張曉冰 楊星勇 楊永柱
摘要:利用植物-微生物協(xié)作提高作物產(chǎn)量是當前農(nóng)業(yè)研究領域的熱點。植物根際促生細菌(plant growth promoting rhizobacteria,PGPR)是一種非常重要的土壤細菌,在土壤-植物生態(tài)系統(tǒng)中占據(jù)重要地位。而在眾多PGPR中,芽孢桿菌占植物根際革蘭氏陽性細菌總數(shù)的95%,是當前研究最為廣泛的PGPR之一。結合近年來的研究結果,本文綜述了芽孢桿菌幾種不同促生(plant growth promoting,PGP)機制,如改善植物根際可利用的營養(yǎng)物質(zhì),產(chǎn)生植物激素,誘導植物抗性和抑制病原體等方面的最新研究進展,同時對該領域的研究發(fā)展方向進行了展望。
關鍵詞:植物根際促生細菌;芽孢桿菌;促生機制;植物-微生物協(xié)作;產(chǎn)量
中圖分類號: S182 ?文獻標志碼: A ?文章編號:1002-1302(2020)03-0073-07
人口數(shù)量的持續(xù)增加導致人類對作物的需求越來越大[1],而傳統(tǒng)的大規(guī)模施用化肥和農(nóng)藥,在增加作物產(chǎn)量的同時不可避免地會給生態(tài)環(huán)境帶來嚴重的破壞[2],這就使得利用植物-有益微生物協(xié)作提高作物產(chǎn)量成為當前一個研究熱點[3]。土壤微生物在土壤生態(tài)系統(tǒng)的各種生命活動中起著重要作用,維持著整個土壤生態(tài)系統(tǒng)的穩(wěn)定[4-5]。其中,在植物根部積累中能夠提高土壤肥力,增強植物抗逆性,促進植物生長發(fā)育的細菌被稱為植物根際促生細菌(plant growth promoting rhizobacteria,PGPR)[6-8]。
在眾多PGPR中,芽孢桿菌(Bacillus)占植物根際革蘭氏陽性細菌總數(shù)的95%[9],是當前研究較為廣泛的PGPR之一,它通過促進難溶性磷溶解、微量元素吸收等方式增加植物根際營養(yǎng)物質(zhì)的利用率[10],以及產(chǎn)生植物激素供植物利用;此外,還可以通過誘導植物抗性和抑制病原菌來促進植物生長發(fā)育[11]。
大多數(shù)土壤含有足夠的植物營養(yǎng)素,但它們通常以不溶性形式存在,不能被植物吸收利用[12]。芽孢桿菌可以直接釋放吲哚乙酸(IAA)、鐵載體、氨等促進植物生長和發(fā)育的物質(zhì),也可以促進植物獲得生長所必需的礦物質(zhì)(氮、磷、鉀等)以促進植物的生長[13-14],或間接通過降低各種病原體對植物生長和發(fā)育造成的抑制作用來促進生長[15]。本文將結合當前最新的研究對芽孢桿菌促進植物生長發(fā)育的幾種機制進行論述(圖1和表1)。
1 直接機制
1.1 氮固定
氮是植物生長和發(fā)育中最重要的營養(yǎng)元素,但超過80%的N2作為惰性氣體存在于大氣中不能被植物吸收和利用[15],而生物固氮系統(tǒng)則可以通過固氮微生物中稱之為固氮酶的復合酶系統(tǒng)將其還原為含氨復合物進而被植物吸收利用[28-29]。N2固定過程以固氮酶復合物為主,而它們的結構在不同的固氮細菌屬中不同[30-33]。根際細菌中的芽孢桿菌屬于非共生的固氮細菌,研究發(fā)現(xiàn),大部分芽孢桿菌的生物固氮是通過鉬固氮酶來進行的。鉬固氮酶復合物具有由nif DK和nif H基因編碼的2種組分蛋白質(zhì)。在固氮的情況下,鐵蛋白結合2個分子以獲得MgATP并與鐵鉬酸結合。當2種蛋白質(zhì)結合時,2個分子的MgATP被水解成2個分子的MgADP,2個分子的Pi和鐵蛋白將電子傳遞給高鐵血紅素。鉬鐵蛋白使用這些電子將N2還原為NH3[33]。據(jù)報道,從北京植物根際提取的芽孢桿菌中同樣發(fā)現(xiàn)了nif基因[34]。研究還表明,B. Velezensis菌株對大豆具有促進和結瘤作用[28]。B. pumilus S1r1和B. subtilis UPMB10具有固定N2的能力[35]。此外,許多研究也陸續(xù)報道了各種芽孢桿菌(包括B. subtilis、B. pumilus、B. cereus、B. circulans、B. megaterium、B. licheniformis等)均含有固氮酶[36]。近年來的一些研究表明,當芽孢桿菌和其他根際細菌共同接種時,植物中的氮營養(yǎng)成分增加。例如,當與芽孢桿菌和根瘤菌共同接種時,刺激植物生長,結瘤和N2固定的能力更強[37]。
1.2 磷酸鹽溶解
磷是除氮以外對植物生長發(fā)育最重要的營養(yǎng)元素,通常在土壤中以有機和無機形式存在[38]。雖然磷在土壤中含量豐富,但大部分是不溶性的,而植物只能吸收一小部分可溶性磷[7]。據(jù)報道,芽孢桿菌是一種非常重要的磷酸鹽溶解細菌(phosphate solubilizing bacteria,PSB),能夠為植物提供可直接吸收的有效磷[39]。由芽孢桿菌合成釋放的低分子量有機酸可促進無機磷在土壤中的溶解。有機酸的羥基和羧基螯合磷酸鹽結合的陽離子并最終將磷酸鹽轉(zhuǎn)化為可溶形式[40]。不同于無機磷的轉(zhuǎn)化,有機磷的礦化是通過合成不同的磷酸酶來催化磷酸鹽的水解來實現(xiàn)的,而這2種溶磷方式可在同一細菌菌株中共存[8]。據(jù)報道,芽孢桿菌根際細菌的有機酸已被鑒定和定量,它們在磷酸鹽溶解過程中的作用也得到了證實[41]。例如B. circulans、B. coagulans、B. subtilis、B. sircalmous、B. thuringiensis、B. megaterium和B. sircalmous均被認為是一些最有效的磷增溶劑[15,42]。研究表明,用蘇云金芽孢桿菌處理花生幼苗,能夠改善土壤中難溶性磷酸鹽化合物的溶解,提高可溶性磷的濃度,提高作物產(chǎn)量[43]。此外,在缺磷的土壤中接種巨大芽孢桿菌后,辣椒和黃瓜對磷的吸收和利用均增加,并且它們的生長指標均有不同程度的提升[44]。在2019年的一項研究中定量了在鷹嘴豆根部分離的B. subtilis和B. pumilus磷的增溶能力范圍為78~87.64 mg[45]。
1.3 鉀溶解
鉀是植物生長所必需的營養(yǎng)元素之一。土壤中的鉀可分為水溶性鉀和礦物鉀,而植物只能吸收水溶性鉀,但水溶性鉀只占土壤總鉀含量的 0.1%~2%[46]。因此,有必要利用土壤中的解鉀微生物向缺鉀土壤中的植物提供鉀。解鉀微生物(potassium-solubilizing microorganism)是指能夠在土壤或純培養(yǎng)條件下,將含鉀礦物如長石、云母等不能被作物吸收利用的礦物態(tài)鉀分解產(chǎn)生水溶性鉀的微生物。其中B. circulans、B.mucilaginosus和 B.licheniformis是被廣泛報道的鉀細菌。解鉀的基本原理是鉀細菌能夠破壞鉀長石的晶格結構,從而釋放其中的鉀,為作物提供營養(yǎng);其中,鉀細菌產(chǎn)生有機酸和氨基酸的酸溶作用以及有機酸、氨基酸及莢膜多糖的絡合作用是鉀長石晶格結構破壞的主要原因。在晶格結構的破壞過程中,莢膜多糖又扮演著重要的角色,它可以與土壤中存在的大量二氧化硅(SiO2)發(fā)生絡合,導致土壤中SiO2濃度降低,打破礦質(zhì)結晶過程中暫時的動態(tài)平衡,促進礦物質(zhì)降解,從而釋放出被晶格所包圍的Si和K等金屬離子[47]。辣椒和黃瓜根際的許多芽孢桿菌屬均被證明參與鉀溶解[48]。此外研究表明,應用鉀細菌作為生物肥料,能夠有效提高土壤水溶性鉀含量。目前,有關鉀細菌溶鉀機制的研究仍然相對較少,因此,仍需要深入研究。
1.4 生成激素
芽孢桿菌可以分泌植物激素,如吲哚-3-乙酸、細胞分裂素(CTK)和赤霉素等,它們能夠直接影響植物生長發(fā)育[49]。研究表明,芽孢桿菌分泌的IAA能夠改變植物IAA的內(nèi)源庫,進而影響植物生長、發(fā)育、脅迫應答等過程[8,50]。此外,IAA能夠在一定程度上增加根的表面積和長度,為植物吸收更多的土壤養(yǎng)分提供保障。據(jù)報道,B. subtilis、B. thuringiensis、B. megaterium和B. weihenstephanensis SM3均具有產(chǎn)生IAA的能力[15,51]。此外,研究者對芽孢桿菌產(chǎn)生IAA能力的量化結果表明,B. subtilis AU-2和Bacillus pumilus AU-4 IAA的產(chǎn)量為 20~35.34 μg/mL。對擬南芥植株接種芽孢桿菌能夠顯著提升植株IAA、CTK和GA的含量,并且植株的含水量、鮮質(zhì)量和干質(zhì)量均顯著增加,有效地降低了壓力對植物的不利影響[52]。以上研究表明,芽孢桿菌可以通過直接生成植物激素來促進植物的生長發(fā)育。
1.5 生成鐵載體和氨
鐵是植物維持正常生命活動所必需的微量礦質(zhì)元素,它主要在好氧環(huán)境中以Fe3+的形式存在,并且易于形成不溶性的氫氧化物和羥基氧化物,這是植物和微生物相對難以接觸和利用鐵的原因[53]。細菌通常通過分泌被稱為鐵載體的低分子量鐵螯合劑來獲得鐵。鐵載體通常是水溶性的,具有較高的鐵絡合結合常數(shù),可分為細胞外鐵載體和細胞內(nèi)鐵載體[54]。在細菌中,細菌膜上鐵載體復合物中的鐵(Fe3+)被還原成(Fe2+),F(xiàn)e2+通過連接內(nèi)膜和外膜的門控機制進一步從鐵載體釋放到細胞中,在該過程中,鐵載體可能被破壞或回收[53,55]。因此,鐵限制的情況下,鐵載體可以用作增加鐵的有效溶劑[56]。鐵載體不僅與鐵有關,而且與其他環(huán)境相關的重金屬(如鋁、鉻、銅、鈣、銦、鉛和鋅)和放射性核素(包括鈾和镎)可形成穩(wěn)定的絡合物[57],而這將增加可溶性金屬的濃度[53]。細菌分泌的分泌物有助于增加植物對有益金屬營養(yǎng)素的攝入,限制病原體獲取鐵營養(yǎng)[58]。植物通過不同的機制吸收細菌鐵載體中的鐵,例如鐵的螯合和釋放,鐵載體-鐵復合物的直接攝取,或通過配體交換反應[59]。因此,鐵載體對促進植物生長和減緩病原脅迫具有重要作用。此外,微生物產(chǎn)生的氨也可以直接或間接地幫助植物。土壤中氨的積累可導致土壤pH值增加,破壞微生物群落平衡,抑制了許多真菌孢子的萌發(fā),從而直接或間接地促進植物生長[45]。大量研究表明,芽孢桿菌具有分泌鐵載體和氨的能力。B. subtilis PSB能夠促進不溶性鋅和鉛的溶解,并且其對鉻具有高度抗性,具有還原高價鉻的能力。此外無論是否存在鉻,B. subtilis PSB都可以產(chǎn)生鐵載體和氨[6]。類似的,研究發(fā)現(xiàn)芽孢桿菌可以通過減少鉻污染土壤的毒性作用來刺激植物生長,表現(xiàn)為將六價鉻還原為三價鉻,從而有效降低鉻對植物的損害,顯著提高植物的新鮮生物量[60]。此外,一些研究表明,真菌和細菌可以復合大量的金屬陽離子,而具有這種特性的Bacillus weihenstephanensis SM3可以通過共享金屬負載來降低金屬的植物毒性作用,因為它具有生物吸附和生物積累能力[51]。
1.6 1-氨基環(huán)丙烷-1-羧酸酯(ACC)脫氨酶
盡管乙烯在植物的生長和發(fā)育中起著重要作用,但當乙烯濃度過高時,可能對植物有害,因為高濃度的乙烯會引起落葉和其他導致植物性能下降的細胞過程[7,61]。在脅迫條件下,植物內(nèi)源乙烯水平顯著增加,從而抑制植物的生長。研究表明,1-氨基環(huán)丙烷-1-羧酸酯(ACC)脫氨酶可以通過降低乙烯水平來減少干旱脅迫損傷,促進植物生長和發(fā)育[62]。此外,ACC脫氨酶可以緩解病原微生物(病毒、細菌和真菌等)以及重金屬、輻射、昆蟲捕食、高鹽濃度、極端溫度、高光強度等對植物的脅迫。芽孢桿菌ACC脫氨酶能夠分解ACC產(chǎn)生2-氧代丁酸酯和NH3,從而降低乙烯含量[63]。據(jù)報道,當植物接種具有ACC脫氨酶活性的芽孢桿菌后,植株根長和地上部分顯著增長,并且對N、P、K等各種營養(yǎng)素的吸收能力也明顯增加[62-64]。研究表明,B. subtilis AU-2和B. Pumilus AU-4均具有ACC脫氧酶活性,并且它們對ACC的降解能力為600~1 700 nmol α-KA/(mg Pr·h)[45]。據(jù)報道,油菜在接種DUC1、DUC2和DUC3這3種環(huán)狀芽孢桿菌后,其根顯著伸長,進一步研究發(fā)現(xiàn),這3種芽孢桿菌均具有ACC脫氨酶活性[7]。以上研究表明,具有ACC脫氨酶活性的芽孢桿菌可以有效促進植物的生長。
2 間接機制
2.1 誘導植物的系統(tǒng)抗性
一些根際細菌與植物根的相互作用可激發(fā)植物對一些致病細菌、真菌和病毒的抗性,這種現(xiàn)象稱為誘導系統(tǒng)抗性(induced systemic resistance,ISR)[65]。ISR包括植物內(nèi)的茉莉酸和乙烯信號傳導,而它們將刺激宿主植物對多種植物病原體的防御反應[66]。研究表明,芽孢桿菌可誘導植物對各種細菌和真菌病原體產(chǎn)生廣譜抗性[67]。從英國阿里格爾地區(qū)(Aligarh)附近的不同根際土壤和植物結節(jié)中共分離出72種細菌分離物,其中,芽孢桿菌被證明對Aspergillus、Fusarium和Rhizoctonia的一種或多種真菌具有廣譜抗性[68]。在生長室條件,對AP69(Bacillus altitudinis)、AP197(B. velezensis)、AP199(B. velezensis)和AP298(B. velezensis)4個PGPR系的試驗結果表明,它們對Xanthomonas campestris和Rhizoctonia solani均具有顯著拮抗作用。進一步分析發(fā)現(xiàn),這4種 PGPR系及其混合物對多種植物病害具有生物防治作用,并能促進植物生長[69]。研究表明,不同芽孢桿菌引起的ISR可以抵抗不同的病原體[70]。值得一提的是,即使在脅迫條件下,接種芽孢桿菌的植物體內(nèi)的ISR也高于非應激條件下的植物,從而使植物得到保護[12]。
2.2 產(chǎn)生抗生素
細菌可以分泌對其他微生物代謝有害的化合物。研究表明,屬于革蘭氏陽性細菌的多黏芽孢桿菌能夠促進植物生長,并產(chǎn)生各種抗生素[71]。從韓國大麥根部分離的P. polymyxa E681對大麥、黃瓜、辣椒、芝麻和擬南芥均具有顯著的生長促進作用,并且可以產(chǎn)生抗菌化合物以保護植物免受病原真菌、卵菌和細菌的侵害。進一步分析發(fā)現(xiàn),至少有6個抗生素生物合成基因簇,其中多黏菌素(pmx)被認為在抗革蘭氏陰性耐藥細菌方面具有卓越作用[72]。據(jù)報道,B. subtilis能夠產(chǎn)生多種抗生素,包括枯草桿菌蛋白酶、桿菌素、分枝桿菌素和羊毛硫抗生素,它們對革蘭氏陽性菌均具有很強的抗性[73-75]。B. thuringiensis(Bt)是當前農(nóng)業(yè)和醫(yī)藥領域中應對不同類型害蟲最成功的微生物殺蟲劑。Bt毒素基因能夠增強轉(zhuǎn)基因作物對害蟲的抗性,同時對線蟲、蚜蟲、螨蟲以及真菌等病原體的毒性具有拮抗作用[76]。
研究表明,芽孢桿菌CBSAL02菌株能夠顯著降低Meloidogyne javanica 和Ditylenchus spp.的活性,表明它可以有效地控制病害[77]。此外,研究還表明,每個芽孢桿菌抗生素家族均具有特異的抗菌活性[73]。以上結果表明,芽孢桿菌能夠通過產(chǎn)生抗生素來幫助植物對抗病害,從而促進植物的生長。
2.3 產(chǎn)生揮發(fā)性有機化合物
根際細菌釋放的揮發(fā)性有機化合物(volatile organic compounds,VOCs)可促進植物生長、抵御真菌病原體,是細菌刺激植物生長的重要機制之一。VOCs通常是低分子量的,包括醇、醛、酮、烴、酸和萜烯等物質(zhì),它們在常溫常壓下易于蒸發(fā)和擴散,可以通過大氣、多孔土壤和液體從產(chǎn)生部位轉(zhuǎn)移,使其成為理想的信息化學物質(zhì),能夠介導種間相互作用[78]。VOCs能夠賦予植物對干旱和重金屬等非生物脅迫的系統(tǒng)耐受性[79]。研究表明,VOCs通過ISR與植物防御機制密切相關[80]。B. amyloliquefaciens IN937a能夠通過其排放的VOCs刺激ISR的發(fā)生。從IN937a 的VOCs和衍生物中,研究者分離到一種昆蟲性信息素的組分(3-戊醇)。進一步分析發(fā)現(xiàn),3-戊醇處理能夠顯著降低由柑橘潰瘍病菌和黃瓜花葉病毒引起的病害[81]。類似的,研究者發(fā)現(xiàn),芽孢桿菌Bacillus JC03菌株產(chǎn)生的VOCs能顯著促進擬南芥和番茄的生物量積累[82]。
3 展望
芽孢桿菌通過不同機制(包括營養(yǎng)物的溶解和激素生成,產(chǎn)生各種可用于管理植物病蟲害的化合物等)促進植物生長,是一種高效的、環(huán)境友好的重要農(nóng)業(yè)措施。隨著人們對可持續(xù)農(nóng)業(yè)、環(huán)境保護和糧食安全的日益重視,開發(fā)有益的土壤微生物群成為當前農(nóng)業(yè)研究領域的焦點。
雖然有關芽孢桿菌促生方面的研究已取得一定進展,但是在某些方面仍需加強:(1)盡管有關芽孢桿菌一些促生機制在分子層面的研究已經(jīng)取得了一定的成果,但是仍然不夠全面,因此,通過基因工程技術對其促生機制展開全面深入的研究將有助于更加詳盡準確地闡明其促生機制;(2)當前有關芽孢桿菌的研究結果大多是在穩(wěn)定可控條件下表現(xiàn)良好,而在自然條件下表現(xiàn)卻不盡人意。因此,如何實現(xiàn)細菌在不同環(huán)境條件下穩(wěn)定表現(xiàn)也是亟待解決的問題之一;(3)一些在體外表現(xiàn)出良好PGP活性的芽孢桿菌在體內(nèi)試驗中卻不能表現(xiàn)出顯著的生防效果,這就需要對不同芽孢桿菌菌株的功能和適用性進行更多研究,從而為其在不同的農(nóng)業(yè)生態(tài)條件下的應用奠定基礎;(4)值得一提的是,使用不同PGPR結合的混合菌劑接種植物,可以獲得更好的促生效果,因此,闡明其中機制可為今后制備更加高效的促生菌肥提供支持。相信隨著研究的不斷深入,作為一種非常重要的PGPR,芽孢桿菌將在未來可持續(xù)農(nóng)業(yè)發(fā)展過程中扮演越來越重要的角色。
參考文獻:
[1]Aloo B N,Makumba B A,Mbega E R. The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability[J]. Microbiological Research,2019,219:26-39.
[2]Yu Y L,Chu X Q,Pang G H,et al. Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil[J]. Journal of Environmental Sciences,2009,21(2):179-185.
[3]Naqqash T,Hameed S,Imran A,et al. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria[J]. Frontiers in Plant Science,2016,7(583):144.
[4]Chandler D,Davidson G,Grant W P,et al. Microbial biopesticides for integrated crop management:an assessment of environmental and regulatory sustainability[J]. Trends in Food Science & Technology,2008,19(5):0-283.
[5]Ahemad M,Khan M S. Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis[J]. Bulletin of Environmental Contamination and Toxicology,2009,82(6):761-766.
[6]Khan M S,Zaidi A,Wani P A. Role of phosphate-solubilizing microorganisms in sustainable agriculture-A review[J]. Agronomy for Sustainable Development,2007,27(1):29-43.
[7]Bhattacharyya P N,Jha D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology & Biotechnology,2012,28(4):1327-1350.
[8]Glick B R. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica,2012:1-15.
[9]Prashar P,Kapoor N,Sachdeva S. Rhizosphere:its structure,bacterial diversity and significance[J]. Reviews in Environmental Science and Biotechnology,2014,13(1):63-77.
[10]Compant S,Duffy B,Nowak J,et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles,mechanisms of action,and future prospects[J]. Applied and Environmental Microbiology,2005,71(9):4951-4959.
[11]Zhou C,Guo J,Zhu L,et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms[J]. Plant Physiology and Biochemistry,2016,105(8):162-173.
[12]Shafi J,Tian H,Ji M. Bacillus species as versatile weapons for plant pathogens:a review[J]. Biotechnology & Biotechnological Equipment,2017,31(3):446-459.
[13]Wani P A,Khan M S. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils[J]. Food and Chemical Toxicology,2010,48(11):3262-3267.
[14]Kuan K B,Othman R,Rahim K A. Plant Growth-Promoting rhizobacteria inoculation to enhance vegetative growth,nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions[J]. PLoS One,2016,11(3):e0152478.
[15]Khan N,Bano A,Rahman M A,et al. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs[J]. Scientific Reports,2019,9(1):2097.
[16]Banerjee A,Biswas J K,Pant D,et al. Enteric bacteria from the earthworm (Metaphire posthuma) promote plant growth and remediate toxic trace elements[J]. Journal of Environmental Management,2019,250:109530.
[17]Wang C,Liu Z,Huang Y,et al. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.)[J]. Environmental Toxicology and Pharmacology,2019,72:103265.
[18]Jochum M D,McWilliams K L,Borrego E J,et al. Bioprospecting plant Growth-Promoting rhizobacteria that mitigate drought stress in grasses[J]. Frontiers in Microbiology,2019,10(9):2106.
[19]Khan N,Bano A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions[J]. PLoS One,2019,14(9):e0222302.
[20]Amna,Din B U,Sarfraz S,et al. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress[J]. Ecotoxicology and Environmental Safety,2019,183:109466.
[21]Irshad S,Xie Z,Wang J,et al. Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata[J]. Journal of Hazardous Materials,2020,381:120903.
[22]Borah A,Das R,Mazumdar R,et al. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics[J]. Journal of Applied Microbiology,2019,127(3):825-844.
[23]Mondal M,Biswas J K,Tsang Y F,et al. A wastewater bacterium Bacillus sp. KUJM2 acts as an agent for remediation of potentially toxic elements and promoter of plant (Lens culinaris) growth[J]. Chemosphere,2019,232:439-452.
[24]Ghosh D,Gupta A,Mohapatra S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana[J]. World Journal of Microbiology & Biotechnology,2019,35(6):90.
[25]Yang W. Components of rhizospheric bacterial communities of barley and their potential for plant growth promotion and biocontrol of Fusarium wilt of watermelon[J]. Brazilian Journal of Microbiology,2019,50(3):749-757.
[26]Tahir M,Ahmad I,Shahid M,et al. Regulation of antioxidant production,ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains[J]. Ecotoxicology and Environmental Safety,2019,178:33-42.
[27]Ansari F A,Ahmad I. Fluorescent pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes[J]. Scientific Reports,2019,9(1):4547.
[28]Hassan M K,Mcinroy J A,Jones J,et al. Pectin-Rich amendment enhances soybean growth promotion and nodulation mediated by bacillus velezensis strains[J]. Plants (Basel,Switzerland),2019,8(5):.
[29]Hashem A,Tabassum B,F(xiàn)athi Abd Allah E. Bacillus subtilis:A plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences,2019,26(6):1291-1297.
[30]Castellano-Hinojosa A,Pérez-Tapia V,Bedmar E J,et al. Purple corn-associated rhizobacteria with potential for plant growth promotion[J]. Journal of Applied Microbiology,2018,124(5):1254-1264.
[31]Weselowski B,Nathoo N,Eastman A W,et al. Isolation,identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide,biofertilization,biomass degradation and biofuel production[J]. BMC Microbiology,2016,16(1):244.
[32]Seefeldt L C,Hoffman B M,Dean D R. Electron transfer in nitrogenase catalysis[J]. Current Opinion in Chemical Biology,2012,16(1/2):19-25.
[33]Kim J,Rees D C. Nitrogenase and biological nitrogen fixation[J]. Biochemistry,1994,33(2):389-397.
[34]Ding Y,Wang J,Liu Y,et al. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region[J]. Journal of Applied Microbiology,2005,99(5):1271-1281.
[35]Gouda S,Kerry R G,Das G,et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research,2018,206:131-140.
[36]Xie G H,Su B L,Cui Z J. Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze River Valley [J]. Acta Microbiologica Sinica,1999,38(6):480-483.
[37]Jacqueline Gomez-Godinez L,Lizbeth Fernandez-Valverde S,Martinez Romero J C,et al. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs[J]. Systematic and Applied Microbiology,2019,42(4):517-525.
[38]Khan A G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation[J]. Journal of Trace Elements in Medicine and Biology,2005,18(4):355-364.
[39]Bjelic D,Marinkovic J,Tintor B A. Antifungal and plant growth promoting activities of indigenous rhizobacteria isolated from maize (Zea mays L.) rhizosphere[J]. Communications in Soil Science and Plant Analysis,2018,49(1):88-98.
[40]Bhattacharyya P,Bhattacharyya L H,Goswami M P. Perspective of benefi cial microbes in agriculture under changing climatic scenario:a review[J]. Journal of Phytology,2016,8:26-41.
[41]Marcino M L,Soares C R F S,Oliveira S M,et al. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils[J]. Plant & Soil,2012,357(1/20:289-307.
[42]Govindasamy V,Senthilkumar M,Magheshwaran V,et al. Bacillus and Paenibacillus spp.:Potential PGPR for sustainable agriculture[J]. Plant Growth and Health Promoting bacteria,2010,18:333-364.
[43]Wang T,Kong L Y,Jiao J G,et al. Effects of phosphate-solubilizing bacteria B1(Bacillus thuringiensis)on Peanuts in pot experiment[J]. Soils,2014,46(2):313-318.
[44]Han H S. Supanjani,lee K D. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber[J]. Plant Soil and Environment,2006,52(3):130-136.
[45]Pandey S,Gupta S,Ramawat N. Unravelling the potential of microbes isolated from rhizospheric soil of chickpea (Cicer arietinum) as plant growth promoter[J]. 3 Biotech,2019,9(7):277.
[46]Zhang H M,Xu M G,Zhang W J,et al. Factors affecting potassium fixation in seven soils under 15-year long-term fertilization[J]. Chinese Science Bulletin,2009,54(10):1773-1780.
[47]張愛民,李乃康,趙鋼勇,等. 土壤中解磷、解鉀微生物研究進展[J]. 河北大學學報(自然科學版),2015,35(4):442-448.
[48]Rashid M I,Mujawar L H,Shahzad T,et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils[J]. Microbiological Research,2016,183:26-41.
[49]García F P,Menéndez E,Rivas R. Role of bacterial biofertilizers in agriculture and forestry[J]. AIMS Bioengineering,2015,2(3):183-205.
[50]Spaepen S,Vanderleyden J,Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiology Reviews,2007,31(4):425-448.
[51]Fonseca E S,Peixoto R S,Rosado A S,et al. Correction to:the microbiome of eucalyptus Roots under different management conditions and its potential for biological nitrogen fixation[J]. Microbial Ecology,2018,75(1):183-191.
[52]Ghosh D,Gupta A,Mohapatra S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress[J]. Symbiosis,2019,77(3):265-278.
[53]Rajkumar M,Ae N,Prasad M N. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology,2010,28(3):142-149.
[54]Khan M S,Zaidi A,Wani P A,et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils[J]. Environmental Chemistry Letters,2009,7(1):1-19.
[55]Neilands J B. Siderophores:structure and function of microbial Iron transport compounds[J]. The Journal of Biological Chemistry,1995,270(45):26723-26726.
[56]Indiragandhi P,Anandham R,Madhaiyan M,et al. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera:Plutellidae)[J]. Current Microbiology,2008,56(4):327-333.
[57]Neubauer U,F(xiàn)urrer G,Kayser A,et al. Siderophores,NTA,and citrate:potential soil amendments to enhance heavy metal mobility in phytoremediation[J]. International Journal of Phytoremediation,2000,2(4):353-368.
[58]Chaiharn M,Chunhaleuchanon S,Lumyong S. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand[J]. World Journal of Microbiology & Biotechnology,2009,25(11):1919-1928.
[59]Schmidt W. Mechanisms and regulation of reduction-based iron uptake in plants[J]. New Phytologist,1999,141(1):1-26.
[60]Faisal M,Hasnain S. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants[J]. Letters in Applied Microbiology,2006,43(4):461-466.
[61]Arshad M,Saleem M,Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation[J]. Trends in Biotechnology,2007,25(8):356-362.
[62]Zahir Z A,Munir A,Asghar H N,et al. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas(Pisum sativum)under drought conditions[J]. Journal of Microbiology&Biotechnology,2008,18(5):958.
[63]Saleem M,Arshad M,Hussain S,et al. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture[J]. Journal of Industrial Microbiology & Biotechnology,2007,34(10):635-648.
[64]Nadeem S M,Zahir Z A,Naveed M,et al. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields[J]. Canadian Journal of Microbiology,2009,55(11):1302-1309.
[65]Fan B,Wang C,Song X,et al. Bacillus velezensis FZB42 in 2018:the gram positive model strain for plant growth promotion and Biocontrol[J]. Frontiers in Microbiology,2018,9(10):2491.
[66]Wu L,Huang Z,Li X,et al. Stomatal closure and SA-,JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by phytophthora nicotianae in nicotiana benthamiana[J]. Frontiers in Microbiology,2018,9:847.
[67]Kloepper J W,Ryu C M,Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp.[J]. Phytopathology,2004,94(11):1259-1266.
[68]Ahmad F,Ahmad I,Khan M S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J]. Microbiological Research,2008,163(2):173-181.
[69]Liu K,Mcinroy J A,Hu C H,et al. Mixtures of Plant-Growth-Promoting rhizobacteria enhance biological control of multiple plant diseases and Plant-Growth promotion in the presence of pathogens[J]. Plant Disease,2018,102(1):67-72.
[70]Tunsagool P,Leelasuphakul W,Jaresitthikunchai J,et al. Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A,fengycin,and surfactin on elicitation of defensive systems in Mandarin fruit during stress[J]. PLoS One,2019,14(5):e0217202.
[71]Cheffi M,Bouket A C,Alenezi F N,et al. Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes[J]. Microorganisms,2019,7(9):314.
[72]Jeong H,Choi S K,Ryu C M,et al. Chronicle of a soil bacterium:Paenibacillus polymyxa E681 as a tiny Guardian of plant and human health[J]. Frontiers in Microbiology,2019,10(3):467.
[73]Cawoy H,Bettiol W,F(xiàn)ickers P,et al. Bacillus-based biological control of plant diseases[J]. Pesticides in the Modern World-Pesticides Use and Management,2011:273-302.
[74]Leclère V,Béchet M,Adam A,et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organisms antagonistic and biocontrol activities[J]. Applied and Environmental Microbiology,2005,71(8):4577-4584.
[75]Stein T. Bacillus subtilis antibiotics:structures,syntheses and specific functions[J]. Molecular Microbiology,2005,56(4):845-857.
[76]Jouzani G S,Valijanian E,Sharafi R. Bacillus thuringiensis:a successful insecticide with new environmental features and tidings[J]. Applied Microbiology and Biotechnology,2017,101(7):2691-2711.
[77]Turatto M F,Dourado F D,Zilli J E,et al. Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp.[J]. Brazilian Journal of Microbiology,2017,49(1):54-58.
[78]del Rosario-Cappellari L,Chiappero J,Banchio E. Invisible signals from the underground:A practical method to investigate the effect of microbial volatile organic compounds emitted by rhizobacteria on plant growth[J]. Biochemistry and Molecular Biology Education,2019,47(4):388-393.
[79]Farag M A,Zhang H,Ryu C M. Dynamic chemical communication between plants and bacteria through airborne signals:induced resistance by bacterial volatiles[J]. Journal of Chemical Ecology,2013,39(7):1007-1018.
[80]Park H B,Lee B,Kloepper J W,et al. One shot-two pathogens blocked:exposure of Arabidopsis to hexadecane,a long chain volatile organic compound,confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae[J]. Plant Signaling & Behavior,2013,8(7):e24619.
[81]Choi H K,Song G C,Yi H S,et al. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper[J]. Journal of Chemical Ecology,2014,40(8):882-892.
[82]Lee S,Yap M,Behringer G,et al. Volatile organic compounds emitted by Trichoderma species mediate plant growth[J]. Fungal Biology and Biotechnology,2016,3(1):7.