梅迪華 杜國(guó)平
【摘要】 非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease,NAFLD)是指除外酒精、病毒感染及其他明確病因所致的以肝實(shí)質(zhì)細(xì)胞脂肪變性和脂肪貯積為主要特征的臨床病理綜合征。隨著人們生活水平的不斷提高,NAFLD的發(fā)病率明顯升高。目前NAFLD已成為世界上最常見(jiàn)的慢性肝臟疾病,嚴(yán)重威脅人們的健康,但其發(fā)病機(jī)制尚不明確。微小RNA(microRNA,miRNA)是長(zhǎng)度約為22個(gè)核苷酸的具有調(diào)控功能的內(nèi)源性非編碼RNA,miRNA與NAFLD中的脂質(zhì)代謝、胰島素抵抗、炎癥反應(yīng)、細(xì)胞凋亡、纖維化等環(huán)節(jié)有著密不可分的關(guān)系。本文主要就miRNA在NAFLD發(fā)生發(fā)展過(guò)程中發(fā)揮的重要作用做一綜述,以期未來(lái)成為NAFLD新的診斷指標(biāo)及治療靶點(diǎn)。
【關(guān)鍵詞】 microRNA 非酒精性脂肪性肝病 差異性表達(dá)
Advances in the Study of microRNA in Non-alcoholic Fatty Liver Disease/MEI Dihua, DU Guoping. //Medical Innovation of China, 2020, 17(02): -168
[Abstract] Non-alcoholic fatty liver disease (NAFLD) refers to a clinicopathic syndrome characterized by alcoholic, viral infection and other definite causes of hepatic parenchymal cell steatosis and fat storage. With the continuous improvement of peoples living standards, the incidence of NAFLD has increased significantly. At present, NAFLD has become the most common chronic liver disease in the world, which is a serious threat to peoples health, but its pathogenesis is still unclear. microRNA (miRNA) is endogenous non-coding RNA with regulatory functions, which is approximately 22 nucleotides in length. Studies have shown that miRNA has a close relationship with lipid metabolism, insulin resistance, inflammation, apoptosis, and fibrosis in NAFLD. This article reviews the important role of miRNA in the development of NAFLD, in the hope of becoming a new diagnostic indicator and therapeutic target for NAFLD in the future.
[Key words] microRNA Non-alcoholic fatty liver disease Differential expression
First-authors address: Graduate School of Guangdong Medical University, Zhanjiang 524000, China
doi:10.3969/j.issn.1674-4985.2020.02.042
非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease,NAFLD)是指除外酒精、病毒感染及其他明確病因所致的以肝實(shí)質(zhì)細(xì)胞脂肪變性和脂肪貯積為主要特征的臨床病理綜合征,疾病譜包括單純性脂肪肝(non-alcoholic simple fatty liver disease,NAFL)、非酒精性脂肪肝炎(non-alcoholic steatohepatitis,NASH)、肝硬化和肝癌[1]。近年來(lái),世界各地NAFLD發(fā)病率均在升高,全世界NAFLD的患病率為25.24%[2],其中北美洲24.1%,歐洲23.7%,NAFLD已成為世界上最常見(jiàn)的慢性肝臟疾病。隨著我國(guó)經(jīng)濟(jì)的不斷發(fā)展,人民生活水平的不斷提高,生活習(xí)慣和飲食結(jié)構(gòu)發(fā)生巨大改變,且NAFLD常常和肥胖、胰島素抵抗、2型糖尿病、脂代謝紊亂、高血壓等合并存在,使我國(guó)NAFLD的發(fā)病率大大提高,目前我國(guó)NAFLD患病率為20.09%,上海等華東地區(qū)NAFLD患病率竟高達(dá)43.3%[3],這對(duì)我國(guó)人民的健康造成巨大危害。
目前對(duì)NAFLD的發(fā)病機(jī)制尚不清楚,“二次打擊”學(xué)說(shuō)是目前受到廣泛認(rèn)同的經(jīng)典發(fā)病機(jī)制。第一次打擊與胰島素抵抗、脂質(zhì)代謝紊亂密切相關(guān)。游離脂肪酸在肝臟β-氧化的主要場(chǎng)所為線(xiàn)粒體、微粒體和過(guò)氧化物酶體。胰島素抵抗和高胰島素血癥促進(jìn)了外周脂肪組織釋放游離脂肪酸入肝,加速了肝細(xì)胞對(duì)游離脂肪酸的利用,促使了過(guò)量的甘油三酯在肝臟合成。而肝細(xì)胞對(duì)游離脂肪酸的過(guò)度攝入又會(huì)導(dǎo)致線(xiàn)粒體氧化磷酸化和脂質(zhì)β-氧化呈超負(fù)荷狀態(tài),極低密度脂蛋白合成或分泌減少,甘油三酯轉(zhuǎn)運(yùn)異常,加重肝臟脂肪堆積,導(dǎo)致肝細(xì)胞脂肪變性,形成單純性脂肪肝。在首次打擊的基礎(chǔ)上,產(chǎn)生大量的活性氧簇(reactive oxygen species,ROS),一方面當(dāng)ROS的產(chǎn)生及其作用超過(guò)肝細(xì)胞本身的抗氧化系統(tǒng)清除能力時(shí),便會(huì)誘導(dǎo)肝實(shí)質(zhì)細(xì)胞的氧化應(yīng)激反應(yīng),另一方面ROS與不飽和脂肪酸反應(yīng)形成大量的脂質(zhì)過(guò)氧化產(chǎn)物(lipid per oxide,LPO),LPO通過(guò)抑制線(xiàn)粒體呼吸鏈的電子傳遞,又會(huì)產(chǎn)生大量的ROS與LPO,形成惡性循環(huán),從而導(dǎo)致肝細(xì)胞炎癥反應(yīng)、凋亡、壞死,最終引起肝臟纖維化、肝硬化和肝細(xì)胞癌,此為“第二次打擊”[4]。然而,隨著研究的不斷深入,人們發(fā)現(xiàn)“兩次打擊假說(shuō)”已經(jīng)開(kāi)始過(guò)時(shí),因?yàn)樗蛔阋越忉孨AFLD中發(fā)生的所有分子和代謝變化。越來(lái)越多的人認(rèn)為,多種因素作用于患者以誘導(dǎo)NAFLD,這些因素包括胰島素抵抗、從脂肪組織分泌的激素、營(yíng)養(yǎng)因子、腸道菌群、遺傳和表觀(guān)遺傳因子等[5]。多種因素的聯(lián)合分析更能準(zhǔn)確地解釋NAFLD的發(fā)病機(jī)制,這種說(shuō)法被稱(chēng)為“多重打擊”假說(shuō)[6]。
微小RNA(microRNA,miRNA)是長(zhǎng)度約為22個(gè)核苷酸的具有調(diào)控功能的內(nèi)源性非編碼RNA,廣泛存在于真核生物中。成熟的miRNA由較長(zhǎng)的初級(jí)轉(zhuǎn)錄物經(jīng)過(guò)一系列核酸酶的剪切加工而產(chǎn)生,隨后組裝進(jìn)RNA誘導(dǎo)的沉默復(fù)合體(RNA-induced silencing complex),miRNA中5端中的“種子區(qū)域”通過(guò)堿基互補(bǔ)配對(duì)的方式識(shí)別靶mRNA的3非翻譯區(qū)(3-UTR),并根據(jù)配對(duì)互補(bǔ)程度的不同指導(dǎo)沉默復(fù)合體降解靶mRNA或者阻遏靶mRNA的翻譯。miRNA具有廣泛的生物調(diào)節(jié)功能,與機(jī)體生長(zhǎng)發(fā)育、細(xì)胞代謝、增殖、分化、凋亡、腫瘤形成等密切相關(guān)[7]。最近研究表明,miRNA與NAFLD中的脂質(zhì)代謝、胰島素抵抗、炎癥反應(yīng)、細(xì)胞凋亡等環(huán)節(jié)有著密不可分的關(guān)系[8]。本文主要就miRNA在NAFLD發(fā)生發(fā)展過(guò)程中發(fā)揮的重要作用做一綜述,以期未來(lái)成為NAFLD新的診斷指標(biāo)及治療靶點(diǎn)。
1 NAFLD發(fā)展過(guò)程中miRNA的表達(dá)譜變化
多項(xiàng)研究表明,NAFLD中存在miRNA的差異性表達(dá),Cheung等[9]通過(guò)對(duì)比15例NASH患者及15例健康者的肝組織中miRNA的基因譜芯片數(shù)據(jù)分析,并采用逆轉(zhuǎn)錄PCR(RT-PCR)對(duì)芯片結(jié)果進(jìn)行驗(yàn)證,提示包括miR-34a和miR-146b的23種
miRNA表達(dá)上調(diào),包括miRNA-122在內(nèi)的23種miRNA表達(dá)下調(diào)。此外,在NAFLD發(fā)生發(fā)展的不同階段,miRNA的差異性表達(dá)情況也各不相同。Miyaaki等[10]在NAFLD患者的肝臟和血清中檢測(cè)miR-122,發(fā)現(xiàn)其在單純脂肪肝變性或者NASH中表達(dá)明顯上調(diào),且與肝細(xì)胞脂肪變性嚴(yán)重程度呈正相關(guān)。但在肝纖維化中miR-122表達(dá)明顯下調(diào),與肝纖維化嚴(yán)重程度呈負(fù)相關(guān),揭示了miR-122在NAFLD不同的病變發(fā)展階段,表達(dá)水平也存在差異。見(jiàn)表1。
2 miRNA參與調(diào)節(jié)NAFLD的研究進(jìn)展
通過(guò)對(duì)NAFLD中miRNA差異性表達(dá)的進(jìn)一步研究,研究人員發(fā)現(xiàn)miRNA參與到調(diào)控NAFLD的各個(gè)病理改變過(guò)程,尤其是miRNA-34a、miRNA-122、miRNA-29、miRNA-21等與NAFLD中葡萄糖及脂質(zhì)代謝、氧化應(yīng)激、炎癥反應(yīng)的發(fā)生發(fā)展過(guò)程密切相關(guān)[8]。下面就以上miRNA近幾年來(lái)對(duì)NAFLD發(fā)病的具體調(diào)控機(jī)制做一闡述。
2.1 miRNA-34a 大量研究表明,miRNA-34a可能參與到NAFLD中脂質(zhì)代謝、氧化應(yīng)激、凋亡等相關(guān)信息通路中[22-25]。在NAFLD中miR-34a與沉默信息調(diào)節(jié)因子1(SIRT1)相關(guān)。SIRT1是一種依賴(lài)于NAD的去乙酰化酶,作為NAD的主要代謝傳感器,在包括NAFLD在內(nèi)的代謝疾病中起著至關(guān)重要的作用。Castro等[22]研究發(fā)現(xiàn),miR-34a通過(guò)抑制SIRT1表達(dá),促進(jìn)p53乙酰化作用及轉(zhuǎn)錄,使促凋亡基因puma增加,從而參與肝細(xì)胞的凋亡,即miR-34a/SIRT1/p53通路參與調(diào)控肝細(xì)胞凋亡過(guò)程。
p66shc是SHCA適配器分子的一個(gè)異構(gòu)體,是一種氧化還原酶,參與促進(jìn)線(xiàn)粒體氧化信號(hào)的凋亡。Shan等[23]發(fā)現(xiàn),在高脂肪飲食大鼠體內(nèi)及膽酸誘導(dǎo)的肝細(xì)胞中,過(guò)表達(dá)的miR-34a通過(guò)抑制SIRT1表達(dá),增加了p66shc的表達(dá)水平,促進(jìn)ROS的氧化應(yīng)激反應(yīng),誘導(dǎo)細(xì)胞凋亡。而鼠尾草酸(carnosic acid,CA)通過(guò)抑制miR-34a/SIRT1/p66shc信號(hào)通路,導(dǎo)致Caspase-3水平明顯降低,Bcl-XL上調(diào),對(duì)NAFLD肝細(xì)胞凋亡起到保護(hù)作用。
過(guò)氧化物酶體增殖物激活受體(peroxisome proliferators-activated receptors,PPARs)作為核激素受體家族中的一員,具有調(diào)控細(xì)胞代謝的作用,而PPARα作為PPARs其中的一個(gè)亞型,主要在肝臟中調(diào)控脂肪酸(FA)代謝酶和線(xiàn)粒體FA氧化(FAO)活性基因的組成轉(zhuǎn)錄,通過(guò)激活線(xiàn)粒體和過(guò)氧化物酶體脂肪酸β-氧化途徑,實(shí)現(xiàn)對(duì)脂質(zhì)的轉(zhuǎn)運(yùn)和代謝調(diào)節(jié)。Ding等[24]發(fā)現(xiàn),PPARα作為miR-34a的直接靶向目標(biāo)基因,在使用miR-34a抑制劑后其蛋白表達(dá)水平上調(diào),通過(guò)誘導(dǎo)CPT1和CPT2(均參與脂肪酸β-氧化),SLC27A1、SLC27A4和ACBD3(均參與脂肪酸轉(zhuǎn)運(yùn))等脂質(zhì)代謝基因的轉(zhuǎn)錄,導(dǎo)致甘油三酯及肝臟指數(shù)的下調(diào),激活A(yù)MPK通路,最終PPARα和pAMPKα1的表達(dá)上調(diào)增加了脂肪氧化,即miR-34a-PPARα-AMPK途徑參與到NAFLD脂肪變性的調(diào)節(jié)過(guò)程。
此外,miR-34a-HNF4α(肝細(xì)胞核因子4α)通路也能調(diào)節(jié)肝臟和血漿的脂質(zhì)代謝[25]。miR-34a通過(guò)結(jié)合到3UTR的第二個(gè)結(jié)合位點(diǎn),抑制HNF4α的表達(dá),并以一種依賴(lài)HNF4α的方式抑制VLDL的分泌,導(dǎo)致肝臟甘油三酯積累,引起脂肪變性。同時(shí)該通路引起血漿中甘油三酯及膽固醇的減少,對(duì)動(dòng)脈粥樣硬化起到一定的預(yù)防和保護(hù)血管的作用。
2.2 miRNA-122 miRNA-122是肝臟中表達(dá)最豐富的微小RNA,約占肝臟miRNA的70%。miRNA-122是肝臟中脂質(zhì)代謝的關(guān)鍵因素。在HepG2細(xì)胞的體外研究中發(fā)現(xiàn),miR-122的沉默導(dǎo)致脂質(zhì)代謝基因,例如脂肪酸合成酶(FAS)、HMGCR還原酶、固醇結(jié)合元件結(jié)合蛋白(SREBP)等表達(dá)的上調(diào)[10]。Miyaaki等[10]發(fā)現(xiàn)miR-122在單純脂肪肝變性或者NASH中表達(dá)明顯上調(diào),且與肝細(xì)胞脂肪變性嚴(yán)重程度呈正相關(guān)。CYP7A1是膽固醇合成膽汁酸的限速酶。在慢病毒介導(dǎo)的抑制miR-122表達(dá)的肝細(xì)胞中,CYP7A1表達(dá)上調(diào),從而增加膽汁酸的產(chǎn)生并降低肝細(xì)胞中的膽固醇水平,表明肝臟膽固醇水平的降低可能繼發(fā)于miR-122的抑制,miR-122是膽固醇代謝的關(guān)鍵調(diào)節(jié)因子[26]。除此之外,miR-122還能介導(dǎo)控制AMPK和PPAR家族等晝夜節(jié)律代謝調(diào)節(jié)因子的表達(dá),調(diào)節(jié)脂質(zhì)代謝,而miR-122基因的轉(zhuǎn)錄本身發(fā)生在晝夜節(jié)律中,表明miR-122、晝夜節(jié)律基因表達(dá)和肝臟脂質(zhì)代謝之間存在聯(lián)系[27]。
同時(shí)miR-122在NAFLD的炎癥反應(yīng)及纖維化中起著關(guān)鍵作用。白細(xì)胞介素-1A(IL-1A)是一種與炎癥反應(yīng)相關(guān)的多向性細(xì)胞因子,它分為DD、ID及Ⅱ三種基因型,其中DD基因型攜帶者中的血清IL-1A高于攜帶ID和Ⅱ基因型NAFLD患者。研究發(fā)現(xiàn),miRNA-122表達(dá)水平與血清IL-1A呈正相關(guān),miR-122通過(guò)調(diào)控?cái)y帶高風(fēng)險(xiǎn)DD基因型的IL-6基因的轉(zhuǎn)錄水平,參與NAFLD的炎癥反應(yīng),增加了個(gè)體患上NAFLD的風(fēng)險(xiǎn)[28]。Bandiera等[27]研究表明,表達(dá)miR-122基因缺失的小鼠,在補(bǔ)充了miR-122后能夠抑制趨化因子CCL2,從而減少在肝內(nèi)募集CD11bhiGr1+的炎癥細(xì)胞及促纖維化Krüppel樣因子6(KLF6)的表達(dá),改善炎癥反應(yīng)。Hossein等[26]發(fā)現(xiàn)在慢病毒介導(dǎo)的抑制miR-122表達(dá)的多細(xì)胞三維人肝器官模型中,庫(kù)普弗細(xì)胞(Kupffer cell,KC)能促進(jìn)各種炎癥因子(IL-1b、IL-12、TNF-α)和促纖維化細(xì)胞因子(如CCL2、CCL3、CCL5)的分泌,導(dǎo)致進(jìn)一步的肝細(xì)胞損傷和損傷相關(guān)分子模式(DAMP)的釋放,誘導(dǎo)加強(qiáng)KCs、肝星狀細(xì)胞(hepatic stellate cell,HSC)活化并引發(fā)炎癥及纖維化反應(yīng)。以上說(shuō)明,miR-122除了對(duì)肝臟脂質(zhì)代謝產(chǎn)生重要影響,對(duì)NASH和肝纖維化也起著關(guān)鍵作用。
此外,缺失miR-122的小鼠易于快速發(fā)展為脂肪性肝炎、纖維化和肝癌[29]。而miR-122可以結(jié)合Wnt1 mRNA的30-UTR進(jìn)行抑制,下調(diào)Wnt1、β連環(huán)蛋白和TCF-4的蛋白水平,抑制Wnt信號(hào)通路,達(dá)到促進(jìn)細(xì)胞凋亡的目的。這表明HCC中miR-122的缺失可能導(dǎo)致過(guò)量的Wnt信號(hào)通路傳導(dǎo),肝臟miR-122的失調(diào)有助于NAFLD向HCC發(fā)展[30]。
2.3 miRNA-29 miRNA-29家族是胰腺及肝臟中表達(dá)最豐富的miRNA之一。據(jù)報(bào)道,miR-29是糖尿病的早期標(biāo)志物,在小鼠模型的胰腺中,miR-29協(xié)同上調(diào)miR-29a-c,隨后抑制Bcl-2家族蛋白的抗凋亡因子mcl-1,使胰島b細(xì)胞發(fā)生凋亡,形成1型糖尿病[31]。Pandey等[32]發(fā)現(xiàn),在糖尿病小鼠肝臟中,miR-29a水平明顯升高,它通過(guò)靶向抑制胰島素信號(hào)級(jí)聯(lián)中的上游分子PI3K(磷酸肌醇-3-激酶)的表達(dá),以及阻斷胰島素信號(hào)下游AKT(蛋白激酶B)磷酸化途徑,形成胰島素抵抗。而胰島素抵抗是NAFLD的發(fā)病機(jī)制之一,這意味著miR-29家族可能是通過(guò)胰島素抵抗途徑參與NAFLD發(fā)生發(fā)展的關(guān)鍵因素。
Duan等[33]研究表明,遠(yuǎn)程缺血預(yù)處理(remote ischemic preconditioning,RIPC)對(duì)NAFLD肝臟缺血再灌注損傷(ischemia and reperfusion,IR)有保護(hù)作用,具體機(jī)制為RIPC降低了骨骼肌中miR-29a/b/c的表達(dá)水平,而miR-29a/b/c通過(guò)直接針對(duì)誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)的3-UTR而下調(diào)iNOS的表達(dá),減少一氧化氮的產(chǎn)生。因此,筆者推測(cè)miR-29家族也能調(diào)控NAFLD中氧化應(yīng)激產(chǎn)物基因的轉(zhuǎn)錄水平,參與到肝臟的氧化應(yīng)激反應(yīng)過(guò)程。
陳軼等[34]發(fā)現(xiàn)miR-29b在NAFLD肝纖維化、肝硬化患者血清中的表達(dá)明顯下降,提示miR-29b與NAFLD纖維化過(guò)程密切相關(guān)。Wang等[35]研究發(fā)現(xiàn),miR-29b在人和小鼠纖維化肝組織和原代活化的肝星狀細(xì)胞(HSC)中顯著下調(diào),Smad3通過(guò)與miR-29b啟動(dòng)子結(jié)合,介導(dǎo)TGF-β1誘導(dǎo)miR-29b下調(diào)。而下調(diào)的miR-29b又能抑制Smad3表達(dá),減輕對(duì)TGF-β1及TGF-β1誘導(dǎo)的促纖維化基因表達(dá)的抑制作用,進(jìn)而放大TGF-β1引起的纖維化信號(hào)。此外,miR-29b通過(guò)下調(diào)p-smad 3、α-sma、Ⅰ型膠原和TIMP-1蛋白表達(dá),對(duì)HSC的活化產(chǎn)生抑制作用,同時(shí)miR-29b通過(guò)直接靶向PIK3R1及AKT3的3TR區(qū)域,抑制他們的下游效應(yīng)子α-SMA和Ⅰ型膠原的表達(dá),從而誘導(dǎo)細(xì)胞凋亡??傊琺iR-29b通過(guò)抑制PI3K/AKT途徑抑制HSC活化和誘導(dǎo)HSC凋亡。雖然這些調(diào)控機(jī)制不是在NAFLD模型中闡明,但鑒于NAFLD也存在肝纖維化、肝硬化進(jìn)程,提示miR-29b也可能在NAFLD向肝硬化發(fā)展的過(guò)程中起作用,其作用的靶點(diǎn)也有可能是一致的。
2.4 miRNA-21 最近研究發(fā)現(xiàn),miRNA-21與NAFLD中的糖脂代謝、炎癥反應(yīng)、纖維化以及發(fā)展成為腫瘤等過(guò)程有著密切的關(guān)系[36-40]。Benhamouche-Trouillet等[36]發(fā)現(xiàn),敲除了miR-21基因的小鼠肝臟中,葡萄糖耐量以及胰島素抵抗得到明顯改善,具體機(jī)制可能是miR-21的缺乏使雷帕霉素不敏感的mTOR伴侶(RICTOR)和胰島素受體底物2(IRS2)的上調(diào)和信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活因子3(STAT3)和AKT蛋白質(zhì)含量以及磷酸化的增加。Rodrigues等[37]研究表明,miR-21的下調(diào)可能導(dǎo)致PPARα的增加,同時(shí)參與奧貝膽酸激活法尼醇受體(farnesoid X receptor,F(xiàn)XR)的過(guò)程,降低甘油三酯和游離脂肪酸的水平。Li等[38]在HepG2細(xì)胞中轉(zhuǎn)染miR-21模擬物后,發(fā)現(xiàn)低密度脂蛋白受體相關(guān)蛋白6(low-density lipoprotein receptor-related protein 6,LRP6)在mRNA和蛋白質(zhì)水平的轉(zhuǎn)錄和翻譯受到抑制,而miR-21的減少使LRP6的表達(dá)水平上升。同時(shí)miR-21模擬物在HepG2細(xì)胞中的轉(zhuǎn)染也引發(fā)關(guān)鍵的脂質(zhì)代謝酶表達(dá),包括乙酰輔酶A羧化酶1(ACC1)、硬脂酰輔酶A去飽和酶(1SCD1)、固醇調(diào)節(jié)元件結(jié)合蛋白1(SREBP1)和肝X受體α(LXRα),最終誘導(dǎo)脂質(zhì)產(chǎn)生。Wu等[39]在高脂肪飲食處理的小鼠肝臟和用脂肪酸孵育的人HepG2細(xì)胞中,發(fā)現(xiàn)HMG盒轉(zhuǎn)錄因子1(HMG-box transcription factor 1,
HBP1)是miR-21的新靶點(diǎn)和p53的轉(zhuǎn)錄激活因子,而p53是抑制Srebp1c的腫瘤抑制因子和脂肪生成抑制劑。miR-21的減少導(dǎo)致HBP1和p53的增加,從而減少脂肪生成并延遲G1/S轉(zhuǎn)換,抑制肝癌發(fā)生發(fā)展。即miR-21通過(guò)與Hbp1-p53-Srebp1c途徑相互作用促進(jìn)肝臟脂質(zhì)積聚和癌癥進(jìn)展。曹海軍等[40]研究發(fā)現(xiàn),與正常大鼠肝臟相比,隨著肝纖維化的進(jìn)展,肝纖維化大鼠模型組肝臟的miR-21的表達(dá)水平逐漸上升,Smad7的表達(dá)水平逐漸下降,且miR-21與Smad7呈負(fù)相關(guān)的關(guān)系,揭示了miR-21經(jīng)TGF-β1/Smad7信號(hào)通路參與肝纖維化的發(fā)生。
3 展望
隨著人民生活水平的不斷提升,NAFLD的發(fā)病率急劇上升,但其發(fā)病機(jī)制尚不明確,且沒(méi)有被批準(zhǔn)用于治療NAFLD的藥物。miRNA在多種肝臟疾病中均扮演著重要角色,最近研究表明,miRNA參與調(diào)控NAFLD中葡萄糖及脂質(zhì)代謝、氧化應(yīng)激、炎癥反應(yīng)、肝纖維化、肝硬化及肝癌等過(guò)程[8]。雖然mi-RNA種類(lèi)繁多,調(diào)控NAFLD的具體作用機(jī)制尚不完善,但隨著對(duì)miRNA研究的不斷深入,未來(lái)將為NAFLD診斷及治療提供一種新的思路和手段。從異常表達(dá)的miRNA了解NAFLD的發(fā)展程度,同時(shí)miRNA作為NAFLD的治療靶點(diǎn)達(dá)到治療疾病的目的。
參考文獻(xiàn)
[1] Ullah R,Rauf N,Nabi G,et al.Role of Nutrition in the Pathogenesis and Prevention of Non-alcoholic Fatty Liver Disease: Recent Updates[J].International Journal of Biological Sciences,2019,15(2):265-276.
[2] Araújo A R,Rosso N,Bedogni G,et al.Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future[J].Liver International,2018,38(S1):47-51.
[3] Zhai H L,Wang N J,Han B,et al.Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: a cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China))[J].British Journal of Nutrition,2016,115(8):1352-1359.
[4] Chen Z W,Chen L Y,Dai H L,et al.Relationship between alanine aminotransferase levels and metabolic syndrome in nonalcoholic fatty liver disease[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2008,9(8):616-622.
[5] Chi Z C.Pathogenesis of non-alcoholic fatty liver disease[J].World Chinese Journal of Digestology,2017,25(8):670-683.
[6] Lonardo A,Nascimbeni F,Maurantonio M,et al.Nonalcoholic fatty liver disease: Evolving paradigms[J].World Journal of Gastroenterology,2017,23(36):6571-6592.
[7] Zhu M,Wang Q,Zhou W,et al.Integrated analysis of hepatic mRNA and miRNA profiles identified molecular networks and potential biomarkers of NAFLD[J].Scientific Reports,2018,8(1):7628-7629.
[8] Su Q, Kumar V,Sud N,et al.Role of MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis[J].Advanced Drug Delivery Reviews,2018,129:54-63.
[9] Cheung O,Min P H,Puri P,et al.Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression[J].Hepatology,2010,48(6):1810-1820.
[10] Miyaaki H,Ichikawa T,Kamo Y,et al.Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease[J].Liver International,2014,34(7):e302-e307.
[11] Nie J,Li C,Li J,et al.Analysis of non-alcoholic fatty liver disease microRNA expression spectra in rat liver tissues[J].Molecular Medicine Reports,2018,18(3):2669-2680.
[12]麥靜愔,陳天陽(yáng),成揚(yáng).高脂飲食誘導(dǎo)非酒精性脂肪性肝病小鼠模型肝臟microRNA表達(dá)譜的變化分析[J].臨床肝膽病雜志,2017,33(12):2372-2375.
[13] Feng Y Y,Xu X Q,Ji C B,et al.Aberrant Hepatic MicroRNA Expression in Nonalcoholic Fatty Liver Disease[J].Cellular Physiology and Biochemistry,2014,34(6):1983-1997.
[14]王清蘭,李俊霞,呂靖,等.CCl4誘導(dǎo)的小鼠纖維化肝組織微小RNA差異表達(dá)譜及初步功能分析[J].中國(guó)病理生理雜志,2013,29(12):2201-2211.
[15] Feng X,Tan W,Cheng S,et al.Upregulation of microRNA-126 in Hepatic Stellate Cells May Affect Pathogenesis of Liver Fibrosis Through the NF-κB Pathway[J].Dna & Cell Biology,2015,34(7):470-480.
[16] Murakami Y,Toyoda H,Tanaka M,et al.The Progression of Liver Fibrosis Is Related with Overexpression of the miR-199 and 200 Families[J].PLoS One,2011,6(1):e16081-e16088.
[17] Noetel A,Kwiecinski M,Elfimova N,et al.MicroRNA are central players in anti-and profibrotic gene regulation during liver fibrosis[J].Frontiers in Physiology,2012,3(3):49-54.
[18] Jeongeun H,Jungwook P,Sihyung W,et al.MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus[J].International Journal of Molecular Sciences,2016,17(6):961-981.
[19] Tu X,Zhang H,Zhang J,et al.MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway[J].Journal of Pathology,2015,234(1):46-59.
[20] Lu L,Wang J,Lu H,et al.MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study[J].Biochemical and Biophysical Research Communications,2015,465(3):387-393.
[21] Li W Q,Chen C,Xu M D,et al.The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats[J].Febs Journal,2011,278(9):1522-1532.
[22] Castro R E,F(xiàn)erreira D M,Afonso M B,et al.miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease[J].Journal of Hepatology,2013,58(1):119-125.
[23] Shan W,Gao L,Zeng W,et al.Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease[J].Cell Death and Disease,2015,6(7):e1833-e1841.
[24] Ding J,Li M,Wan X,et al.Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease[J].Scientific Reports,2015,5(1):13729-13738.
[25] Xu Y,Zalzala M,Xu J,et al.A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipoprotein metabolism[J].Nature Communications,2015,6(1):7466-7476.
[26] Hossein S,Ivy M,Meimei W,et al.miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling[J].PLoS One,2018,13(7):e0200847-e0200863.
[27] Bandiera S,Pfeffer S,Baumert T F,et al.miR-122—a key factor and therapeutic target in liver disease[J].Journal of Hepatology,2015,62(2):448-457.
[28] Abdel-Hamed A R,Mesbah N M,Ghattas M H,et al.Serum miRNA-122 expression in non-alcoholic fatty liver disease among Egyptian patients and its correlation with interleukin-1A gene polymorphism[J].Meta Gene,2017,14(12):19-23.
[29] Hsu S,Wang B,Kota J,et al.Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver[J].Journal of Clinical Investigation,2012,122(8):2871-2883.
[30] Yuan T,Myth M,Pengyuan Y,et al.Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis[J].Cancers,2016,8(8):76-85.
[31] Slusarz A,Pulakat L.The two faces of miR-29[J].Journal of Cardiovascular Medicine,2015,16(7):480-490.
[32] Pandey A K,Verma G,Vig S,et al.miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells[J].Molecular & Cellular Endocrinology,2011,332(1-2):125-133.
[33] Duan Y F,Sun D L,Chen J,et al.MicroRNA-29a/b/c targets iNOS and is involved in protective remote ischemic preconditioning in an ischemia-reperfusion rat model of non-alcoholic fatty liver disease[J].Oncology Letters,2017,13(3):1775-1782.
[34]陳軼,韓向陽(yáng),陳益耀,等.非酒精性脂肪肝大鼠miR-33水平變化及臨床意義[C]//中國(guó)轉(zhuǎn)化醫(yī)學(xué)和整合醫(yī)學(xué)研討會(huì)(廣州站),2015.
[35] Wang J,Chu E,Chen H,et al.microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway[J].Oncotarget,2015,6(9):7325-7338.
[36] Benhamouche-Trouillet S,Postic C.Emerging role of miR-21 in non-alcoholic fatty liver disease[J].Gut,2016,65(11):1781-1783.
[37] Rodrigues P M,Afonso M B,Sim?o A L,et al.miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice[J].Cell Death and Disease,2017,8(4):e2748.
[38] Li C P,Li H J,Nie J,et al.Mutation of miR-21 targets endogenous lipoprotein receptor-related protein 6 and nonalcoholic fatty liver disease[J].Am J Transl Res,2017,9(2):715-721.
[39] Wu H,Ng R,Chen X,et al.MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway[J].Gut,2016,65(11):1850-1860.
[40]曹海軍,王牡丹,李善高,等.大鼠肝纖維化形成過(guò)程中肝組織miR-21、miR-29b、TGF-β1、Smad3及Smad7水平的動(dòng)態(tài)變化[J].中國(guó)中西醫(yī)結(jié)合消化雜志,2016,24(12):911-915.
(收稿日期:2019-11-12) (本文編輯:張爽)
①?gòu)V東醫(yī)科大學(xué)研究生學(xué)院 廣東 湛江 524000
②南方醫(yī)科大學(xué)順德醫(yī)院
通信作者:杜國(guó)平
中國(guó)醫(yī)學(xué)創(chuàng)新2020年2期