劉娟 陳中鈞 賴倉隆
摘? 要:文章采用基于密度泛函理論的第一性原理方法研究摻雜Y的Sr1-xYxAl2Si2(x=0,0.25,0.5和0.75)的晶體結(jié)構(gòu)、電子性質(zhì)和光學(xué)性質(zhì)。研究發(fā)現(xiàn)摻雜Y的SrAl2Si2晶體結(jié)構(gòu)發(fā)生了明顯的壓縮,Sr0.5Y0.5Al2Si2發(fā)生了相變,由三方晶系轉(zhuǎn)變?yōu)閱涡本?。此外,能帶結(jié)構(gòu)的計算表明,SrAl2Si2是一種半金屬,在導(dǎo)帶和價帶之間有很小的重疊。摻雜Y原子后,SrAl2Si2從半金屬向金屬轉(zhuǎn)變,并且隨著摻雜濃度從x=0.25,0.5到0.75,其金屬性逐漸增強,這與態(tài)密度(DOS)的計算結(jié)果一致。這些結(jié)果表明,通過提高Y的摻雜濃度,SrAl2Si2基合金的熱電性能很可能得到進一步的改善。最后,計算并分析了摻雜Y的Sr1-xYxAl2Si2(x=0,0.25,0.5和0.75)晶體的介電函數(shù)、能量損失譜和反射譜,得出Sr1-xYxAl2Si2是一種前景較好的介電材料,并且在20-30 eV能量范圍內(nèi)是良好的紫外透光材料。
關(guān)鍵詞:第一性原理計算;Sr1-xYxAl2Si2;結(jié)構(gòu);電子性質(zhì);光學(xué)性質(zhì)
中圖分類號:O469? ? ? ? ? 文獻標(biāo)志碼:A? ? ? ? ?文章編號:2095-2945(2020)14-0001-07
Abstract: The First-Principles methods are used to study the structural, electronic and optical properties of the Y-doped Sr1-xYxAl2Si2(x=0, 0.25, 0.5 and 0.75). Indeed, the structure was compressed evidently for Y-doped SrAl2Si2, and a structural transition was observed from trigonal to monoclinic configuration for Sr0.5Y0.5Al2Si2. Besides, the structure calculations revealed that SrAl2Si2 undergo semimetal to metal-like transition and the metallic characteristics was enhanced with increasing Y content from x=0.25, 0.5 to 0.75, which is consistent with the density of states (DOS). Finally, the dielectric function, absorption spectrum, energy-loss spectrum and reflectivity were calculated and analyzed for Y-doped SrAl2Si2 crystals, which shows that it is a promising dielectric material and UV-transparent material around the range (20-30 eV).
Keywords: First-Principles calculation; Sr1-xYxAl2Si2; structure; electronic properties; optical properties
1 概述
以過渡金屬或堿性稀土金屬為主要組成部分的硅化物,由于具備多種優(yōu)良的物理特性而受到了廣泛關(guān)注。[1-2]近年來,有研究表明態(tài)密度在費米能級處存在贗能隙的半導(dǎo)體(或半金屬)化合物,通常具有特殊的電子性質(zhì),具備成為性能優(yōu)良的熱電材料的潛力,[3]這使得該類材料成為研究熱點。Kauzlarich等人[4]通過實驗證明,SrAl2Si2態(tài)密度的費米能級處存在贗能隙,這使其有望成為優(yōu)良的候選熱電材料;然而純SrAl2Si2的熱電性能并不理想,這是因為在室溫下它的電阻率(ρ≈8mΩ cm)和熱導(dǎo)率(k≈4W/mK)都較大。如何降低電阻率和導(dǎo)熱率以獲得良好的熱電性能是研究人員面臨的兩個主要挑戰(zhàn)。早先,Lue等人[5]在實驗和理論計算中將Y摻雜到SrAl2Si2中Sr的位置,發(fā)現(xiàn)Sr1-xYxAl2Si2(0≤x≤0.2)的電阻率顯著減小,并指出這與摻雜修正了SrAl2Si2的電子能帶結(jié)構(gòu)有關(guān)。但是,到目前為止還沒有關(guān)于更高濃度的Y摻雜SrAl2Si2的電子性質(zhì)和光學(xué)性質(zhì)的理論研究。所以,本文計算并分析了Sr1-xYxAl2Si2(x=0,0.25,0.5和0.75)材料的結(jié)構(gòu)、電子和光學(xué)性質(zhì)。
4 結(jié)論
本文采用DFT-GGA的計算方法研究了Sr1-xYxAl2Si2 (x=0,0.25,0.5和0.75) 的晶體結(jié)構(gòu)、電子性質(zhì)和光學(xué)性質(zhì)。Y原子的摻入使得SrAl2Si2晶體結(jié)構(gòu)被壓縮,并且當(dāng)摻雜濃度x=0.5時,晶體結(jié)構(gòu)從三角結(jié)構(gòu)轉(zhuǎn)變?yōu)閱涡苯Y(jié)構(gòu)。能帶結(jié)構(gòu)和態(tài)密度的計算結(jié)果表明,本征SrAl2Si2屬于半金屬材料,摻雜Y原子后轉(zhuǎn)變?yōu)榻饘伲⑶译S著摻雜濃度的增大體系費米能級處的態(tài)密度逐漸增大、費米能級上移,這使得其金屬性不斷增強。這一研究結(jié)果為提高SrAl2Si2材料的熱電優(yōu)值提供了一個新思路,使該材料體系成為更具吸引力的候選熱電材料。最后,通過對比分析幾種不同摻雜濃度的介電函數(shù)、吸收光譜、反射譜、能量損失譜,得出摻雜Y后的SrAl2Si2材料不僅是前景很好的介電材料,在20~30eV能量范圍內(nèi)還是一種好的紫外透光材料。
參考文獻:
[1]Sakai A , Ishii F , Onose Y , et al. Thermoelectric Power in Transition-Metal Monosilicides[J]. Journal of the Physical Society of Japan, 2007, 76(9):093601.
[2]Denisov D V , Shantsev D V , Galperin Y M , et al. Onset of Dendritic Flux Avalanches in Superconducting Films[J]. Physical review letters, 2006, 97(7):p.077002.1-077002.4.
[3]Mahan G D , Sofo J O . The best thermoelectric[J]. Proceedings of the National Academy of Sciences, 1996, 93(15):7436-7439.
[4]Kauzlarich, et al.Structure and high-temperature thermoelectric properties of SrAl2Si2[J]. journal of solid state chemistry, 2009, 182(2):240-245.
[5]Lue C S , Fang C P , Abhyankar A C , et al. Electronic structure and transport properties of SrAl2Si2: Effect of yttrium substitution[J]. intermetallics, 2011, 19(10):1448-1454.
[6]Hammer B , Hansen L B , N?Rskov J K . Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59(11):7413-7421.
[7]Segall M D , Pickard C J , Shah R , et al. Population analysis in plane wave electronic structure calculations[J]. Molecular physics, 1996, 89(2):p.571-577.
[8]Brutti S , Nguyen-Manh D , Pettifor D G . Lattice stability of Ca, Sr and Yb disilicides[J]. Intermetallics, 2006, 14(12):1472-1486.
[9]Z. J. Chen, M. S. Yu, T. H. Chen. First-principles study of the structural, electronic, and optical properties of Y-doped SrSi2[J]. Journal of Applied Physics, 2013, 113(4):043515.1-043515.5.
[10]Kim H , Auyeung R C Y , Ollinger M , et al. Laser-sintered mesoporous TiO2electrodes for dye-sensitized solar cells[J]. Applied Physics A, 2006, 83(1):73-76.
[11]Tang L C , Huang J Y , Chang C S , et al. New infrared nonlinear optical crystal CsGeBr3: Synthesis, structure and powder second-harmonic generation properties[J]. Journal of Physics Condensed Matter, 2005, 17(17):217-7275.
[12]G.Q. Huang, R.D. Miao. Electronic structure and electron-phonon interaction in YAl2Si2[J]. physica b condensed matter, 2007, 391(1):174-178.
[13]Imai Y , Watanabe A . Energetic and the electronic structural consideration of the 13th Group element (Ga and In) impurity doping to control the conductivity of BaSi2[J]. Intermetallics, 2007, 15(10):8219-8225.
[14]Ehrenreich H , Cohen M H . Self-Consistent Field Approach to the Many-Electron Problem[J]. Physical Review, 1959, 115(4):786-790.
[15]Toll JS . Causality and the Dispersion Relation: Logical Foundations[J]. Physical Review, 1956, 104(6):1760-1770.
[16]Singleton J , Rabe K M . Band Theory and Electronic Properties of Solids[J]. Physics Today, 2002, 55(12):61-62.