cm-1, 625 cm-1and 600 cm-1assigned to the characteristic vibrations of νsNO2,νsNO2ν ring,ring stretching band,δ and γ-NO2and τ+γ NO2respectively[17].It is noteworthy that the sample HMX-ws shows peaks at 1027 cm-1and 709 cm-1typical signatures corresponding to the γ polymorph of HMX which is consistent with the XRD data.Further,absence of these peaks in sonicated samples confirms the formation of β-form of HMX[30].Additionally,a peak 1140 cm-1is observed in HMX-ws indicating the presence of residual DMSO which on sonication fades away.

    Kinetic crystallization such as spray method produces mostly metastable phases.In case of HMX,gamma form is the kinetically stable form that is formed during spraying onto water.Further,when it is ultra sonicated in a medium which contains DMSO,it can assist desolution of gamma phase and appearance of thermodynamically stable beta phase.This is a solution mediated phase transformation[31].

    3.4. Thermal decomposition studies of HMX samples

    Thermal study is a vital parameter from the energetic perspective as it elaborates the energy liberated by the material.The TGDSC of raw HMX,HMX-ws,HMX-30m and HMX-60m were performed.It is noted in the TGA graph(Fig.5)that the decomposition temperature of the 60 m sonicated sample is lower than the other samples,which can be ascribed to nano size of HMX-60m sample.The HMX-ws sample shows that percentage of residual is high which may be due to the presence of absorbed DMSO in the sample which is consistent with the FT-IR results.The DSC thermal curve of HMX shows first endothermic peak at 189°C which is due to the phase transformation,small second endothermic peak at 278°C corresponds to melting of HMX followed by an exothermic decomposition at 287°C(see Fig.6).

    The corresponding phenomenological data is summarized in Table 1.In the DSC thermal curve,the endothermic phase transformation peak in HMX-60m sample is observed at higher temperature(198°C)as compared to raw HMX(186°C).This result shows that the phase transformation takes place at high temperature with the reduction of particle size. Another interesting finding was an increase in heat release(ΔH)with the increase in the sonication time was observed from DSC.This implies that simple ultrasonic strategy can play an important role in increasing the heat release and alter the thermal parameters of the sample.

    Table 2Sizes of samples by SEM and TEM.

    Table 3Sensitivities of nano HMX and regular HMX.

    3.5. Size dependent studies of HMX samples

    The TEM micrographs of HMX-ws,HMX-10m,HMX-20m HMX-30m and HMX-60m are displayed in Fig.7.Presence of spherical particles can be observed from the micrographs of all the samples.The size of the sample obtained by spraying in presence of DMSO is 200-500 nm but when the sample was sonicated at different duration of time a decrease in size is observed.The sizes of the particles are presented in Table 2.The TEM analysis also confirmed that sonication reduces nano cluster formation.

    3.6. Sensitivities of nano HMX sample and regular HMX

    Further,the impact,friction and spark sensitivity of nano HMX(HMX-30m and HMX-60m)and regular HMX were investigated and the results are tabulated in Table 3.It was revealed that the friction and spark sensitivity were remarkably reduced with the decreasing of the crystal size.The reduction in the friction sensitivity is in line with theoretical postulates and similar results are reported in the literature also for HMX[32]and RDX[33]while the crystal entered into the nano domain.It may be attributed to the fact that decrease in the size reduces the internal defects but may lead to enhancement in surface imperfections.While,a decrease in the spark sensitivity may be ascribed to high surface area of the nanomaterials which can be easily stimulated[34].

    4. Conclusion

    We have successfully developed a synthetic path for preparing HMX nanoparticles using solvent-antisolvent assisted probe sonication process.The study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solventantisolvent process.The observed results demonstrated the time dependent effect of sonication on the reduction of crystal size(300-10 nm).It was noteworthy to find that sonication resulted in a phase change from α to β form of HMX.A signifciant enhancement in the heat release was noted in the DSC thermogram due to sonication.In the end ultrasound technique owing to its advantages in the production of crystals with improved habit and reduced size marks the key area of research which can potentially be explored industrially. Sensitivity measurement was performed and a decrease in the spark sensitivity was observed from 2J(regular HMX)to 50 mJ(nano HMX).

    Acknowledgments

    The authors thank the Vice Chancellor,DIAT,for giving us support towards the publication.We thank ER&IPR,DRDO,New Delhi for funding the project “DRDO-DIAT Programme on Nanomaterials”.Authors are also thankful to DST/DBT-BIRAC supported Venture Center,at CSIR-NCL,Pune,India for thermogravimetric analysis(TGA).

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2019.04.010.

    十分钟在线观看高清视频www | 一级毛片我不卡| 国产伦精品一区二区三区视频9| 精品人妻偷拍中文字幕| 国产精品99久久久久久久久| 亚洲人成网站在线播| 国产片特级美女逼逼视频| 久久影院123| 免费不卡的大黄色大毛片视频在线观看| 蜜臀久久99精品久久宅男| 亚洲av日韩在线播放| .国产精品久久| 成人午夜精彩视频在线观看| 中文在线观看免费www的网站| 建设人人有责人人尽责人人享有的| 国产精品一区www在线观看| 热re99久久国产66热| 成人漫画全彩无遮挡| 欧美国产精品一级二级三级 | 亚洲欧美清纯卡通| 久久99热这里只频精品6学生| 欧美+日韩+精品| 成人综合一区亚洲| 亚洲va在线va天堂va国产| 久久午夜综合久久蜜桃| 天天操日日干夜夜撸| 99精国产麻豆久久婷婷| 亚洲不卡免费看| 国产黄片视频在线免费观看| √禁漫天堂资源中文www| 最新中文字幕久久久久| 日韩av不卡免费在线播放| h日本视频在线播放| 高清毛片免费看| 久久人人爽人人片av| 在现免费观看毛片| 欧美日韩国产mv在线观看视频| 18禁在线播放成人免费| 午夜激情久久久久久久| 亚洲美女视频黄频| 日韩av在线免费看完整版不卡| 黑丝袜美女国产一区| 内射极品少妇av片p| 国产av一区二区精品久久| 观看免费一级毛片| 免费看av在线观看网站| 久久久久精品性色| 亚洲欧美清纯卡通| 啦啦啦视频在线资源免费观看| 精品一区在线观看国产| 中国三级夫妇交换| 成人国产麻豆网| 汤姆久久久久久久影院中文字幕| 99视频精品全部免费 在线| 久久久久国产网址| 午夜免费观看性视频| 精品久久久噜噜| 国产高清三级在线| 国产精品久久久久久久久免| 成年人午夜在线观看视频| av卡一久久| 亚洲成人手机| 久久国产亚洲av麻豆专区| 久久久久人妻精品一区果冻| 午夜免费鲁丝| 一级a做视频免费观看| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久亚洲| 久久久久久久久久久久大奶| 插逼视频在线观看| av天堂中文字幕网| 91精品一卡2卡3卡4卡| 国产色爽女视频免费观看| 亚洲精品456在线播放app| 亚洲精品成人av观看孕妇| 五月天丁香电影| 久久 成人 亚洲| 国产高清有码在线观看视频| 99九九线精品视频在线观看视频| 97在线视频观看| 色吧在线观看| 菩萨蛮人人尽说江南好唐韦庄| 成人黄色视频免费在线看| 纵有疾风起免费观看全集完整版| av.在线天堂| 少妇高潮的动态图| 久久av网站| 80岁老熟妇乱子伦牲交| 中文字幕久久专区| 欧美一级a爱片免费观看看| 九九爱精品视频在线观看| 国产精品国产三级国产专区5o| 最近2019中文字幕mv第一页| 插阴视频在线观看视频| 精品少妇久久久久久888优播| 九色成人免费人妻av| 免费不卡的大黄色大毛片视频在线观看| 日韩中字成人| 欧美日韩精品成人综合77777| 亚洲av欧美aⅴ国产| 男女啪啪激烈高潮av片| 亚洲一区二区三区欧美精品| 日韩精品有码人妻一区| 视频区图区小说| 99久久精品热视频| 中国三级夫妇交换| 国产成人精品婷婷| 日韩强制内射视频| 一区二区三区四区激情视频| 少妇猛男粗大的猛烈进出视频| 日本欧美国产在线视频| 久久精品夜色国产| 极品教师在线视频| 新久久久久国产一级毛片| 亚洲丝袜综合中文字幕| 91精品一卡2卡3卡4卡| 看十八女毛片水多多多| 99精国产麻豆久久婷婷| 亚洲国产精品一区二区三区在线| 中文欧美无线码| 国产欧美日韩综合在线一区二区 | 9色porny在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲精品日本国产第一区| 精品久久久精品久久久| 五月天丁香电影| 日韩一区二区三区影片| 内地一区二区视频在线| 老女人水多毛片| 欧美高清成人免费视频www| 黄色配什么色好看| 肉色欧美久久久久久久蜜桃| 91久久精品电影网| 精品熟女少妇av免费看| 亚洲中文av在线| 日韩成人伦理影院| 99久久精品一区二区三区| 日本黄色片子视频| 午夜激情福利司机影院| 一级毛片我不卡| 亚洲成人手机| 大片免费播放器 马上看| 91精品国产国语对白视频| 2021少妇久久久久久久久久久| 亚洲,一卡二卡三卡| 激情五月婷婷亚洲| 久久久精品94久久精品| 一级片'在线观看视频| 久久久久久久久大av| 亚洲精品日韩av片在线观看| 婷婷色麻豆天堂久久| 纵有疾风起免费观看全集完整版| 欧美激情极品国产一区二区三区 | 国产精品麻豆人妻色哟哟久久| 91成人精品电影| 亚洲国产精品国产精品| 青春草视频在线免费观看| 乱人伦中国视频| 春色校园在线视频观看| 亚洲av电影在线观看一区二区三区| 午夜免费鲁丝| 一区二区三区乱码不卡18| 中文字幕精品免费在线观看视频 | 婷婷色综合大香蕉| 欧美区成人在线视频| 亚洲丝袜综合中文字幕| 欧美一级a爱片免费观看看| 国产精品久久久久久久久免| 欧美精品亚洲一区二区| 91久久精品国产一区二区成人| 伦理电影免费视频| 99热网站在线观看| 国产精品无大码| 如日韩欧美国产精品一区二区三区 | 国产成人精品一,二区| 免费观看的影片在线观看| 丰满迷人的少妇在线观看| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲欧洲精品一区二区精品久久久 | 国产成人a∨麻豆精品| 精品午夜福利在线看| 26uuu在线亚洲综合色| 久久国产乱子免费精品| 午夜av观看不卡| 精品久久久久久久久亚洲| 一区二区av电影网| 国产精品无大码| 久久精品久久久久久噜噜老黄| 少妇人妻一区二区三区视频| 国产精品无大码| 国产精品国产三级专区第一集| 国产黄色免费在线视频| 美女大奶头黄色视频| 中文天堂在线官网| 人妻夜夜爽99麻豆av| 我的老师免费观看完整版| 亚洲av欧美aⅴ国产| 国产女主播在线喷水免费视频网站| 日本-黄色视频高清免费观看| 肉色欧美久久久久久久蜜桃| 夫妻性生交免费视频一级片| 成人亚洲欧美一区二区av| 人体艺术视频欧美日本| 熟女电影av网| 夜夜看夜夜爽夜夜摸| 黄色日韩在线| 国产av一区二区精品久久| 国产高清三级在线| 观看免费一级毛片| 国产精品麻豆人妻色哟哟久久| 丝袜喷水一区| 日本91视频免费播放| 大又大粗又爽又黄少妇毛片口| 中文字幕久久专区| 久久狼人影院| 国产欧美日韩精品一区二区| kizo精华| 蜜桃在线观看..| 中国美白少妇内射xxxbb| 国产毛片在线视频| 国产白丝娇喘喷水9色精品| 免费大片黄手机在线观看| 黄色日韩在线| 成人亚洲精品一区在线观看| 亚洲成人av在线免费| 全区人妻精品视频| 男女免费视频国产| 亚洲精品亚洲一区二区| 久久99精品国语久久久| 一区二区三区精品91| 精华霜和精华液先用哪个| 精品国产一区二区久久| 色吧在线观看| 精品午夜福利在线看| 精品久久久久久久久av| 欧美另类一区| 欧美精品国产亚洲| 极品人妻少妇av视频| 亚洲综合色惰| 九色成人免费人妻av| 久久影院123| 校园人妻丝袜中文字幕| 日韩成人av中文字幕在线观看| 一区二区三区四区激情视频| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜爱| 我要看日韩黄色一级片| 久久人人爽人人爽人人片va| 国产男女内射视频| 精品一区在线观看国产| 久久影院123| 欧美日韩视频高清一区二区三区二| 欧美日韩视频高清一区二区三区二| 91久久精品国产一区二区成人| 99九九在线精品视频 | 午夜激情福利司机影院| 男人爽女人下面视频在线观看| 日本黄色片子视频| 日本91视频免费播放| 男女无遮挡免费网站观看| 欧美老熟妇乱子伦牲交| 亚洲国产日韩一区二区| 精品酒店卫生间| 亚洲电影在线观看av| 亚洲精品亚洲一区二区| 一区二区三区精品91| 如日韩欧美国产精品一区二区三区 | 亚洲国产欧美在线一区| √禁漫天堂资源中文www| 久久99一区二区三区| 久久热精品热| 这个男人来自地球电影免费观看 | 成人免费观看视频高清| 免费av不卡在线播放| 永久免费av网站大全| 日本av免费视频播放| 国产精品人妻久久久影院| 一级毛片电影观看| 国产成人免费无遮挡视频| 国产片特级美女逼逼视频| 欧美丝袜亚洲另类| 日日啪夜夜爽| 秋霞伦理黄片| a级片在线免费高清观看视频| 99re6热这里在线精品视频| 久久女婷五月综合色啪小说| 黑丝袜美女国产一区| 午夜福利在线观看免费完整高清在| 久久久久久久久久久久大奶| 欧美精品一区二区免费开放| 如日韩欧美国产精品一区二区三区 | av在线app专区| 乱人伦中国视频| 成人美女网站在线观看视频| 久热这里只有精品99| 久久精品国产亚洲av涩爱| 最近中文字幕2019免费版| 久久热精品热| 国产极品天堂在线| 国产精品一区二区在线观看99| a级片在线免费高清观看视频| 欧美日本中文国产一区发布| 人人妻人人爽人人添夜夜欢视频 | 国产一级毛片在线| 亚洲图色成人| 人妻 亚洲 视频| 久久久国产精品麻豆| 国产av码专区亚洲av| 亚洲欧美一区二区三区黑人 | 亚洲一级一片aⅴ在线观看| 男女边吃奶边做爰视频| 91在线精品国自产拍蜜月| 国产美女午夜福利| 女的被弄到高潮叫床怎么办| 久热这里只有精品99| 日韩,欧美,国产一区二区三区| 熟女电影av网| 亚洲成色77777| 亚洲第一区二区三区不卡| 亚洲激情五月婷婷啪啪| 又大又黄又爽视频免费| 成人影院久久| 一区二区三区乱码不卡18| 久久精品夜色国产| 极品少妇高潮喷水抽搐| 国产又色又爽无遮挡免| 色94色欧美一区二区| 汤姆久久久久久久影院中文字幕| 少妇人妻 视频| 精品一区二区免费观看| 亚洲国产精品一区三区| 日本欧美国产在线视频| 欧美成人午夜免费资源| 免费人成在线观看视频色| 日韩,欧美,国产一区二区三区| 国内少妇人妻偷人精品xxx网站| 观看av在线不卡| 97在线视频观看| 男男h啪啪无遮挡| 久久99热6这里只有精品| videos熟女内射| 99re6热这里在线精品视频| 一级毛片黄色毛片免费观看视频| 黄片无遮挡物在线观看| 亚洲一级一片aⅴ在线观看| 成人18禁高潮啪啪吃奶动态图 | 王馨瑶露胸无遮挡在线观看| 国产 精品1| 亚洲av综合色区一区| 久久这里有精品视频免费| 久久久久久久久久成人| 波野结衣二区三区在线| 一区二区三区精品91| 日日撸夜夜添| 日本爱情动作片www.在线观看| 精品人妻熟女av久视频| 内地一区二区视频在线| 国产日韩欧美在线精品| 麻豆成人av视频| 大话2 男鬼变身卡| 最新的欧美精品一区二区| 精品一区二区免费观看| √禁漫天堂资源中文www| 日本av手机在线免费观看| 国模一区二区三区四区视频| 国产视频内射| 内地一区二区视频在线| 亚洲,欧美,日韩| 男女边摸边吃奶| 亚洲自偷自拍三级| 久久97久久精品| 免费黄色在线免费观看| 91成人精品电影| 女性生殖器流出的白浆| 91午夜精品亚洲一区二区三区| 日韩中文字幕视频在线看片| 嫩草影院入口| 国产片特级美女逼逼视频| 亚洲精品国产av蜜桃| 人妻一区二区av| 自拍偷自拍亚洲精品老妇| 久久久久视频综合| 美女内射精品一级片tv| 熟女人妻精品中文字幕| 女的被弄到高潮叫床怎么办| 久久av网站| 亚洲欧美精品专区久久| 我要看日韩黄色一级片| 中文乱码字字幕精品一区二区三区| 久久久a久久爽久久v久久| 欧美区成人在线视频| 亚洲国产精品专区欧美| 视频中文字幕在线观看| 国产精品一二三区在线看| 人人妻人人看人人澡| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 国产免费视频播放在线视频| 国产乱来视频区| 中文字幕久久专区| 国产精品久久久久久久电影| 一区二区av电影网| 免费av中文字幕在线| 2021少妇久久久久久久久久久| 中文乱码字字幕精品一区二区三区| 狠狠精品人妻久久久久久综合| 啦啦啦啦在线视频资源| 成人美女网站在线观看视频| 一级爰片在线观看| 国产成人午夜福利电影在线观看| 午夜福利网站1000一区二区三区| 在线观看免费日韩欧美大片 | 一级毛片黄色毛片免费观看视频| 欧美日韩精品成人综合77777| 欧美性感艳星| 少妇 在线观看| 男人添女人高潮全过程视频| 能在线免费看毛片的网站| 曰老女人黄片| 新久久久久国产一级毛片| 插逼视频在线观看| 亚洲综合色惰| 亚洲高清免费不卡视频| 另类精品久久| 欧美日本中文国产一区发布| 精品国产乱码久久久久久小说| 日韩强制内射视频| 狂野欧美白嫩少妇大欣赏| 男女无遮挡免费网站观看| 日本-黄色视频高清免费观看| 99热国产这里只有精品6| 日日爽夜夜爽网站| 99九九线精品视频在线观看视频| a 毛片基地| 久久精品国产鲁丝片午夜精品| 波野结衣二区三区在线| 亚洲国产av新网站| 美女cb高潮喷水在线观看| 久久久a久久爽久久v久久| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 久久精品国产a三级三级三级| 熟女电影av网| 久久久久视频综合| 国产精品熟女久久久久浪| 国产欧美日韩精品一区二区| 亚洲av欧美aⅴ国产| 搡老乐熟女国产| 三级国产精品片| 亚洲欧美成人精品一区二区| 日韩av在线免费看完整版不卡| 亚州av有码| 国产美女午夜福利| 午夜免费男女啪啪视频观看| 大话2 男鬼变身卡| 亚洲av福利一区| 99久国产av精品国产电影| 97精品久久久久久久久久精品| 在线观看www视频免费| 精品少妇黑人巨大在线播放| 五月伊人婷婷丁香| 日日爽夜夜爽网站| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| 国产极品天堂在线| 国产亚洲午夜精品一区二区久久| 熟女人妻精品中文字幕| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 成人漫画全彩无遮挡| 香蕉精品网在线| 黄色日韩在线| 最近最新中文字幕免费大全7| 99久国产av精品国产电影| 另类亚洲欧美激情| 亚洲真实伦在线观看| 亚洲情色 制服丝袜| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 亚洲av男天堂| 一本一本综合久久| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区| 最近手机中文字幕大全| 成人亚洲精品一区在线观看| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 亚洲精品乱久久久久久| 内地一区二区视频在线| 亚洲真实伦在线观看| 中文乱码字字幕精品一区二区三区| 国产毛片在线视频| 亚洲怡红院男人天堂| 亚洲精品国产av成人精品| 午夜免费观看性视频| 街头女战士在线观看网站| 午夜久久久在线观看| 丝袜在线中文字幕| 91精品一卡2卡3卡4卡| 亚洲欧美一区二区三区黑人 | 青春草国产在线视频| 欧美激情国产日韩精品一区| 国产欧美日韩综合在线一区二区 | 一级毛片电影观看| 最近的中文字幕免费完整| 国产成人freesex在线| av免费在线看不卡| 一本一本综合久久| 人人妻人人看人人澡| 免费观看a级毛片全部| 久久韩国三级中文字幕| 一级爰片在线观看| 这个男人来自地球电影免费观看 | 一级爰片在线观看| 黑丝袜美女国产一区| 精品午夜福利在线看| 日韩一区二区三区影片| 人人妻人人看人人澡| 日日啪夜夜撸| 国产精品国产三级国产av玫瑰| 嫩草影院新地址| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久久久久久大奶| 一区在线观看完整版| 99九九线精品视频在线观看视频| 国产91av在线免费观看| 国产高清不卡午夜福利| 少妇的逼好多水| 成年av动漫网址| 国产精品.久久久| 美女国产视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产成人精品福利久久| 国产成人精品婷婷| 亚洲国产欧美日韩在线播放 | 亚洲一区二区三区欧美精品| 高清不卡的av网站| 香蕉精品网在线| 天堂中文最新版在线下载| 搡老乐熟女国产| 久久精品国产鲁丝片午夜精品| 久久国产精品大桥未久av | 久久久久人妻精品一区果冻| 久久久a久久爽久久v久久| av在线观看视频网站免费| 亚洲欧美清纯卡通| 99re6热这里在线精品视频| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 天堂中文最新版在线下载| 青春草亚洲视频在线观看| 亚洲图色成人| 成人毛片a级毛片在线播放| 色视频在线一区二区三区| 在线观看人妻少妇| 国产亚洲5aaaaa淫片| 欧美日韩国产mv在线观看视频| 亚洲精品一二三| 日韩制服骚丝袜av| 欧美xxxx性猛交bbbb| 日韩熟女老妇一区二区性免费视频| 国产精品人妻久久久影院| a级毛色黄片| 99视频精品全部免费 在线| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| av在线观看视频网站免费| 丰满少妇做爰视频| 久久毛片免费看一区二区三区| 成人国产麻豆网| 国产中年淑女户外野战色| 黄色一级大片看看| 五月玫瑰六月丁香| 黄色毛片三级朝国网站 | 国产精品.久久久| 成人特级av手机在线观看| 乱人伦中国视频| 免费人妻精品一区二区三区视频| 亚洲va在线va天堂va国产| 亚洲精品一二三| 女人精品久久久久毛片| a级毛色黄片| 你懂的网址亚洲精品在线观看| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 亚洲成人手机| 欧美老熟妇乱子伦牲交| 我的女老师完整版在线观看| 天堂俺去俺来也www色官网| 日韩熟女老妇一区二区性免费视频| 亚洲精品乱久久久久久| 亚洲精品久久久久久婷婷小说| 国产精品三级大全| 97超碰精品成人国产| 国产精品三级大全| 丁香六月天网| 亚洲国产精品专区欧美| 国产日韩欧美在线精品| 夫妻午夜视频| 免费看不卡的av| 一区二区三区四区激情视频| 夫妻性生交免费视频一级片| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 最近的中文字幕免费完整| 亚洲熟女精品中文字幕| 蜜桃久久精品国产亚洲av| 桃花免费在线播放| 日韩精品免费视频一区二区三区 | av女优亚洲男人天堂| 亚洲精品乱码久久久久久按摩| 少妇 在线观看|