• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      端壁開(kāi)縫改善軸流泵駝峰的機(jī)理

      2020-03-03 00:18:16王偉超張樂(lè)福盧金玲馮建軍羅興锜
      關(guān)鍵詞:開(kāi)縫葉頂軸流泵

      王 維,王偉超,張樂(lè)福,趙 樂(lè),盧金玲,馮建軍,羅興锜

      端壁開(kāi)縫改善軸流泵駝峰的機(jī)理

      王 維,王偉超,張樂(lè)福,趙 樂(lè),盧金玲※,馮建軍,羅興锜

      (1. 西安理工大學(xué)水利水電學(xué)院,西安 710048;2. 西安理工大學(xué)西北旱區(qū)生態(tài)水利國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710048)

      為了探索可有效抑制軸流泵特性曲線駝峰區(qū)的方法,該研究針對(duì)某軸流泵開(kāi)展端壁沿軸向開(kāi)縫的數(shù)值模擬研究,分析縫數(shù)目、縫長(zhǎng)度和縫角度對(duì)軸流泵性能的影響規(guī)律,結(jié)合全通道非定常模擬揭示端壁開(kāi)縫對(duì)軸流泵駝峰區(qū)的改善機(jī)理。研究結(jié)果表明,端壁開(kāi)縫能夠有效抑制軸流泵的駝峰現(xiàn)象,失速工況的揚(yáng)程和效率分別提高了83.5%和8.13%。增加縫的數(shù)目和縫長(zhǎng)可提高開(kāi)縫抑制駝峰的能力,但縫過(guò)長(zhǎng)會(huì)降低設(shè)計(jì)工況的效率,在一定范圍內(nèi)增加縫的徑向傾角有利于駝峰區(qū)的改善,但不宜超過(guò)45°。在駝峰工況區(qū),葉頂泄漏流呈旋渦狀向葉輪進(jìn)口方向發(fā)展,與來(lái)流共同作用堵塞葉頂通道,導(dǎo)致葉頂區(qū)域揚(yáng)程突降。在葉片正背面壓差作用下,縫內(nèi)建立的噴射與抽吸的流動(dòng)循環(huán)可使相對(duì)液流角在0.9倍相對(duì)葉高處以上部分明顯降低,最大降幅62°,平均泄漏強(qiáng)度降低41.4%,葉頂中部附面層厚度降低18 mm,有效抑制由葉頂泄漏渦與主流相互作用造成的堵塞,并可削弱葉頂部位由葉頂泄漏渦等二次流誘發(fā)的壓力脈動(dòng),是改善軸流泵駝峰區(qū)以及提升小流量工況效率的原因。端壁開(kāi)縫具有改善軸流泵駝峰的巨大潛力。

      泵;仿真;葉輪;軸流泵;端壁開(kāi)縫;葉頂泄漏渦;壓力脈動(dòng);特性曲線;駝峰區(qū)

      0 引 言

      軸流泵是具有大流量低揚(yáng)程特點(diǎn)的高比轉(zhuǎn)速類水泵,廣泛應(yīng)用于農(nóng)田灌溉、化學(xué)工業(yè)、調(diào)水工程、船舶工業(yè)、電站、污水處理等各個(gè)領(lǐng)域[1-2]。隨著工作流量的減小,軸流泵內(nèi)部會(huì)產(chǎn)生回流與旋渦,且流量-揚(yáng)程曲線出現(xiàn)駝峰,導(dǎo)致軸流泵振動(dòng)與噪聲加劇,嚴(yán)重影響機(jī)組的安全穩(wěn)定運(yùn)行[3-6]。

      國(guó)內(nèi)外學(xué)者針對(duì)軸流泵駝峰區(qū)的失速現(xiàn)象進(jìn)行了深入的研究。Miyabe等[7]采用PIV技術(shù)研究了軸流泵內(nèi)部流場(chǎng),發(fā)現(xiàn)軸流泵運(yùn)行在駝峰區(qū)工況時(shí),流動(dòng)不穩(wěn)定問(wèn)題較為突出。Fay[8]通過(guò)研究發(fā)現(xiàn),泵內(nèi)部失速是由葉片表面流動(dòng)分離引起的。Schrapp等[9]對(duì)軸流泵的葉頂間隙渦進(jìn)行了可視化研究,發(fā)現(xiàn)小流量工況時(shí),原本流態(tài)良好的葉頂出現(xiàn)了間隙泄漏渦,并逐步發(fā)展成螺旋形渦流。鄭源等[10-11]通過(guò)試驗(yàn)和數(shù)值模擬研究發(fā)現(xiàn),小流量工況下轉(zhuǎn)輪進(jìn)口存在大范圍的回流和旋渦,隨著流量的減小,回流渦的面積增大并且不斷向上游發(fā)展,距離葉輪出口越來(lái)越遠(yuǎn),造成流道的堵塞。為了降低泵內(nèi)駝峰區(qū)失速對(duì)于穩(wěn)定運(yùn)行方面的影響,研究人員提出了不同的流動(dòng)控制方法。相比于依賴外界能量的主動(dòng)控制方法,被動(dòng)控制僅需依靠自身能量來(lái)改變自身的流動(dòng)狀態(tài)[12-13],其中開(kāi)槽技術(shù)是一種被較早研究并成功應(yīng)用的被動(dòng)控制方法。Kurokawa[14]提出輻條控制理論(J-Groove),即在水泵內(nèi)壁上安裝許多淺槽,通過(guò)控制水泵內(nèi)部流場(chǎng)中主流的角動(dòng)量來(lái)抑制泵內(nèi)的紊亂流動(dòng),提高泵性能。馮建軍等[15]研究發(fā)現(xiàn),在小流量工況下,進(jìn)口管壁面開(kāi)槽可以減小葉輪進(jìn)口環(huán)量和沖角,抑制葉片背部的脫流,改善軸流泵外特性曲線的駝峰。

      目前,在軸流泵中采用開(kāi)槽的方式可以改善駝峰,但其改善效果仍有待提高,因此有研究引入壓氣機(jī)中機(jī)匣處理的設(shè)計(jì)方法。研究表明,槽式與縫式機(jī)匣處理可以有效改善壓氣機(jī)的葉頂失速,其中縫式機(jī)匣處理的改善效果更加明顯。Wilke等[16]對(duì)采用縫式機(jī)匣處理的壓氣機(jī)進(jìn)行了非定常數(shù)值模擬,對(duì)近失速點(diǎn)葉頂復(fù)雜流動(dòng)與縫內(nèi)循環(huán)流動(dòng)的干涉進(jìn)行了詳細(xì)研究,發(fā)現(xiàn)機(jī)匣處理可以有效吸除葉頂堵塞流動(dòng),抑制葉頂泄漏流的前緣溢流現(xiàn)象。Smith等[17]采用軸向斜縫機(jī)匣處理在一臺(tái)孤立轉(zhuǎn)子上進(jìn)行了試驗(yàn)研究,發(fā)現(xiàn)機(jī)匣處理抽吸了來(lái)自于壓力面尾緣附近端壁的高旋流、高損失流體,并將其重新注入葉片前緣附近的主流通道。具體而言,軸向縫通過(guò)其抽吸-噴射的流動(dòng)循環(huán)消除了通道的堵塞[18]。杜娟等[19]針對(duì)斜流壓氣機(jī)研究了軸向縫式機(jī)匣處理,發(fā)現(xiàn)該機(jī)匣處理對(duì)壓氣機(jī)的擴(kuò)穩(wěn)效果越好,效率損失越大。王維等[20]發(fā)現(xiàn),縫與噴嘴進(jìn)行耦合設(shè)計(jì),可以降低其對(duì)壓氣機(jī)工作點(diǎn)效率的負(fù)面影響,同時(shí)保證對(duì)葉頂堵塞的控制效果,為后續(xù)研究提供了新的方向。目前,端壁開(kāi)縫在軸流泵中的應(yīng)用還較少,亟待開(kāi)展相關(guān)探索研究。

      為了探究端壁開(kāi)縫對(duì)于軸流泵駝峰區(qū)的影響規(guī)律,本文在葉頂端壁上布置沿軸向的縫并開(kāi)展全通道非定常數(shù)值模擬研究,分析了開(kāi)縫前后葉輪內(nèi)部的流場(chǎng)變化,以揭示開(kāi)縫對(duì)于軸流泵駝峰區(qū)的流動(dòng)控制機(jī)理。

      1 計(jì)算模型和端壁開(kāi)縫設(shè)計(jì)

      1.1 計(jì)算模型

      本文以軸流泵為研究對(duì)象,其結(jié)構(gòu)如圖1所示。計(jì)算模型主要由進(jìn)口管、葉輪、導(dǎo)葉體以及出口管組成,葉頂間隙從葉輪進(jìn)口到出口保持0.3mm不變,泵的主要參數(shù)如表1所示。

      圖1 泵模型

      表1 軸流泵主要參數(shù)

      注:下標(biāo)表示設(shè)計(jì)工況點(diǎn),下同。

      Note: The subscriptrepresents the design condition point, the same below.

      1.2 端壁開(kāi)縫設(shè)計(jì)

      參考軸流壓氣機(jī)中軸向縫機(jī)匣處理的設(shè)計(jì)[21-22],將縫設(shè)置在葉輪頂部,縫寬沿周向覆蓋3°,縫深為22%(為葉頂軸向弦長(zhǎng),=54 mm)。固定縫上游開(kāi)口位置距離葉頂前緣軸向距離為10.5%,將縫向下游延伸,長(zhǎng)度為??p向葉片旋轉(zhuǎn)方向傾斜角度,如圖2所示。本文主要研究縫的數(shù)量、軸向長(zhǎng)度和徑向夾角對(duì)軸流泵性能的影響。為了便于區(qū)分光滑壁面和開(kāi)縫壁面,在下文分析中,光滑壁面和開(kāi)縫壁面分別用SW和CT表示。

      注:θ為縫與泵法線的夾角,(°);L為縫的軸向長(zhǎng)度,mm。

      1.3 網(wǎng)格劃分與數(shù)值計(jì)算方法

      網(wǎng)格劃分是求解過(guò)程中至關(guān)重要的一環(huán),網(wǎng)格質(zhì)量直接影響計(jì)算結(jié)果精度。本文使用AYSYS Turbo Grid對(duì)葉輪和導(dǎo)葉體進(jìn)行高精度六面體結(jié)構(gòu)化網(wǎng)格劃分,葉輪通道內(nèi)采用O型網(wǎng)格,進(jìn)出口管利用AYSYS ICEM進(jìn)行H型網(wǎng)格劃分。由于葉輪端壁結(jié)構(gòu)的復(fù)雜性,需要將葉輪通道內(nèi)部與帶縫的端壁網(wǎng)格分開(kāi)生成[23]。葉輪葉片頂部間隙采用O型網(wǎng)格,所有縫與H型網(wǎng)格塊連接,通過(guò)該H塊與葉輪通道間進(jìn)行數(shù)據(jù)傳遞,并在2個(gè)間隙面之間設(shè)置一個(gè)動(dòng)靜交界面。單個(gè)H塊網(wǎng)格節(jié)點(diǎn)分布為30×5×100(周向×徑向×軸向),單個(gè)縫采用H型網(wǎng)格拓?fù)?,其網(wǎng)格節(jié)點(diǎn)分布為14×26×41(周向×徑向×軸向)。圖3為葉輪、導(dǎo)葉體及縫網(wǎng)格拓?fù)浣Y(jié)構(gòu)。

      圖3 葉輪、導(dǎo)葉體及縫的網(wǎng)格拓?fù)浣Y(jié)構(gòu)

      采用ANSYS CFX軟件求解軸流泵內(nèi)部三維流場(chǎng),選擇對(duì)逆壓梯度下葉頂部位流動(dòng)分離現(xiàn)象預(yù)測(cè)較為精準(zhǔn)的SST湍流模型[24-26]。進(jìn)口給定總壓(101.325 kPa),出口給定質(zhì)量流量,介質(zhì)為25 ℃水。固定壁面采用水力光滑無(wú)滑移邊界條件,定義葉輪為旋轉(zhuǎn)域,其余為固定域。非定常模擬以定常計(jì)算獲得的收斂結(jié)果作為初值進(jìn)行計(jì)算,時(shí)間步長(zhǎng)設(shè)置為1.852×10-4s,對(duì)應(yīng)設(shè)計(jì)轉(zhuǎn)速下葉輪旋轉(zhuǎn)2°所需要的時(shí)間[27]。

      進(jìn)口管、葉輪、導(dǎo)葉體和出口彎管的網(wǎng)格數(shù)分別為2.6×105、2.78×106、1.83×106和3.4×105,光滑壁面模型和開(kāi)縫模型的軸流泵計(jì)算網(wǎng)格總數(shù)分別約為5.31×106和7.79×106。采用5套不同節(jié)點(diǎn)數(shù)量的網(wǎng)格進(jìn)行網(wǎng)格無(wú)關(guān)性驗(yàn)證,結(jié)果如圖4所示,隨著網(wǎng)格數(shù)量的增加,揚(yáng)程不斷降低,效率不斷升高,當(dāng)網(wǎng)格節(jié)點(diǎn)數(shù)達(dá)到5.31×106時(shí),隨著節(jié)點(diǎn)數(shù)量的增加,揚(yáng)程與效率不再發(fā)生變化,綜合考慮計(jì)算精度。選擇計(jì)算網(wǎng)格單元數(shù)為5.31×106。

      圖4 網(wǎng)格無(wú)關(guān)性驗(yàn)證

      2 結(jié)果與分析

      2.1 數(shù)值模擬可靠性驗(yàn)證

      圖5為軸流泵揚(yáng)程的數(shù)值模擬定常計(jì)算結(jié)果與試驗(yàn)結(jié)果的對(duì)比,揚(yáng)程試驗(yàn)數(shù)據(jù)見(jiàn)參考文獻(xiàn)[15]。為開(kāi)展后續(xù)試驗(yàn)工作,根據(jù)相似準(zhǔn)則對(duì)試驗(yàn)揚(yáng)程值進(jìn)行相似換算,泵直徑由300mm改為146mm,轉(zhuǎn)速由1450r/min改為1800r/min。由圖可知,揚(yáng)程試驗(yàn)值與揚(yáng)程值整體變化趨勢(shì)一致,最大誤差不超過(guò)2.6%,數(shù)值模擬的方法可靠??梢允褂迷撃P烷_(kāi)展端壁開(kāi)縫的相關(guān)研究。

      注:Q為各工況點(diǎn)流量,(m3·h-1)。下同。

      2.2 縫的幾何參數(shù)對(duì)軸流泵水力性能的影響

      圖6分別給出了縫的數(shù)量、軸向長(zhǎng)度和徑向夾角對(duì)軸流泵性能的影響,表2給出了各結(jié)構(gòu)參數(shù)對(duì)軸流泵揚(yáng)程和效率影響的定量分析結(jié)果。其中,揚(yáng)程變化量Δ定義為

      式中SW代表光滑壁面模型,CT代表開(kāi)縫模型,下標(biāo)表示駝峰區(qū)工況點(diǎn)(Q/Q=0.61)。效率變化量Δ定義為設(shè)計(jì)工況點(diǎn)開(kāi)縫模型與光滑壁面模型效率的差值:

      由圖6a可知,當(dāng)=1時(shí),泵揚(yáng)程曲線駝峰仍然存在,隨著縫數(shù)量的增加,失速工況點(diǎn)的揚(yáng)程不斷增大,并且在=60時(shí)揚(yáng)程變化量達(dá)到最大。這說(shuō)明,縫數(shù)量是影響開(kāi)縫抑制駝峰效果的一個(gè)重要參數(shù),在本文研究范圍內(nèi),縫數(shù)量越多,對(duì)泵駝峰的抑制能力越強(qiáng)。因此,固定=60研究其余變量對(duì)軸流泵的性能影響。由圖6b可知,隨著縫軸向長(zhǎng)度的縮短,開(kāi)縫對(duì)軸流泵揚(yáng)程的影響逐漸減弱,對(duì)泵效率的影響也逐漸減弱。具體而言,當(dāng)由100%降低為50%后,揚(yáng)程變化量降低3.6%,泵設(shè)計(jì)工況點(diǎn)效率提高9.3%,因此減小縫長(zhǎng)有利于降低開(kāi)縫對(duì)泵效率的負(fù)面影響;繼續(xù)減少至25%后,流量小于0.4Q時(shí),揚(yáng)程出現(xiàn)下降,即開(kāi)縫抑制駝峰的作用減弱,因此固定=50%研究縫的徑向傾角對(duì)泵水力性能的影響。由圖6c和表2可知,當(dāng)從0°增加至45°時(shí),Δ增加約8.3%,但Δ未發(fā)生明顯變化;隨著的進(jìn)一步增加,揚(yáng)程降低3.5%,效率上升0.7%。因此,增加徑向傾角更加有利于抑制駝峰,但當(dāng)?shù)竭_(dá)一定值后,繼續(xù)增加對(duì)駝峰改善效果降低。

      由以上結(jié)果可知,失速工況的揚(yáng)程和效率分別提高了83.5%和8.13%。增加縫的數(shù)目及軸向長(zhǎng)度,有利于抑制泵的駝峰,但縫的數(shù)目大于60個(gè),縫的長(zhǎng)度大于50%時(shí),泵設(shè)計(jì)點(diǎn)效率會(huì)分別降低4.3%和13.6%,即對(duì)泵效率負(fù)面影響也更大??p的徑向傾斜角不超過(guò)45°時(shí)有利于抑制泵的駝峰,但過(guò)大的傾斜角會(huì)降低泵的揚(yáng)程。

      注:SW表示光滑壁面模型,CT表示開(kāi)縫模型,N為縫個(gè)數(shù),Ca為葉頂軸向弦長(zhǎng),mm。下同。

      2.3 開(kāi)縫改善軸流泵駝峰區(qū)的機(jī)理分析

      根據(jù)上述結(jié)果,綜合考慮有效抑制泵駝峰并對(duì)設(shè)計(jì)點(diǎn)效率產(chǎn)生的負(fù)面影響較小的參數(shù),選取=60、=50%、=45°開(kāi)縫結(jié)構(gòu)進(jìn)行全通道非定常計(jì)算,該結(jié)構(gòu)可在有效抑制泵駝峰的同時(shí),對(duì)泵設(shè)計(jì)點(diǎn)效率產(chǎn)生的負(fù)面影響相對(duì)較小。圖7a為軸流泵開(kāi)縫前后外特性曲線(定常計(jì)算結(jié)果),圖中點(diǎn)分別對(duì)應(yīng)失速工況點(diǎn)(/Q=0.61)、臨界失速工況點(diǎn)(/Q=0.82)以及設(shè)計(jì)工況點(diǎn)(/Q=1)。選取3個(gè)典型工況點(diǎn)進(jìn)行非定常計(jì)算,分析開(kāi)縫改善泵駝峰以及影響泵效率的機(jī)理。

      表2 縫的幾何參數(shù)對(duì)軸流泵揚(yáng)程與效率的影響

      圖7b為任意時(shí)刻工況點(diǎn)(失速工況)縫內(nèi)絕對(duì)速度和縫開(kāi)口截面壓力系數(shù)分布。由圖可知,當(dāng)葉片位于縫正下方時(shí),在葉片吸、壓力面壓差的驅(qū)動(dòng)下,縫的下游部分主要起到對(duì)水流的抽吸作用,縫的上游部分進(jìn)行噴射形成縫內(nèi)循環(huán)。在靠近葉片吸力面縫開(kāi)口截面的位置,噴射區(qū)域的流速較高,接近6 m/s。

      圖7c為光滑壁面模型任意時(shí)刻不同工況點(diǎn)沿葉高方向的揚(yáng)程分布。圖7d為同一時(shí)刻工況點(diǎn)(失速工況)0.99相對(duì)葉高處葉輪通道內(nèi)的相對(duì)速度與靜壓等值線(吸力面附近的靜壓凹槽由紫色虛線線連接,代表葉頂泄漏渦的渦核軌跡)分布。由圖可知,光滑壁面模型從設(shè)計(jì)工況點(diǎn)到失速工況點(diǎn),沿葉高方向上揚(yáng)程均有所降低,在0.7倍葉高附近,失速工況點(diǎn)揚(yáng)程出現(xiàn)突降。由圖7d可知,光滑壁面模型在葉頂通道內(nèi)出現(xiàn)大面積的低速區(qū)造成葉頂區(qū)域的堵塞加劇。結(jié)合圖7c,光滑壁面模型失速工況點(diǎn)在葉頂部位壓差降低,即堵塞造成葉頂做功能力下降,導(dǎo)致軸流泵揚(yáng)程降低。在縫的作用下,泵在失速工況點(diǎn)不同葉高處的揚(yáng)程值均有明顯升高,葉頂部分變化最為明顯;在點(diǎn)(設(shè)計(jì)工況),縫對(duì)泵的揚(yáng)程影響較小。

      注:圖中A、B、C分別表示Q/Qdes=0.61、Q/Qdes=0.82、Q/Qdes=1三個(gè)典型工況點(diǎn);Wxyz表示絕對(duì)速度;Vxyz表示相對(duì)速度。下同。

      圖8為點(diǎn)(失速工況)光滑壁面模型與開(kāi)縫模型葉頂泄漏流流線分布。由圖8a可知,光滑壁面模型葉頂泄漏流流線出現(xiàn)旋渦狀分布并向葉輪進(jìn)口方向發(fā)展,泄漏渦出現(xiàn)泡狀破碎。結(jié)合圖7d可知,受葉頂泄漏流的影響,泵葉頂區(qū)域出現(xiàn)大面積反流區(qū),并與來(lái)流共同作用,形成大面積的低速區(qū),造成葉頂區(qū)域的嚴(yán)重堵塞。在縫的作用下,葉頂泄漏渦形態(tài)規(guī)則,并且流速較高,軸向反流區(qū)的面積大幅度減小。結(jié)合圖7d的靜壓等值線分布與圖8b可以發(fā)現(xiàn),光滑壁面模型原本雜亂的靜壓等值線(無(wú)明顯葉頂泄漏渦渦核軌跡),在縫的影響下,主要集中在靠近縫以及葉片吸力面的部分,說(shuō)明縫可將部分葉頂泄漏渦抽吸到縫內(nèi),又由于葉頂前緣縫的射流作用,使得葉頂泄漏渦軌跡更加貼近葉片吸力面。因此,縫可以有效抑制葉頂泄漏渦,降低葉頂堵塞。

      為了定量分析縫對(duì)軸流泵內(nèi)部流動(dòng)的影響,取任意時(shí)刻相對(duì)液流角(相對(duì)速度與軸向的夾角)進(jìn)行周向平均,將不同工況點(diǎn)光滑壁面模型與開(kāi)縫模型的周向平均值作差,結(jié)果如圖9所示(圖中代表葉輪子午面的不同軸向位置)。由圖9a可知,在點(diǎn)(失速工況),相對(duì)液流角在0.9倍相對(duì)葉高處以上部分明顯降低,最大降幅62°,這與縫對(duì)葉頂泄漏渦的抑制是一致的。由圖9c可知,相對(duì)液流角的降低對(duì)葉片吸力面表面的流動(dòng)分離有明顯的抑制效果。由圖9b可知,開(kāi)縫前后相對(duì)液流角葉頂位置最大減小8°,0.8倍相對(duì)葉高處增加不超過(guò)3°,即縫對(duì)于設(shè)計(jì)工況點(diǎn)的影響較小。

      使用轉(zhuǎn)子葉頂間隙中單位面積的平均質(zhì)量通量(·V)來(lái)評(píng)估葉頂泄漏強(qiáng)度,將光滑壁面模型與開(kāi)縫模型的泄漏強(qiáng)度作差(Δ·),并由葉輪進(jìn)口圓周速度與密度的乘積無(wú)量綱化,結(jié)果如圖10所示。由圖可知,在縫的作用下,泄漏流強(qiáng)度隨葉輪的轉(zhuǎn)動(dòng)呈現(xiàn)出周期性變化,葉頂前緣處泄漏流強(qiáng)度增加0.1,而其余部分均有不同程度的降低,其中葉頂中部降低0.6。整體來(lái)看,縫對(duì)于泄漏流強(qiáng)度有明顯的抑制作用,平均泄漏強(qiáng)度降低41.4%。

      為了定量分析縫對(duì)軸流泵葉頂堵塞的影響,采用軸向反流區(qū)附面層厚度來(lái)量化表征葉輪葉頂區(qū)域的堵塞[28-29](圖11)。附面層厚度δ定義為

      δar由當(dāng)?shù)厝~高進(jìn)行無(wú)量綱化處理,取任意時(shí)刻子午面上軸向速度Wz進(jìn)行周向平均,對(duì)應(yīng)于不同工況點(diǎn)的δar如圖11所示。由圖11可知,隨著流量的減小,光滑壁面模型的葉頂堵塞逐漸增大,尤其從0.82Qdes減小到0.61Qdes時(shí),附面層厚度最大增加了11.7倍,葉頂堵塞區(qū)已經(jīng)發(fā)展至葉輪進(jìn)口,這與圖8a現(xiàn)象一致。在縫的作用下,靠近葉輪進(jìn)口部位的堵塞明顯降低,但未完全消除;葉頂中部附面層厚度降低18 mm,堵塞區(qū)被縫完全消除。

      注:T為軸流泵在周向轉(zhuǎn)過(guò)一個(gè)葉柵柵距所需要的時(shí)間,s;t為葉輪旋轉(zhuǎn)的時(shí)間,s。

      圖11 開(kāi)縫前后附面層厚度變化

      綜上所述,由于縫的抽吸與射流作用,縫可以有效抑制葉頂泄漏渦,消除葉頂通道的低速區(qū),大幅提高了泵葉頂?shù)耐髂芰?,起到提高泵揚(yáng)程、抑制駝峰的作用。

      2.4 開(kāi)縫對(duì)軸流泵效率的影響

      為了分析開(kāi)縫對(duì)軸流泵效率的影響,圖12a為光滑壁面模型與開(kāi)縫模型在點(diǎn)(設(shè)計(jì)工況)0.99倍相對(duì)葉高處的熵產(chǎn)率EPR(Entropy Production Rate)分布。由圖可知,光滑壁面模型的葉頂損失主要由葉頂泄漏渦造成。在縫噴射流的影響下,設(shè)計(jì)工況點(diǎn)的主流與噴射流發(fā)生摻混,導(dǎo)致葉片前緣吸力面?zhèn)鹊母哽貐^(qū)擴(kuò)大,并且熵值增大明顯,熵產(chǎn)率由1 700增加至2 500,增幅47%,造成設(shè)計(jì)工況的損失增加,泵效率降低。

      圖12b為失速工況點(diǎn)0.99倍相對(duì)葉高處的熵分布,由圖可知,葉頂前緣及吸力面?zhèn)鹊拇竺娣e高熵產(chǎn)區(qū)是導(dǎo)致泵失速工況點(diǎn)效率降低的主要原因。在縫的抽吸與噴射的作用下,葉頂部分的流動(dòng)損失明顯減小,即靠近葉頂前緣部分的高熵區(qū)減小,部分位置由4 000減小至2 000。中部熵產(chǎn)率更是由原來(lái)的2 000減小至500以下,降低約75%。靠近尾緣部分的高熵區(qū)略有增加,但是整體的高熵產(chǎn)區(qū)明顯降低,使軸流泵失速工況點(diǎn)效率升高。

      圖12 不同工況點(diǎn)0.99倍相對(duì)葉高處?kù)禺a(chǎn)率分布

      2.5 開(kāi)縫對(duì)壓力脈動(dòng)的影響規(guī)律

      在99.5%葉高位置,順著葉頂前緣到尾緣的方向布置6個(gè)(16)固定監(jiān)測(cè)點(diǎn),1靠近葉頂前緣,6靠近葉頂尾緣,25測(cè)點(diǎn)沿著葉頂翼型前緣至尾緣方向按順序布置,如圖13所示。對(duì)數(shù)值計(jì)算得到的各監(jiān)測(cè)點(diǎn)瞬時(shí)壓力數(shù)據(jù)進(jìn)行快速傅里葉變換(Fast Fourier Transform),獲得安裝縫前后失速工況下各個(gè)測(cè)點(diǎn)的頻譜特性。引入壓力脈動(dòng)系數(shù)C,表達(dá)式為

      注:P1~P6表示壓力脈動(dòng)測(cè)點(diǎn)位置。

      Note: P1-P6 indicate the position of pressure fluctuation measuring point.

      圖13 壓力脈動(dòng)測(cè)點(diǎn)分布

      Fig.13 Distribution of pressure fluctuation measuring points

      圖14a為光滑壁面模型失速工況各測(cè)點(diǎn)C的頻譜圖(/f為捕捉到的頻率和葉輪轉(zhuǎn)頻f的比值),由圖可知,在失速工況各測(cè)點(diǎn)包含1倍轉(zhuǎn)頻、葉片通過(guò)頻率(6f),及其他振幅較低的特征頻率。除葉倍頻外,各頻率對(duì)應(yīng)的幅值相差不大,這說(shuō)明該泵葉頂流動(dòng)較為復(fù)雜。結(jié)合圖12b中光滑壁面模型的葉頂熵分布可以發(fā)現(xiàn),越接近葉輪進(jìn)口部位,流動(dòng)損失越高,不穩(wěn)定流動(dòng)越強(qiáng)烈。對(duì)比圖中各監(jiān)測(cè)點(diǎn)的壓力幅值可以發(fā)現(xiàn),檢測(cè)點(diǎn)越接近葉輪進(jìn)口,C值越高。

      為了詳細(xì)分析開(kāi)縫對(duì)于葉頂部分壓力脈動(dòng)的影響,選擇135點(diǎn)進(jìn)行對(duì)比分析,結(jié)果如圖14所示。由圖可知,在縫的影響下,葉輪葉頂?shù)膲毫γ}動(dòng)主頻為葉頻(6f)及其倍頻。與光滑壁面模型對(duì)比可知,在縫作用下,葉倍頻幅值明顯升高,特別是1測(cè)點(diǎn),開(kāi)縫前6f的壓力脈動(dòng)系數(shù)為0.04,開(kāi)縫后為0.1,12f的開(kāi)縫前壓力脈動(dòng)系數(shù)為0.01,開(kāi)縫后為0.27,3測(cè)點(diǎn)開(kāi)縫前6f的壓力脈動(dòng)系數(shù)為0.06,開(kāi)縫后為0.26,增加了近3倍。這是由于固定的縫與旋轉(zhuǎn)的葉輪之間的動(dòng)靜干涉造成的。然而,光滑壁面模型中原本存在較多的低頻脈動(dòng)均明顯降低,而低頻脈動(dòng)與葉頂泄漏渦等二次流密切相關(guān)。因此,縫可以有效削弱位于葉輪葉頂部位由二次流引起的不穩(wěn)定流動(dòng)。

      注:f為捕捉到的頻率,Hz;fn為葉輪轉(zhuǎn)頻,Hz。

      3 結(jié) 論

      本文針對(duì)軸流泵駝峰問(wèn)題,提出端壁開(kāi)縫抑制泵的駝峰,并分析了端壁開(kāi)縫對(duì)軸流泵駝峰區(qū)的改善機(jī)理,主要結(jié)論如下:

      1)端壁開(kāi)縫可有效抑制泵的駝峰,失速工況點(diǎn)揚(yáng)程變化量為83.5%,并且效率升高8.1%,設(shè)計(jì)工況效率降低4.3%。通過(guò)參數(shù)化研究發(fā)現(xiàn),增加縫的數(shù)目和縫長(zhǎng),可提高縫抑制駝峰的能力,但縫的個(gè)數(shù)不宜大于60個(gè),長(zhǎng)度不宜超過(guò)葉頂軸向弦長(zhǎng)的50%。但縫過(guò)長(zhǎng)會(huì)降低泵設(shè)計(jì)工況效率。增加縫的徑向傾角有利于駝峰區(qū)的改善,但傾角不宜超過(guò)45°。

      2)失速工況點(diǎn)葉頂泄漏流與主流相互作用形成泄漏渦,并向葉輪進(jìn)口方向發(fā)展,堵塞葉頂通道,導(dǎo)致葉輪內(nèi)部流場(chǎng)惡化、流動(dòng)損失增加,泵的揚(yáng)程降低。通過(guò)縫下游對(duì)葉頂中部回流與漩渦的抽吸以及上游較高流速水流的噴射作用,使相對(duì)液流角在0.9倍相對(duì)葉高處以上部分明顯降低,最大降幅62°,平均泄漏強(qiáng)度降低41.4%,葉頂中部附面層厚度降低18 mm,達(dá)到了抑制葉頂泄漏渦、改善葉頂通道堵塞的目的,從而有效抑制了泵的駝峰。

      3)縫的射流與主流的摻混導(dǎo)致設(shè)計(jì)工況泵葉頂流動(dòng)損失增加,開(kāi)縫后葉頂前緣吸力面?zhèn)褥禺a(chǎn)率增加47%,造成泵效率降低,有待于進(jìn)一步研究以提高泵設(shè)計(jì)點(diǎn)的效率。在失速工況點(diǎn),由于縫對(duì)葉頂堵塞的抑制作用降低了葉頂流動(dòng)損失,葉頂中部熵產(chǎn)率降低75%,使泵在失速工況點(diǎn)的效率升高。

      4)在縫的作用下,由于縫與葉輪的動(dòng)靜干涉作用造成了葉倍頻壓力脈動(dòng)幅值有所增高,但有效抑制了葉頂泄漏流等二次流誘發(fā)的壓力脈動(dòng)。

      [1]何川,郭立君. 泵與風(fēng)機(jī)第4版[M]. 北京:中國(guó)電力出版社有限公司,2011.

      [2]景瑞,何希杰. 軸流泵及其應(yīng)用概述[J]. 通用機(jī)械,2014(9):86-89.

      Jing Rui, He Xijie. Axial flow pump and its application overview[J]. General Machinery, 2014(9): 86-89. (in Chinese with English abstract)

      [3]鄭源,陳宇杰,張睿,等. 軸流泵失速工況下非定常流動(dòng)特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):127-135.

      Zheng Yuan, Chen Yujie, Zhang Rui, et al. Analysis on unsteady stall flow characteristics of axial-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 127-135. (in Chinese with English abstract)

      [4]Spencer E A. The performance of an axial-flow pump[J]. Proceedings of the Institution of Mechanical Engineers, 1956, 170(1): 874-908.

      [5]王勇,何乃昌,吳賢芳,等. 軸流泵馬鞍區(qū)內(nèi)流特性分析[J]. 中國(guó)農(nóng)村水利水電,2017(11):164-167.

      Wang Yong, He Naichang, Wu Xianfang, et al. Inner flow characteristics analysis of axial flow pump inthe saddle zone[J]. China Rural Water and Hydropower, 2017(11): 164-167. (in Chinese with English abstract)

      [6]錢忠東,王凡,王志遠(yuǎn),等. 可調(diào)導(dǎo)葉式軸流泵馬鞍區(qū)水力特性試驗(yàn)研究[J]. 排灌機(jī)械工程學(xué)報(bào),2013,31(6):461-465.

      Qian Zhongdong, Wang Fan, Wang Zhiyuan, et al. Experimental study on hydraulic performance of saddle zone in axial flow pump with adjustable guide vane[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(6): 461-465. (in Chinese with English abstract)

      [7]Miyabe M, Maeda H, Umeki I, et al. Unstable head-flow characteristic generation mechanism of a low specific speed mixed flow pump[J]. Journal of Thermal Science,2006, 15(2): 115-120.

      [8]Fay A. Analysis of separated flows in hydro machines[R]. 6thIASME/WSEAS International Conference, 2008.

      [9]Schrapp H, Stark U, Goltz I, et al. Structure of the rotor tip flow in a highly-loaded single-stage axial-flow pump approaching stall: Part I—Breakdown of the tip-clearance vortex[C]//ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, 2004.

      [10]鄭源,茅媛婷,周大慶,等. 低揚(yáng)程大流量泵裝置馬鞍區(qū)的流動(dòng)特性[J]. 排灌機(jī)械工程學(xué)報(bào),2011,29(5):369-373.

      Zheng Yuan, Mao Yuanting, Zhou Daqing, et al. Flow characteristics of low-lift and large flow rate pump installation in saddle zone[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(5): 369-373. (in Chinese with English abstract)

      [11]Nobuhiro Yamanishi, Shinji Fukao, Qiao Xiangyu, et al. LES simulation of backflow vortex structure at the inlet of an inducer[J]. Journal of Fluids Engineering, 2007, 129(5): 587-594.

      [12]戰(zhàn)培國(guó),程婭紅,趙昕,等.主動(dòng)流動(dòng)控制技術(shù)研究[J]. 航空科學(xué)技術(shù),2010(5):2-6.

      Zhan Peiguo, Cheng Yahong, Zhao Xi, et al. A review of active flow control technology[J]. Aeronautical Science and Technology, 2010(5): 2-6. (in Chinese with English abstract)

      [13]黃友. 低速空腔流動(dòng)被動(dòng)控制的實(shí)驗(yàn)研究[D]. 上海:上海交通大學(xué),2012.

      Huang You. The Experimental Studies of the Passive Controls of Flow Past the Cavity[D]. Shanghai: Shanghai Jiaotong University, 2012. (in Chinese with English abstract)

      [14]Kurokawa J. J-Groove technique for suppressing various anomalous flow phenomena in turbo machines[J]. International Journal of Fluid Machinery and Systems 2011, 4(1): 1-13.

      [15]馮建軍,楊寇帆,朱國(guó)俊,等. 進(jìn)口管壁面軸向開(kāi)槽消除軸流泵特性曲線駝峰[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):105-112.

      Feng Jianjun, Yang Koufan, Zhu Guojun, et al. Elimination of hump in axial pump characteristic curve by adopting axial grooves on wall of inlet pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 105-112. (in Chinese with English abstract)

      [16]Wilke I, Kau H P. A numerical investigation of the flow mechanisms in a high pressure compressor front stage with axial slots[J]. Journal of Turbo Machinery, 2004, 126(3): 339-349.

      [17]Smith G D J, Cumpsty N. A flow phenomena in compressor casing treatment[J]. J Eng Gas Turb Power, 1984, 106(3): 532-541.

      [18]Zhou X, Yuan W, Cui W, et al. Investigation on axial effect of slot casing treatment in a transonic compressor[J]. Applied Thermal Engineering, 2017, 126: 53-69.

      [19]杜娟,張千豐,王偲臣,等. 斜流壓氣機(jī)開(kāi)縫機(jī)匣處理設(shè)計(jì)及擴(kuò)穩(wěn)機(jī)理研究[J]. 工程熱物理學(xué)報(bào),2019,40(4):751-758.

      Du Juan, Zhang Qianfeng, Wang Sichen, et al. Design and stability enhancement mechanism of axial-slot casing treatment on a mixed-flow compressor[J]. Journal of Engineering Thermophysics, 2019, 40(4): 751-758. (in Chinese with English abstract)

      [20]王維,張翔,盧金玲,等. 軸流壓氣機(jī)端壁失速的耦合擴(kuò)穩(wěn)方法及機(jī)理研究[J]. 推進(jìn)技術(shù),2020,41(3):544-552.

      Wang Wei, Zhang Xiang, Lu Jinling, et al. Study of coupling method and mechanism of stability enhancement for endwall stall in an axial flow compressor[J]. Journal of Propulsion Technology, 2020, 41(3): 544-552. (in Chinese with English abstract)

      [21]Wang Wei, Chu Wuli, Zhang Haoguang, et al. Numerical investigation on the effect of a plenum chamber with slot-type casing treatment on the performance of an axial transonic compressor[J]. Journal of Power and Energy, 2010, 229(4): 393-405.

      [22]吳艷輝,張皓光,楚武利,等. 雙級(jí)跨音風(fēng)扇開(kāi)縫機(jī)匣處理結(jié)構(gòu)優(yōu)化的數(shù)值模擬研究[J]. 推進(jìn)技術(shù),2010,28(2):228-233.

      Wu Yanhui, Zhang Haoguang, Chu Wuli, et al. Mechanism of stall margin improvement of two stages transonic fan with two-portion axial slot casing treatment[J]. Journal of propulsion technology, 2010, 28(2): 228-233. (in Chinese with English abstract)

      [23]王永明,胡駿,屠寶鋒,等. 帶機(jī)匣處理的跨聲速風(fēng)扇非定常數(shù)值模擬[J]. 南京航空航天大學(xué)學(xué)報(bào),2006,38(5):540-544.

      Wang Yongming, Hu Jun, Tu Baofeng, et al. Unsteady numerical simulation of transonic fan with casing treatment[J]. Journal of Nanjing University of Aeronautics & Asronautics, 2006, 38(5): 540-544. (in Chinese with English abstract)

      [24]張德勝,吳蘇青,施衛(wèi)東,等. 軸流泵小流量工況條件下葉頂泄漏空化特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(22):68-75.

      Zhang Desheng, Wu Suqing, Shi Weidong, et al. Characteristics of tip leakage vortex cavitation in axial flow pump at small flow rate condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 68-75. (in Chinese with English abstract)

      [25]Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. Aiaa Journal, 1994, 32(8): 1598-1605.

      [26]馮建軍,羅興锜,吳廣寬,等. 間隙流動(dòng)對(duì)混流式水輪機(jī)效率預(yù)測(cè)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):53-58.

      Feng Jianjun, Luo Xingqi, Wu Guangkuan, et al. Influence of clearance flow on efficiency prediction of francis turbines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 53-58. (in Chinese with English abstract)

      [27]Hasmatuchi V. Hydrodynamics of A Pump-Turbine Operating at Off-Design Conditions in Generating Mode[D]. Switzerland: école Poly Technique Fédérale de Lausanne, 2012.

      [28]Hoeger M, Fritsch G, Bauer D. Numerical simulation of the shock-tip leakage vortex interaction in a HPC front stage[J]. Journal of Turbo Machinery, 1999, 121: 456-468.

      [29]Hoeger M, Lahmer M, Dupslaff M, et al. Numerical simulation of the shock-tip leakage vortex interaction in a HPC front stage[J]. Journal of Turbo Machinery, 2000, 121: 456-467.

      Mechanism for end-wall slots to improve hump in an axial flow pump

      Wang Wei, Wang Weichao, Zhang Lefu, Zhao Le, Lu Jinling※, Feng Jianjun, Luo Xingqi

      (1,,710048,;2.,,710048,)

      Axial-flow pump is widely used in farmland irrigation, chemical industry, and water transfer engineering, due to its a high specific speed with a large flow rate and a low water head. A hump area normally appears on the flow-head curve in the presence of the backflow and vortex, when the axial-flow pump works at lower mass flow rates. The hump area can cause increased vibration and noise in the axial flow pump, which endangers the safe and stable operation of a pump unit. This study aims to find a feasible way that can effectively depress the hump in an axial-flow pump using systematic numerical simulations for the axial-flow pump with axial slots. An AYSYS Turbo Grid was used to build high-precision hexahedral structured O grids for the impeller and guide vane. H grids were selected for the inlet and outlet pipes using AYSYS ICEM CFD module. An ANSYS CFX software was used to solve the three-dimensional flow fields inside the axial-flow pump. An SST-turbulence model was adopted to predict flow separation caused by reverse pressure gradients. The maximum error was less than 2.6% compared with the pump head in experimental and numerical data, verifying the reliability of numerical simulation. A parametric analysis was conducted to explore the effects of slot numbers, slot length, and slot angle on the pump performance. A mechanism was proposed to improve hump area for the optimal axial slots using unsteady simulations. The results show that the hump area of the axial-flow pump can be effectively suppressed by the axial slots. The pump head and efficiency increased by 83.5% and 8.13% in the hump area, respectively, while the pump efficiency reduced by 4.3% at the design condition. The ability of the axial slots in depressing hump enhanced, when increasing the slot numbers and the slot length. However, the efficiency at the design condition decreased significantly when the slots were too long. Moreover, the increase in the radial skewed angle of the slots was beneficial to the improvement of the hump area. In the pump without slots, there was no obvious vortex trajectory of tip leakage at lower mass flow rates, whereas, the blade tip area was covered by a large area of reversed flow regions where the tip leakage flow rolls up with the main flow, resulting in a tip leakage vortex. The tip leakage vortex moved towards upstream direction at lower mass flow rates, and thereby blocked the blade tip passage, leading to the increased flow losses and decreased of pump head near the blade tip. The flow recirculation of injection and suction was found to be established in the slots. Under the effect of flow recirculation, the relative flow angle above 0.9 times relative blade height was significantly reduced under the stall condition. The tip leakage vortex was controlled successfully by the slots, and the average leakage intensity was reduced by 41.4%. The mixing of the injection and the main flow caused the increased flow losses at the tip of the impeller at the design condition, resulting in the decrease of the pump efficiency. Further research can be needed to improve the pump efficiency at the design condition. At the stall condition, the tip flow losses were reduced because of the effect of the flow recirculation on the tip leakage vortex, and the pump efficiency increased. In addition, the pressure fluctuations induced by the tip leakage vortex near the blade tip was remarkably weakened by the slots. Consequently, the axial slots have a great potential to improve the hump area and the efficiency under the stall condition for the axial-flow pump.

      pump; simulation; impeller; axial flow pump; end wall slotting; tip leakage vortex; pressure fluctuation; characteristic curve; hump area

      王維,王偉超,張樂(lè)福,等. 端壁開(kāi)縫改善軸流泵駝峰的機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):12-20.doi:10.11975/j.issn.1002-6819.2020.23.002 http://www.tcsae.org

      Wang Wei, Wang Weichao, Zhang Lefu, et al. Mechanism for end-wall slots to improve hump in an axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 12-20. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.002 http://www.tcsae.org

      2020-08-31

      2020-11-10

      國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFB1501900);中國(guó)博士后科學(xué)基金(2020M683525);陜西省教育廳科研計(jì)劃項(xiàng)目(19JK0587);國(guó)家自然科學(xué)基金項(xiàng)目(51879216,51679195)

      王維,博士,講師,研究領(lǐng)域:葉輪機(jī)械氣動(dòng)熱力學(xué)。Email:weiwang@xaut.edu.cn

      盧金玲,博士,教授,研究領(lǐng)域:流體機(jī)械優(yōu)化設(shè)計(jì)。Email:jinling_lu@163.com

      10.11975/j.issn.1002-6819.2020.23.002

      TH312

      A

      1002-6819(2020)-23-0012-09

      猜你喜歡
      開(kāi)縫葉頂軸流泵
      平面葉柵多凹槽葉頂傾斜圓柱孔氣膜冷卻與氣動(dòng)特性研究
      開(kāi)縫蜂窩結(jié)構(gòu)電磁/力學(xué)綜合性能設(shè)計(jì)
      分離渦模擬在葉頂間隙流模擬中的可行性分析
      透平動(dòng)葉多凹槽葉頂氣膜冷卻特性的研究
      上翼面開(kāi)縫的翼傘翼型氣動(dòng)特性研究
      潛水軸流泵運(yùn)行故障分析與排除研究
      潛水軸流泵電機(jī)運(yùn)行工況的特點(diǎn)及可靠性探討
      開(kāi)縫圓柱縫隙傾斜角對(duì)脫落渦的影響
      大功率LED燈的新型底部開(kāi)縫翅片散熱性能研究
      濃縮軸流泵干氣密封改造
      和静县| 富平县| 金乡县| 紫金县| 温州市| 普格县| 翼城县| 酉阳| 兰西县| 冷水江市| 黄陵县| 星子县| 德格县| 綦江县| 和硕县| 靖安县| 湘潭市| 罗田县| 昭平县| 遂宁市| 和田县| 台中市| 维西| 大化| 金塔县| 商洛市| 静宁县| 岚皋县| 永德县| 武隆县| 绥宁县| 池州市| 象山县| 武夷山市| 晋江市| 衡水市| 兴海县| 丹棱县| 尤溪县| 固安县| 藁城市|