董延武 鄭桂君 李曉培
【摘要】對(duì)于Bergman加權(quán)移位序列,利用無(wú)窮維矩陣的正定性得到了其n-亞正規(guī)性,而且對(duì)于更一般的Bergman加權(quán)移位序列給出了其n-亞正規(guī)性的通項(xiàng)公式.
【關(guān)鍵詞】加權(quán)移位;亞正規(guī);n-亞正規(guī)
【基金項(xiàng)目】湛江幼兒師范專(zhuān)科學(xué)??茖W(xué)研究重點(diǎn)項(xiàng)目資助(ZJYZZD201801),國(guó)家自然科學(xué)基金項(xiàng)目資助(11801250)
1 預(yù)備知識(shí)
【參考文獻(xiàn)】
[1]董延武, 鄭桂君, 李曉培. 關(guān)于加權(quán)移位算子的n-亞正規(guī)性[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2019, 49(23):177-182.
[2] Curto R E, Fialkow L A. Recursively generated weighted shifts and the subnormal completion problem II [J].Integral Equations and Operator Theory,1994,18(4):369-426.
[3] Curto R E. Quadraticallyhyponormal weighted shifts[J]. Integral Equations and Operator Theory, 1990,13(1):49-66.
[4]Curto R E, Sang H L. Quarticallyhyponormal weighted shifts need not be 3-hyponormal[J]. Journal of Mathematical Analysis and Applications, 2006,314(2):455-463.
[5]Exner G, Jung I B, Sang S P. Weakly n -hyponormal Weighted Shifts and Their Examples[J]. Integral Equations and Operator Theory, 2006,54(2):215-233.