崔恒榮,秦 雅,卞瑋章
(中國船舶集團有限公司第八研究院,南京 211153)
具有機械穩(wěn)定平臺的三軸穩(wěn)定系統(tǒng)采用縱、橫搖及方位伺服系統(tǒng)控制一個機械穩(wěn)定平臺,使其在艦船搖擺時保持水平穩(wěn)定,其中縱搖控制確保機械穩(wěn)定平臺相對于艦船縱搖保持穩(wěn)定,橫搖控制確保機械穩(wěn)定平臺相對于艦船橫搖保持穩(wěn)定;方位伺服系統(tǒng)控制安裝在機械平臺上的方位轉(zhuǎn)臺以保證雷達方位指向相對于正北穩(wěn)定。實際應(yīng)用中,縱搖和橫搖控制必須采用閉環(huán)控制才能滿足控制精度要求。由于艦船縱、橫搖姿態(tài)角的幅值和周期均呈現(xiàn)出非線性和時變不確定性,其速度和加速度皆隨艦船運動而變化。為保證控制精度和控制系統(tǒng)穩(wěn)定性,PID控制參數(shù)必須根據(jù)艦船運動的變化而實時調(diào)整。當天線方位轉(zhuǎn)速范圍較寬且艦船姿態(tài)角變化劇烈時,采用人工細分的參數(shù)整定難以取得較為理想的控制效果。
常規(guī)的PID控制具有算法簡單、穩(wěn)定性好、可靠性高等特點,適用于各種線性定常系統(tǒng)。但是,對于負載時變、干擾因素復(fù)雜的對象,要獲得理想的控制效果需要對PID的各個參數(shù)不斷進行在線調(diào)整。模糊控制能夠充分利用專家經(jīng)驗進行實時非線性調(diào)節(jié),具有魯棒性好、適應(yīng)性強且便于軟件實現(xiàn)等優(yōu)點。本文將模糊控制與PID控制相結(jié)合,構(gòu)建基于模糊自適應(yīng)的PID復(fù)合控制器。實際應(yīng)用表明,本控制器能夠取得較好的控制品質(zhì),且無須對控制參數(shù)進行人工細分。
模糊控制是一種基于規(guī)則的控制。它直接采用語言型控制規(guī)則,利用了現(xiàn)場控制經(jīng)驗或?qū)<抑R,在設(shè)計中不需要建立被控對象的精確數(shù)學(xué)模型,且控制機理和策略易于接受與理解?;谀P偷目刂扑惴ǎ捎谄涑霭l(fā)點和性能指標的不同,容易導(dǎo)致較大誤差。而基于語言型控制規(guī)則的算法擁有相對的獨立性,利用控制規(guī)律間的模糊連接可以使控制效果優(yōu)于常規(guī)控制器。模糊控制對于數(shù)學(xué)模型非常適用于難以獲取、動態(tài)特性不易掌握或變化非常顯著的對象。在艦載雷達三軸穩(wěn)定控制中,由于艦船運動的不確定性和時變性,采用模糊控制理論可以充分發(fā)揮其模糊控制作用,使整個控制系統(tǒng)取得較好的控制效果。
根據(jù)模糊論域的離散性或連續(xù)性,隸屬函數(shù)可以取成分離的或連續(xù)函數(shù)的形式。當模糊論域取連續(xù)值時,隸屬函數(shù)表示為
當模糊論域取離散值時,則可以表示為
實際應(yīng)用中根據(jù)下式選取合適的隸屬函數(shù):
f(x)=exp(-|ax-b| r)
其中,a=1、b=0,根據(jù)r的不同取值可以近似于三角形、梯形或高斯型等函數(shù),如圖1所示。
圖1 普適隸屬函數(shù)圖形
經(jīng)過模糊邏輯推理后輸出模糊集合。由于它是多條規(guī)則得出的結(jié)論的綜合,需要對其進行清晰化,一般采用重心法、面積平分法、最大隸屬度法來實現(xiàn)。當論域為離散論域時,則模糊輸出的重心法計算方法為
式中,論域u={u1,u2,…,un}是離散論域,uj處的隸屬度為A(uj),u為面積中心對應(yīng)的橫坐標。
自適應(yīng)模糊控制器結(jié)構(gòu)如圖2所示。把輸入PID控制器的參數(shù)誤差e(k)和誤差變化率ec(k)同時輸入到模糊控制器中,分別對3個參數(shù)KP、KI、KD進行調(diào)節(jié)。圖中的模糊控制器由3個二維模糊控制器組成,其中二維模糊控制器采用雙輸入三輸出的模式,經(jīng)過模糊、近似推理、清晰化后,把得出的修正量Δkp、Δki、Δkd分別輸入PID控制器中,對PID控制器系數(shù)進行實時在線修正。
控制誤差
e(k)=r(k)-y(k)
誤差變化率
ec(k)=e(k)-e(k-1)
PID控制算法為
u(k)=u(k-1)+kp[e(k)-e(k-1)]+kie(k)+kd
[e(k)-2e(k-1)+e(k-2)]
圖2 自適應(yīng)模糊PID控制器結(jié)構(gòu)
控制誤差e和誤差變化率ec的變化范圍定義為模糊集上的論域:
e,ec={-5,-4,-3,-2,-1,0,1,2,3,4,5}
其模糊子集定義為
e,ec={NB,NM,NS,0,PS,PM,PB}
子集中元素分別代表負大、負中、負小、零、正小、正中、正大。
誤差、誤差變化率與PID控制器3個參數(shù)KP、KI、KD間的模糊控制規(guī)則如表1、表2、表3所示。表中,縱軸為偏差e,橫軸為偏差變化率ec。
表1 KP的模糊規(guī)則表
表3 KD的模糊規(guī)則表
e、ec、KP、KI、KD均服從正態(tài)分布,得出各個子集的隸屬度。根據(jù)各模糊子集的隸屬度賦值表和各參數(shù)模糊控制模型,應(yīng)用模糊合成推理設(shè)計PID參數(shù)的模糊矩陣表,查找修正參數(shù)帶入下式,完成參數(shù)的修正過程。
kp=k′p+{ei,eci}p
ki=k′i+{ei,eci}i
kd=k′d+{ei,eci}d
艦載雷達三軸穩(wěn)定控制系統(tǒng)工作原理如圖3所示。接口模塊接收上位機發(fā)送的操控命令及導(dǎo)航系統(tǒng)發(fā)送的艦船姿態(tài)信號(縱搖、橫搖、航向及航速),解碼后發(fā)送至方位控制模塊及平臺控制模塊,同時接收控制模塊發(fā)送的控制信息及故障、狀態(tài)信息,編碼后發(fā)送至上位機。方位控制模塊根據(jù)操控要求完成方位閉環(huán)控制,可實現(xiàn)方位環(huán)掃、扇掃、定位及跟蹤功能。平臺控制模塊完成縱、橫搖兩軸穩(wěn)定控制,確保機械穩(wěn)定平臺縱、橫搖相對于艦船縱、橫搖保持穩(wěn)定。
圖3 三軸穩(wěn)定系統(tǒng)控制原理
(1) 方位轉(zhuǎn)臺控制
基于模糊自整定的方位轉(zhuǎn)臺位置閉環(huán)復(fù)合控制如圖4所示。圖中,轉(zhuǎn)臺慣量2 600 kg·m2,速比65.45,速度15 r/min,加速度0.35 rad/s2,輸入給定信號rin為方位控制角度信號,參考零位為正北零位,艦船航向H和轉(zhuǎn)臺舷角Ac(參考零位為艦艏)之和構(gòu)成輸入負反饋信號A。閉環(huán)控制的反饋參數(shù)輸入模糊控制器,經(jīng)過模糊、推理得到實時控制參數(shù)供PID控制器使用。同時,取方位給定值構(gòu)成速度前饋算法來降低方位控制實時誤差,確保控制精度滿足要求。以方位控制15 r/min(90°/s)環(huán)掃為例,其控制結(jié)果如圖5所示。從圖5可以看出,天線方位運動平穩(wěn)且控制誤差較小。
(2) 穩(wěn)定平臺控制
對于有機械穩(wěn)定平臺的三軸伺服系統(tǒng),平臺控制即為縱、橫搖控制。當艦船艦艏向上運動時,縱搖控制系統(tǒng)使機械穩(wěn)定平臺的縱搖軸向下運動, 從而確保機械穩(wěn)定平臺縱搖相對于艦船縱搖保持穩(wěn)定。當艦船左舷向上運動時,橫搖控制系統(tǒng)使機械穩(wěn)定平臺的橫搖軸左舷向下運動,從而確保機械穩(wěn)定平臺橫搖相對于艦船橫搖保持穩(wěn)定,反之亦然。兩者的控制方式完全一樣,如圖6所示。
圖4 基于模糊自適應(yīng)的方位轉(zhuǎn)臺控制
圖5 方位控制曲線及控制實時誤差
圖6 基于模糊自適應(yīng)的平臺縱/橫搖控制
以橫搖控制為例,其慣量3 100 kg·m2,速比1 292,慣性力矩2 300 Nm,峰值角速度0.146 rad/s,峰值角加速度0.096 rad/s2,輸入給定信號rin為艦船橫搖R的負值(-R),機械穩(wěn)定平臺的橫搖R′為閉環(huán)控制系統(tǒng)的反饋信號。閉環(huán)控制的反饋參數(shù)輸入模糊控制器,經(jīng)過模糊推理得到實時控制參數(shù)供PID控制器使用。同時,取橫搖給定值構(gòu)成速度前饋算法來降低橫搖控制實時誤差,確??刂凭葷M足要求。設(shè)定艦船橫搖輸出為幅值20°、周期9.5 s的正弦波信號,其控制結(jié)果如圖7所示。從圖7可以看出,橫搖運動平穩(wěn)且誤差控制在合理范圍之內(nèi)。
圖7 橫搖控制曲線及控制實時誤差
艦載雷達穩(wěn)定平臺縱搖、橫搖控制隨艦船姿態(tài)角的變化呈現(xiàn)出非線性和時變不確定性,采用常規(guī)PID控制需要進行人為的參數(shù)辨識劃分,且參數(shù)整定困難效果不理想。本文針對此問題提出的采用模糊控制與PID控制相結(jié)合的解決方法,即基于模糊控制的PID參數(shù)在線自整定,能夠?qū)崟r對參數(shù)進行整定,具有較強的實用性。應(yīng)用表明,采用該控制方法的雷達穩(wěn)定平臺能夠有效滿足控制系統(tǒng)的設(shè)計要求。