• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?

    2020-01-09 01:55:52FanWang王凡WeiZhong鐘偉LanZhou周瀾andYuBoSheng盛宇波
    Communications in Theoretical Physics 2019年12期
    關鍵詞:鐘偉

    Fan Wang (王凡), Wei Zhong (鐘偉),,2 Lan Zhou (周瀾), and Yu-Bo Sheng (盛宇波),4

    1Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    3School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    4Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China

    Abstract We theoretically study the phase sensitivities of two different phase-shift configurations in an SU(1,1)interferometer with coherent ?squeezed vacuum states.According to quantum Cram′er-Rao theorem,we analytically obtain the ultimate phase sensitivities for two types of phase shift accumulating in one- and two-arm.Compared with the case of one-arm phase shift,the model with phase shift encoding in both arms may provide a better sensitivity when the strength of squeezed vacuum state is large enough.Furthermore,we discuss the achievable sensitivities with the homodyne measurement by invoking of error-propagation formula.In addition,we study the effect of internal and outernal photon losses on the phase sensitivity of the SU(1,1)interferometer and find that the unbalanced interferometer is helpful to improve precision even with high external losses.

    Key words: SU(1,1) interferometer,quantum Fisher information,one- and two-arm phase shifts,Homodyne measurement

    1 Introduction

    Quantum metrology aims to obtain the higher sensitivity in parameter estimation using quantum mechanics methods.[1?4]The physical quantities,e.g.gravitational waves,electric fields,weak magnetic fields,atomic frequencies,are generally transformed into phase shifts which can be accurately measured through interferometric experiments,[5]i.e.,Mach-Zehnder interferometer (MZI).The phase sensitivity in linear optical MZI with classical approaches is limited by shot noise limit (SNL),i.e.,whereNis the average number of photons inside the interferometer.However,more works have shown that the use of entangled state like NOON state[6]can lead to improved sensitivity in optical-phase measurements.Restricted by Heisenberg’s uncertain relationship,the improved sensitivity can beat the SNL and reaching the Heisenberg limit (HL),i.e.,1/N.[7]

    In 1981,Caveset al.[3]proposed a scheme in optical interferometry that the SNL can be beaten by using coherent?squeezed-vacuum light as input.This scheme has been used in gravitational wave detection experiments,for example GEO600[8]and LIGO.[9]In 1986,Yurkeet al.[4]proposed another novel nonlinear interferometer,which replaced the 50:50 beam splitter in traditional MZI with active elements of optical parameter amplification (OPA)or four-wave mixing (FWM).They called this nonlinear interferometer as the SU(1,1)interferometer and the linear MZI as the SU(2)interferometer.A series of recent studies have shown that the SU(1,1) interferometer not only improves the phase measurement sensitivity compared with the SU(2) interferometer,but also performs more robust in suppressing detection noise.[10?12]Recently,Plicket al.[13]improved the original SU(1,1) interferometer.In their scheme,a strong coherent light beam was added,which solved the problem of the low number of photons of squeezed state prepared by the original scheme,and greatly improved the sensitivity of phase measurement.The SU(1,1) interferometer has been successfully implemented in the experiment.[14?15]Loss is one of the limit factors in parameter estimation.Recently,Mathieu Manceauet al.[10]showed that for a given gain of the first parametric amplifier,unbalancing the interferometer by increasing the gain of the second amplifier improves the interferometer properties.In this scheme,one can gain the optimal sensitivity even with the existence of external losses.

    Recently,some researches on the phase sensitivity in SU(2) interferometry with two types of phase shiftone-arm and two-arm have been done.[16?17]The results showed different phase shifts have an important impact on the ultimate precision.Moreover,some relevant researches on one-arm[18?21]and two-arm[11,22?23]phaseaccumulated SU(1,1) interferometer have been proposed.In Refs.[18–19],the authors discussed the achievable sensitivity with homodyne detection and showed it can approach HL for coherent and squeezed vacuum states.As is well known,the fundamental phase sensitivity is set by the quantum Cram′er-Rao bound (QCRB).Does the homodyne detection can reach this sensitivity bound in the above scenario? This question has not yet been addressed in Refs.[18–19].Meanwhile,for two-arm phase accumulating case,the fundamental phase sensitivity for a several of probe states was obtained in Refs.[22–23],while the discussion about the feasible detection method approaching such sensitivity was missed.In this paper,we make a full analysis of the phase sensitivities in one-arm and two-arm phase-shift accumulating SU(1,1) interferometer by using coherent?squeezed vacuum states,and then discuss the achievable sensitivities with the homodyne measurement.By analytically calculating the QFI,we find that the twoarm case shows a better precision with high strength of squeezed vacuum state,when compared with the singlearm case.However,such advantage does not take place in realistic measurement.To clarify this,we derive the achievable sensitivity with homodyne detection by invoking of error-propagation formula.Our results show that the achievable sensitivities are identical in both two phase shift cases.Although they approach HL,they can not saturate the QCRB.Due to photon losses and detector imperfections,the actual measurement sensitivities are often worse than the theoretical results.We further discuss the effects of photon losses on the achievable sensitivities for the two phase shift cases.We finally find that the unbalanced interferometer helps to improve precision for both cases even with high external losses.

    This paper is organized as follows.In Sec.2,we first briefly introduce the standard SU(1,1)interferometer and compute the theoretical phase sensitivities with the different types of phase shift.In.Sec.3,we explicitly derive the ultimate phase sensitivities by homodyne detection.Moreover,in Sec.4,we specifically study the SU(1,1) interferometer in the presence of detection noise and internal losses.Finally,the conclusions are given in Sec.5.

    2 The SU(1,1) Interferometer with Two Different Phase Shifts

    A standard SU(1,1) interferometer setup consists of two OPAs and a phase shift,as is shown in Fig.1.The operation of OPA,denoted by OPAi(i=1,2),which satisfies the following relations[4]

    wheres1andθ1describe the gain factor and phase of the first OPA.a0(a?0) andb0(b?0) are the annihilation (creation) operators of the upper and lower input modes of the interferometer,respectively.

    Fig.1 (Color online)SU(1,1)interferometer model with two types of phase shift: one-arm and two-arm.The input state is After the first OPA,it accumulates an unknown phase,which is determinated byUθ.Then it goes through the second OPA and a homodyne measurement is performed.The pump field between the two OPAs has aπ phase difference.

    Theoretically,the phase measurement sensitivity is limited by the quantum Cram′er-Rao bound (QCRB),which is one of the most important quantities for both quantum estimation theory and quantum information theory,has been widely studied.[1?2,24]The lower bound of the QCRB is provided by the inverse of quantum Fisher information(QFI),which depends only on the probe state and phase accumulation.Regardless of the measurement part,the theoretical sensitivity according to the quantum Cram′er-Rao theorem satisfies the following inequality

    whereFrepresents the QFI andυis the times of experiment operations.[1?2,24]Generally,such a bound can be reached by the maximum likelihood estimator for sufficiently largeυwith Bayesian estimation methods.

    The mean photons on each arm are given byni=〈ni〉(i=a,b).Note thatna=|α|2andnb= sinh2r,so the total photon number of input state isN0=na+nb.Due to the nonlinear property of OPA,the total number of photons after the OPA1is enlarged as

    One can rewrite the expressions of Eqs.(3) and (4) in terms ofnaandnb.For given fixeds1,F/N2tis plotted in Fig.2.The green dashed line corresponds to the so-called“HL”,i.e.,?θHL=1/Nt,which is however not fundamental sensitivity limit when the particle number fluctuating presents.[25?28]From Fig.2,one can see the amount of the QFIs become higher as thenbincreases for a fixedN0.In the other words,one can get higher phase sensitivity by input a squeezed vacuum state with larger strength.

    Fig.2 (Color online)The variation ofF/N2t as the function ofna andnb for phase shift in (a) one-arm and (b)two-arms.The gain factor of OPA1 iss1 =2.

    Next,we compare the theoretical sensitivities for both two types of phase shift according to Eq.(2).The difference ofgiven by Eqs.(3) and(4) is plotted in Fig.3(a),as a function ofnaandnbwith the gain factors1= 1.The green dashed line represents the two sensitivities are identical.It is shown that the case with phase shift in both arms performs the better sensitivity when the strength of squeezed vacuum state is large enough.

    A special case is considered here,we assume thatr= 0.As shown in Fig.3(b),the ultimate sensitivitiesas a function of strength of coherent state|α|,show that the phase shift in one arm can achieve the better sensitivity in this case.

    Fig.3 (Color online) (a) Difference between the sensitivities of the two types of phase shift: The green dashed line represents the amount of QFIs in two cases is equal.(b) Phase sensitivity as a function of coherent amplitude|α| forr =0.The blue line is phase shift in one arm,the red line is phase shift in both arms.The gain factor of OPA1 iss1 =1.

    3 Achievable Sensitivities by Homodyne Measurement

    In this section,we discuss the measurement sensitivity achieved with typical measurement in two types of phase shifts.In general,the phase measurement uncertainty is still retrieved from a simplified error propagation theory,such that where

    denotes the mean value of observableXandis the root-mean-square fluctuation.In our scheme,we perform a homodyne detection on the outputb2,

    3.1 Phase Shift In One Arm

    We start with phase shift only in the lower arm.As depicted in Fig.1,homodyne measurement is made on the portb2.In this way the total transformation of inputoutput relations of the interferometer can be described by

    where

    such that|μ|2?|ν|2=1.

    The SU(1,1) interferometer is typically studied in a balanced configuration in which the second parametric process is set to “undo” what the first parametric process did.Here,we first consider the balanced SU(1,1)interferometer configuration (i.e.,s1=s2=s).To satisfy the optimal phase condition given previously,we also set?α=?ξ=?1= 0.According to Ref.[19],when the phase of the second OPA?2=πmay provide the maximal achievable sensitivity.Therefore the mean value〈XA〉and the expectation ofX2Aare given by respectively,

    Submitting Eqs.(10) and (11) into Eq.(6) yields

    To approach the “HL”,we need to find the optimal condition of the photon numbers at the input of the SU(1,1) interferometer.In the asymptotic limitθ →0,?θAreduces to

    By using the relationships ofna=|α|2andnb= sinh2r,one can rewrite this expression in terms ofnaandnb.Figure 4 is plotted byNt?θA|θ→0corresponding tonaandnbfrom 0 to 100.Similar to the MZI,[29]the photon numbers in two input ports of the SU(1,1)interferometer also need to balance to approach the optimal sensitivity.[19]

    Fig.4 (Color online) The sensitivityNt?θA|θ→0 as a function ofna andnb with coherent state and squeezed vacuum state as the input state.Nt is the total photons throughout the model.

    Figure 5(a) is plotted by Eq.(12) to show the ultimate sensitivity with phase shift in the lower arm.As discussed above,the photon numbers of two input states need to balance,i.e.,|α|=sinhr.As shown in the figure,the minimum of phase sensitivity occurs atθ= 0,given by Eq.(13).One can see this sensitivity in a range beats SNL far and approaches HL,which shows the same performance as discussed in Ref.[19].In addition,we compare this result with the QCRB discussed in Sec.2.We find it is close to QCRB at the optimal point,which means homodyne detection is a sub-optimal measurement in this case.

    3.2 Phase Shift In Both Arms

    Below we consider the case of phase shift in both arms,which is missed in Ref.[22].In that case,the QFI for coherent and squeezed states was chiefly calculated.Similar to the previous process,we first get the total transform

    where

    The phase matching condition is still the?α=?ξ=?1=0.We similarly consider the balanced case (s1=s2=sandθ2=π).Using the same approach as in case A,the ultimate sensitivity is given by,

    where

    In the same way,we study the relation between two input ports photon numbers.Whenθ=0,Eq.(16) reduces to

    Interestingly,the optimal sensitivity is still obtained under the condition ofna=nb,which satisfies with that in single-arm phase shift case.

    Figure 5(b) shows the Eq.(16) as a function ofθ.These results are very similar to the ones calculated for case A.θ=0 is still the optimal condition to achieve the ultimate sensitivity and likewise homodyne detection is still sub-optimal in this case.However,one can see the sensitivity is lower whenθis away from zero point.

    Fig.5 (Color online)Log-plots of the phase sensitivities?θA and ?θB for both two cases with homodyne measurement (blue line),Eqs.(12) and (16),as a function ofθ.The strength of two OPAs iss = 2.The parameters of input state are as follows:r = 2.5,|α| = sinhr.The SNL is gray line and HL is purple line.The QCRB is presented by black line.

    4 Effects of Experimental Noises and Unbalanced Scheme

    As has been previously pointed out,the phase sensitivity is extremely affected by the photon losses both inside and outside of the interferometer due to the imperfections in the device and defects in the detector.We now turn to the effect of both of two types of losses on the measurement sensitivity in our scheme.Traditionally,photon losses can be modeled by adding an imaginary beam splitter and part of photons are dissipated into the environment when photons pass through,which can be described by

    whereTiis the efficiency of imaginary beam splitters.As shown in Fig.6,T1andT2represent the transmission rates in presence of the internal and external losses respectively.caandcbare the annihilation operators of the upper and lower loss modes of the interferometer.Here,we consider losses in both arms and continue to use coherent?squeezed vacuum states as input state.Below,we detailly discuss the phase sensitivities achieved by the homodyne detection in the presence of both inside and outside losses separately.

    Fig.6 (Color online)The loss model of SU(1,1)interferometer with homodyne measurement.The internal and external loss can be modeled by imaginary beam splitters.

    4.1 Phase Shift In One Arm

    First,we discuss the sensitivity with phase shift in the lower arm under condition ofs1=s2=s.Then the ultimate sensitivity with homodyne measurement is given by,

    which is composed of two parts,the first term is the ideal lossless sensitivity given by Eq.(12)and the second is the extra term due to the internal and external losses.WhenT1andT2equal to 1,the second term vanishes,and the sensitivity in this case will reduce to the ideal lossless case.

    Figures 7(a) and 7(b) show the phase sensitivity ?θALgiven by Eq.(20)in a narrow range close to 0.In Fig.7(a),we study the effect of internal losses on the interferometer by settingT2= 1 (no external losses).As can be seen from this figure,the increase of internal losses degrades the phase sensitivity.WhenT1= 0.5,it is impossible to beat the SNL.As shown in Fig.7(b),it shows that the effect of the detection efficiency by makingT1=1.Compared to Fig.7(a),one can see that SU(1,1)interferometer with phase shift in one arm shows the better performance in external noise resistance.

    Now we study the unbalanced interferometer(s12)with the existence of internal and external losses.The optimal conditionθ= 0 is considered here.Under this condition,the phase sensitivity is given by

    whereμ=coshs1coshs2?sinhs1sinhs2.

    Fig.7 (Color online) Log-plots of phase sensitivities with the existence of internal loss and external loss.(a),(b) Phase sensitivity ?θAL as a function ofθ in one-arm case.Different color curves represent different values ofT1 orT2.(c),(d)Phase sensitivity ?θBL as a function ofθ in two-arm case.The SNL is gray line and HL is purple line.The QCRB is presented by black line.The parameters are as follows:s=2,r =2.5 andα=sinhr.

    We keep the parameters ofT1ands1unchanged and study the effect ofs2on the ultimate sensitivity.Figure 8(a) shows the phase sensitivitygiven by Eq.(21),as a function ofs2for different values ofT2.It is confirmed that an increase of the second gain factor is helpful to improve precision even with high external losses and the ultimate sensitivity is close to ideal case.Similar results have been observed in Ref.[10].

    4.2 Phase Shift In Both Arms

    Next,we investigate the loss SU(1,1) interferometer with phase shift in both arms.Using the same approach as above,the ultimate sensitivity is given by:

    As was done before,we separately consider the effect of internal losses and external losses on phase sensitivity in this case.The extra term is very similar to the one calculated for case A.Figures 7(c) and 7(d) are plotted by Eq.(22).As shown in the figure,the phase sensitivities achieved in both cases have the similar performance in noise resistance.

    Finally,unbalanced interferometer is considered to study the influence of gain factors2on the phase sensitivity with internal and external losses.In this case,the phase sensitivity is given by

    whereμ=coshs1coshs2?sinhs1sinhs2.

    Figure 8(b) shows Eq.(23) as a function ofs2,and the result is much similar to the ones calculated for case A.When we introduce noise,an unbalanced interferometer model is good at resisting external loss.No matter what cases of phase shift,an increase of second gain factors2will improve the ultimate sensitivity and finally eliminate the interference of external loss.

    Fig.8 (Color online) Phase sensitivities (a) ?θAUL and (b) ?θBUL as a function of gain factors2 for various values of the detection efficiencyT2 in unbalanced SU(1,1) interferometer.The parameters of input state are as follows:r =3,α=sinhr.Note thats1 =1 andT1 =0.9.

    5 Conclusion

    In conclusion,we have studied the phase sensitivities of the SU(1,1) interferometer with two types of phase shift:One-arm and two-arms.For both two cases,we first exactly calculated the theoretical sensitivities for a mixing coherent state and squeezed vacuum state.We found that the sensitivity for two-arm phase shift case may outperform the single-arm case.We also considered the achievable sensitivity with homodyne measurement based on error propagation theory.Interestingly,we found that the achievable sensitivities for the two types of phase shift configuration provide the same sensitivity.It indicates that the advantage of sensitivity enhancement demonstrated above does not occur within practical measurement.Besides,we also showed that the homodyne detection is a sub-optimal measurement which can not saturate the QCRB but approach the HL.Finally,we considered effects of photon losses on the sensitivity of the SU(1,1) interferometer.We found that the achievable sensitivity degrades substantially when the internal and external losses exit.More importantly,in the unbalanced SU(1,1) interferometer,an increase of the gain of second OPA is helpful to resist and even eliminate the external loss for both two phase shift scenarios.

    Note addedRecently,Ref.[23] appeared,which derived a general phase-matching condition for maximal QFI in SU(1,1) interferometers for certain states,such as,coherent and even coherent states,squeezed vacuum and even coherent states,squeezed thermal and even coherent states.In this paper,we consider a different case by injecting a mixing of coherent state and squeezed vacuum state.The previous obtained phase-matching condition is also hold in our case,which can be complementary to applications in Ref.[23].Our results on maximal QFI for two different phase shift configurations and phase sensitivities accessible by homodyne measurement with and without noises,however,are not covered in Ref.[23].

    猜你喜歡
    鐘偉
    One-step quantum dialogue
    再出發(fā)的勇氣
    Measurement-device-independent one-step quantum secure direct communication
    Measurement-device-independent quantum secret sharing with hyper-encoding
    上翼面開縫的翼傘翼型氣動特性研究
    職場小白警示錄:公車追愛驚變“翻車現(xiàn)場”
    硬漢鐘偉
    領導文萃(2019年23期)2019-01-13 09:47:56
    漂亮女友玩曖昧,精英男命殞“分手糾結(jié)期”
    敢頂撞林彪的解放軍少將
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    亚洲欧美一区二区三区黑人| 在线看a的网站| 免费观看a级毛片全部| 高清av免费在线| 亚洲av片天天在线观看| 免费在线观看影片大全网站| 精品少妇黑人巨大在线播放| 久久九九热精品免费| 一级毛片电影观看| 亚洲三区欧美一区| 精品少妇黑人巨大在线播放| 别揉我奶头~嗯~啊~动态视频 | 婷婷成人精品国产| 十八禁网站网址无遮挡| 别揉我奶头~嗯~啊~动态视频 | 日韩,欧美,国产一区二区三区| 一级片免费观看大全| 国产区一区二久久| 免费在线观看视频国产中文字幕亚洲 | 99国产极品粉嫩在线观看| 黄片小视频在线播放| 亚洲九九香蕉| 国产成人免费观看mmmm| 免费在线观看视频国产中文字幕亚洲 | 亚洲精华国产精华精| 老司机福利观看| 免费在线观看视频国产中文字幕亚洲 | 天天躁夜夜躁狠狠躁躁| 久久久久精品人妻al黑| 午夜福利在线观看吧| av又黄又爽大尺度在线免费看| 精品少妇内射三级| 老熟女久久久| 黑丝袜美女国产一区| 久久久精品国产亚洲av高清涩受| 国产一区二区 视频在线| 老熟妇乱子伦视频在线观看 | 国产国语露脸激情在线看| 日本av手机在线免费观看| 国产精品一二三区在线看| 欧美变态另类bdsm刘玥| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 国产精品免费视频内射| 亚洲av美国av| 超色免费av| 久久ye,这里只有精品| 国产精品99久久99久久久不卡| 精品国产一区二区三区四区第35| 国产伦人伦偷精品视频| 亚洲精品国产一区二区精华液| 老司机亚洲免费影院| 国产成人系列免费观看| 电影成人av| 多毛熟女@视频| 水蜜桃什么品种好| 国产一卡二卡三卡精品| 成人黄色视频免费在线看| 国产成人av激情在线播放| 韩国高清视频一区二区三区| 黄色视频不卡| 桃花免费在线播放| 成年人午夜在线观看视频| 免费少妇av软件| 欧美xxⅹ黑人| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩av久久| 精品一品国产午夜福利视频| 免费人妻精品一区二区三区视频| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 午夜老司机福利片| 欧美 亚洲 国产 日韩一| 午夜免费成人在线视频| 国产福利在线免费观看视频| 亚洲欧洲精品一区二区精品久久久| 一级a爱视频在线免费观看| 午夜福利一区二区在线看| 美女大奶头黄色视频| 亚洲欧洲日产国产| 超碰97精品在线观看| 亚洲精品美女久久av网站| av福利片在线| 又黄又粗又硬又大视频| 精品一区二区三卡| 最近最新免费中文字幕在线| 看免费av毛片| 成年av动漫网址| 日韩视频一区二区在线观看| 一级片'在线观看视频| a级毛片黄视频| 欧美黑人精品巨大| 男人操女人黄网站| 久久精品国产综合久久久| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| www.熟女人妻精品国产| 欧美日韩亚洲高清精品| 国产亚洲精品久久久久5区| 日韩制服骚丝袜av| 国产精品久久久久久精品电影小说| 午夜福利一区二区在线看| 免费人妻精品一区二区三区视频| 色播在线永久视频| 一区二区日韩欧美中文字幕| 一区二区三区精品91| 黄片播放在线免费| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区在线不卡| 亚洲 国产 在线| 黄色视频,在线免费观看| 可以免费在线观看a视频的电影网站| 国产老妇伦熟女老妇高清| 国产主播在线观看一区二区| 香蕉国产在线看| 国产av国产精品国产| 国产深夜福利视频在线观看| 99国产精品一区二区蜜桃av | 狂野欧美激情性xxxx| 久久久久网色| 亚洲久久久国产精品| 99精品久久久久人妻精品| 亚洲欧美一区二区三区久久| 久久狼人影院| 欧美精品一区二区免费开放| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 麻豆av在线久日| 人人澡人人妻人| 狠狠精品人妻久久久久久综合| 国产精品av久久久久免费| 一级片'在线观看视频| 午夜两性在线视频| 老司机影院毛片| 亚洲第一欧美日韩一区二区三区 | 国产欧美日韩一区二区三区在线| 69av精品久久久久久 | 一二三四在线观看免费中文在| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 亚洲自偷自拍图片 自拍| 午夜福利乱码中文字幕| 三级毛片av免费| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 777久久人妻少妇嫩草av网站| 狠狠精品人妻久久久久久综合| 国产精品九九99| 国产色视频综合| 日本猛色少妇xxxxx猛交久久| 性色av一级| 精品少妇黑人巨大在线播放| 欧美另类亚洲清纯唯美| 久久人人97超碰香蕉20202| 91av网站免费观看| 一级毛片电影观看| 精品亚洲成a人片在线观看| av网站免费在线观看视频| 国产成人av激情在线播放| 午夜免费成人在线视频| 伊人亚洲综合成人网| 亚洲情色 制服丝袜| 国产欧美日韩一区二区三区在线| 国产在线视频一区二区| 亚洲 国产 在线| 亚洲精品第二区| 日韩电影二区| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美视频二区| 999久久久国产精品视频| 精品乱码久久久久久99久播| 成年美女黄网站色视频大全免费| 国产国语露脸激情在线看| 我的亚洲天堂| 亚洲一区中文字幕在线| 欧美精品高潮呻吟av久久| 啦啦啦 在线观看视频| 一区二区三区精品91| 欧美中文综合在线视频| 亚洲专区字幕在线| 丁香六月天网| 国产成人精品在线电影| 亚洲熟女精品中文字幕| 国产成人av激情在线播放| 国产视频一区二区在线看| 日韩电影二区| 美女大奶头黄色视频| 啦啦啦中文免费视频观看日本| 少妇精品久久久久久久| 成年人黄色毛片网站| 咕卡用的链子| 国产av一区二区精品久久| 午夜精品久久久久久毛片777| 一本大道久久a久久精品| 蜜桃在线观看..| 国产成人一区二区三区免费视频网站| 亚洲成人免费电影在线观看| 狠狠狠狠99中文字幕| 久久久久久久久免费视频了| 精品一品国产午夜福利视频| av片东京热男人的天堂| 亚洲精品国产区一区二| 国产精品 国内视频| 日日摸夜夜添夜夜添小说| 青春草视频在线免费观看| 久久久国产成人免费| 久久久久网色| 国产有黄有色有爽视频| 一级毛片精品| 亚洲成人国产一区在线观看| 一级片'在线观看视频| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 我要看黄色一级片免费的| 久久av网站| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 美女福利国产在线| 欧美老熟妇乱子伦牲交| 高清av免费在线| 久久久久久久国产电影| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡| 国产精品一区二区在线观看99| 成人影院久久| 日韩电影二区| 国产成人欧美在线观看 | 国产精品久久久久久精品电影小说| 19禁男女啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 老司机靠b影院| 国产成人精品久久二区二区91| av国产精品久久久久影院| 精品视频人人做人人爽| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| av超薄肉色丝袜交足视频| 91精品国产国语对白视频| av视频免费观看在线观看| 极品人妻少妇av视频| 麻豆乱淫一区二区| 亚洲精华国产精华精| 欧美乱码精品一区二区三区| 欧美激情 高清一区二区三区| 久久久久视频综合| 精品人妻一区二区三区麻豆| 人人妻人人澡人人看| 一级黄色大片毛片| 99国产精品一区二区蜜桃av | xxxhd国产人妻xxx| 18禁国产床啪视频网站| av网站在线播放免费| 亚洲精品国产av蜜桃| 最新的欧美精品一区二区| 欧美人与性动交α欧美软件| 国产精品自产拍在线观看55亚洲 | 熟女少妇亚洲综合色aaa.| 好男人电影高清在线观看| 汤姆久久久久久久影院中文字幕| 午夜激情av网站| 大陆偷拍与自拍| 人人妻人人添人人爽欧美一区卜| kizo精华| 男女国产视频网站| 日韩精品免费视频一区二区三区| 国产精品亚洲av一区麻豆| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| 亚洲九九香蕉| 欧美日韩国产mv在线观看视频| 美女高潮喷水抽搐中文字幕| 久久影院123| 国产真人三级小视频在线观看| 视频区图区小说| 国产亚洲av高清不卡| 香蕉丝袜av| 久久 成人 亚洲| 人妻一区二区av| 欧美中文综合在线视频| 精品视频人人做人人爽| 欧美日韩亚洲国产一区二区在线观看 | 熟女少妇亚洲综合色aaa.| 国产在线一区二区三区精| tocl精华| 国产一级毛片在线| 18在线观看网站| 美女国产高潮福利片在线看| 亚洲欧美一区二区三区黑人| 超碰成人久久| 99国产综合亚洲精品| 啦啦啦中文免费视频观看日本| 91麻豆精品激情在线观看国产 | 国产欧美亚洲国产| 人人妻人人添人人爽欧美一区卜| 欧美黑人欧美精品刺激| 人人澡人人妻人| 国产精品国产av在线观看| 777米奇影视久久| 新久久久久国产一级毛片| 国产欧美日韩综合在线一区二区| 女人被躁到高潮嗷嗷叫费观| 亚洲天堂av无毛| 精品少妇一区二区三区视频日本电影| 中亚洲国语对白在线视频| 五月天丁香电影| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 黄色视频,在线免费观看| 久久 成人 亚洲| 天堂俺去俺来也www色官网| 性色av乱码一区二区三区2| 精品高清国产在线一区| 女性生殖器流出的白浆| 国产av国产精品国产| 欧美黑人欧美精品刺激| 人人妻人人添人人爽欧美一区卜| www.999成人在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品香港三级国产av潘金莲| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 777米奇影视久久| 丝袜喷水一区| 久久久久国产一级毛片高清牌| videos熟女内射| 黄色片一级片一级黄色片| 少妇粗大呻吟视频| 精品国产乱码久久久久久小说| 天堂俺去俺来也www色官网| 丝袜人妻中文字幕| 亚洲三区欧美一区| 欧美成狂野欧美在线观看| 黄网站色视频无遮挡免费观看| 国产精品 国内视频| 国产精品久久久久成人av| 国产av精品麻豆| 91精品伊人久久大香线蕉| 国产精品九九99| 国产99久久九九免费精品| 99国产精品免费福利视频| 欧美久久黑人一区二区| 十八禁网站免费在线| 精品一区二区三区av网在线观看 | 在线天堂中文资源库| 高潮久久久久久久久久久不卡| 宅男免费午夜| 成人三级做爰电影| 黄色 视频免费看| 国产免费福利视频在线观看| 国产97色在线日韩免费| 狂野欧美激情性bbbbbb| 日本精品一区二区三区蜜桃| 国产熟女午夜一区二区三区| 国产成人精品久久二区二区免费| 男人添女人高潮全过程视频| 国产精品偷伦视频观看了| 91精品伊人久久大香线蕉| 巨乳人妻的诱惑在线观看| 美女大奶头黄色视频| 少妇猛男粗大的猛烈进出视频| 新久久久久国产一级毛片| 18在线观看网站| 咕卡用的链子| 久久中文看片网| 两人在一起打扑克的视频| 国产精品99久久99久久久不卡| 国产在线免费精品| 国产精品免费大片| 999久久久国产精品视频| 日本a在线网址| 久久青草综合色| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av国产av综合av卡| 又黄又粗又硬又大视频| 美女高潮到喷水免费观看| 亚洲色图综合在线观看| 国产成人精品在线电影| 夜夜骑夜夜射夜夜干| 51午夜福利影视在线观看| 高清欧美精品videossex| 丝袜美腿诱惑在线| 女性被躁到高潮视频| 亚洲黑人精品在线| 亚洲欧美激情在线| 丝袜人妻中文字幕| 欧美乱码精品一区二区三区| 好男人电影高清在线观看| 久热这里只有精品99| 性少妇av在线| 12—13女人毛片做爰片一| 亚洲九九香蕉| 精品少妇久久久久久888优播| 黄网站色视频无遮挡免费观看| 亚洲七黄色美女视频| 精品少妇久久久久久888优播| 亚洲国产毛片av蜜桃av| 国产精品成人在线| 窝窝影院91人妻| 伊人久久大香线蕉亚洲五| 精品免费久久久久久久清纯 | 久久久水蜜桃国产精品网| 亚洲国产av影院在线观看| 久热爱精品视频在线9| 国产精品.久久久| 久久久精品94久久精品| av线在线观看网站| 日韩大码丰满熟妇| 一级毛片精品| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 亚洲国产精品成人久久小说| 成在线人永久免费视频| 久久影院123| 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 青春草视频在线免费观看| 精品一区在线观看国产| 亚洲国产日韩一区二区| 精品久久久精品久久久| 69av精品久久久久久 | 精品人妻在线不人妻| av天堂久久9| 日本黄色日本黄色录像| 亚洲国产欧美网| 亚洲九九香蕉| 亚洲精品一卡2卡三卡4卡5卡 | 97精品久久久久久久久久精品| 久久精品亚洲av国产电影网| 自线自在国产av| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 在线精品无人区一区二区三| 久久精品国产综合久久久| 男女免费视频国产| 久久国产精品影院| 欧美日韩一级在线毛片| av在线老鸭窝| 欧美少妇被猛烈插入视频| 久久av网站| 99国产精品99久久久久| 满18在线观看网站| 亚洲中文字幕日韩| 一区二区av电影网| 国产精品香港三级国产av潘金莲| 真人做人爱边吃奶动态| 精品国产一区二区三区久久久樱花| 欧美国产精品va在线观看不卡| 亚洲精华国产精华精| 欧美日韩黄片免| 国产精品秋霞免费鲁丝片| 免费少妇av软件| 国产高清国产精品国产三级| 成人免费观看视频高清| 欧美性长视频在线观看| 久久久久国内视频| 国产欧美日韩一区二区三区在线| 精品久久蜜臀av无| kizo精华| 丝袜美足系列| 交换朋友夫妻互换小说| 老汉色∧v一级毛片| 日本vs欧美在线观看视频| 国产淫语在线视频| 人人妻人人添人人爽欧美一区卜| 国产精品自产拍在线观看55亚洲 | 无限看片的www在线观看| 久久免费观看电影| 久久久久久人人人人人| 亚洲第一欧美日韩一区二区三区 | 国产男女超爽视频在线观看| 免费少妇av软件| 午夜久久久在线观看| 日本精品一区二区三区蜜桃| 一区二区三区乱码不卡18| 老鸭窝网址在线观看| 国产成人欧美| 久久久久国产一级毛片高清牌| 国产91精品成人一区二区三区 | 午夜免费成人在线视频| 一级毛片电影观看| 久久av网站| netflix在线观看网站| 啪啪无遮挡十八禁网站| 久久久久久久大尺度免费视频| 一本色道久久久久久精品综合| 亚洲视频免费观看视频| 亚洲国产欧美网| 精品福利永久在线观看| 久久久久久久大尺度免费视频| 中文字幕色久视频| 国产精品二区激情视频| 无限看片的www在线观看| 汤姆久久久久久久影院中文字幕| 人人妻,人人澡人人爽秒播| 国产精品 欧美亚洲| 亚洲国产日韩一区二区| 岛国在线观看网站| 免费观看a级毛片全部| 天天躁狠狠躁夜夜躁狠狠躁| 制服人妻中文乱码| 俄罗斯特黄特色一大片| 一级黄色大片毛片| 亚洲国产av影院在线观看| 日韩欧美一区视频在线观看| 一区二区三区四区激情视频| 国产福利在线免费观看视频| 女人被躁到高潮嗷嗷叫费观| 大片电影免费在线观看免费| 在线天堂中文资源库| 欧美精品啪啪一区二区三区 | 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 国产又色又爽无遮挡免| 99九九在线精品视频| 亚洲精品日韩在线中文字幕| 嫩草影视91久久| 国产精品欧美亚洲77777| 黄色视频不卡| 午夜激情av网站| 女警被强在线播放| 欧美黑人精品巨大| 亚洲中文日韩欧美视频| 一级,二级,三级黄色视频| 伊人久久大香线蕉亚洲五| √禁漫天堂资源中文www| 19禁男女啪啪无遮挡网站| 美女国产高潮福利片在线看| 日本一区二区免费在线视频| 久久亚洲精品不卡| 久久国产亚洲av麻豆专区| 亚洲av欧美aⅴ国产| 成年av动漫网址| 黑人猛操日本美女一级片| av有码第一页| 国产精品免费视频内射| 日韩一卡2卡3卡4卡2021年| 亚洲视频免费观看视频| 一本综合久久免费| 国产一区二区三区av在线| 波多野结衣av一区二区av| 亚洲av电影在线观看一区二区三区| 国产精品av久久久久免费| 久久久精品区二区三区| 大码成人一级视频| 亚洲国产日韩一区二区| 老司机在亚洲福利影院| 日韩制服骚丝袜av| 亚洲,欧美精品.| 两性午夜刺激爽爽歪歪视频在线观看 | 老熟妇乱子伦视频在线观看 | 亚洲精品中文字幕在线视频| 大片电影免费在线观看免费| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕精品免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 日韩视频在线欧美| 久久 成人 亚洲| 亚洲一区二区三区欧美精品| 国产亚洲av片在线观看秒播厂| 淫妇啪啪啪对白视频 | 黑人操中国人逼视频| 超色免费av| 搡老岳熟女国产| 丁香六月欧美| 亚洲一区二区三区欧美精品| 亚洲成人免费av在线播放| 黄色a级毛片大全视频| 大型av网站在线播放| 韩国精品一区二区三区| 中国国产av一级| 国产免费福利视频在线观看| 91字幕亚洲| 91大片在线观看| 精品免费久久久久久久清纯 | 亚洲精品国产区一区二| 高清av免费在线| 午夜福利在线免费观看网站| 性色av一级| 2018国产大陆天天弄谢| 国产一区二区三区在线臀色熟女 | 精品久久蜜臀av无| 女性生殖器流出的白浆| 亚洲成人免费电影在线观看| 亚洲国产欧美在线一区| 国产免费现黄频在线看| 一区二区三区激情视频| 亚洲第一欧美日韩一区二区三区 | 国产精品久久久久久人妻精品电影 | 国产淫语在线视频| netflix在线观看网站| 日本av免费视频播放| 日韩欧美一区视频在线观看| 一本综合久久免费| 中文字幕人妻熟女乱码| 国产免费av片在线观看野外av| 亚洲专区字幕在线| 久久精品久久久久久噜噜老黄| 亚洲成人国产一区在线观看| 老司机影院成人| 精品国产一区二区久久| 日本精品一区二区三区蜜桃| 777久久人妻少妇嫩草av网站| 国产区一区二久久| 岛国毛片在线播放| 亚洲熟女毛片儿| av网站在线播放免费| 99精国产麻豆久久婷婷| 999精品在线视频|