• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      煙粉虱MEAM1隱種主要內(nèi)共生菌的定位和分布

      2020-06-08 09:41陳吉強(qiáng)張毅波張桂芬
      植物保護(hù) 2020年2期

      陳吉強(qiáng) 張毅波 張桂芬

      摘要 煙粉虱MEAM 1隱種是一種重要的世界性入侵害蟲(chóng),共生菌在其種群入侵和擴(kuò)張中起著不可忽視的作用。本研究采用熒光原位雜交技術(shù)(FISH),明確其攜帶的初生共生菌(Candidatus Portiera aleyrodidarum)和次生共生菌(Candidatus Hamiltonella defensa和Rickettsia sp.)在不同發(fā)育階段蟲(chóng)體中的定位和分布。結(jié)果顯示,煙粉虱MEAM 1隱種卵、若蟲(chóng)和成蟲(chóng)3個(gè)階段均攜帶3種共生菌,Portiera和Hamiltonella菌集中分布于含菌細(xì)胞中,其中Hamiltonella呈環(huán)形包裹于含菌細(xì)胞周邊;Rickettsia既在菌胞中呈“集中”分布,也“隨機(jī)”分布于蟲(chóng)體其他部位或器官。上述結(jié)果明確了這3種共生菌在MEAM 1煙粉虱各個(gè)發(fā)育階段的分布特征,同時(shí)證明3種共生菌均能通過(guò)煙粉虱雌蟲(chóng)垂直傳播,為進(jìn)一步揭示內(nèi)共生菌在煙粉虱入侵過(guò)程中的作用打下基礎(chǔ)。

      關(guān)鍵詞 煙粉虱; 共生菌; 熒光原位雜交; 垂直傳播

      中圖分類(lèi)號(hào): S 433.3 ?文獻(xiàn)標(biāo)識(shí)碼: A ?DOI: 10.16688/j.zwbh.2019072

      Abstract Bemisia tabaci (Gennadius) MEAM 1 is one of the most devastating invasive pests worldwide and its endosymbionts play an important role in the invasion and expansion of this pest insect. In this study, the fluorescence in situ hybridization (FISH) was used to identify the localization and distribution of the primary endosymbiont (Candidatus Portiera aleyrodidarum) and the secondary endosymbionts (Candidatus Hamiltonella defensa and Rickettsia sp.) in different developmental stages of B.tabaci MEAM 1. Three symbiotic bacteria were found in the eggs,nymphs,and adults of B.tabaci MEAM 1. Among them, Portiera and Hamiltonella were located inside the bacteriocytes and Hamiltonella around the bacteriocyte. Rickettsia was located both inside the bacteriocyte and randomly distributed in other parts or organs. These results revealed the distribution characteristics of the three endosymbionts in different developmental stages of B.tabaci MEAM 1, and provided evidence that all the three endosymbionts are vertically transmitted through the female of B.tabaci, and thus lay a foundation for further understanding the roles of endosymbionts in the invasion of B.tabaci.

      Key words Bemisia tabaci; endosymbionts; fluorescence in situ hybridization; vertically transmitted

      煙粉虱Bemisia tabaci (Gennadius)屬半翅目Hemiptera,粉虱科Aleyrodidae,是一種典型高度多食性的取食植物韌皮部汁液的世界性入侵害蟲(chóng)。煙粉虱通過(guò)直接取食為害植物每年可導(dǎo)致數(shù)億美元的經(jīng)濟(jì)損失,還可傳播100多種植物病毒及分泌蜜露污染植物[1-4]。煙粉虱被認(rèn)為是一個(gè)獨(dú)特的,由超過(guò)35種形態(tài)上難以區(qū)分的隱種組成的復(fù)合種[5-9]。煙粉虱隱種以前被稱(chēng)為生物型,其中在我國(guó)分布最廣泛的入侵種是B型和Q型,而B(niǎo)型也被稱(chēng)為“中東-小亞細(xì)亞1”隱種(MEAM 1)或者Bemisia argentifolii,Q型也被稱(chēng)為“地中海”隱種(MED)[10]。在過(guò)去的30年里,這兩個(gè)隱種在世界范圍造成了巨大的農(nóng)業(yè)損失[11-12]。

      煙粉虱MEAM 1隱種在20世紀(jì)90年代中期傳入我國(guó),并且很快取代了中國(guó)本地種,而MED隱種于2003年第一次在我國(guó)云南昆明的觀(guān)賞性植物一品紅上被檢測(cè)到[13]。之后,MED隱種在許多省市和區(qū)域逐漸取代了MEAM 1隱種。從2008年起,在我國(guó)大部分地區(qū)的煙粉虱種群變成了以MED隱種為主[14-15];而煙粉虱MEAM 1隱種主要分布于我國(guó)長(zhǎng)江以南和西南沿海地區(qū),包括廣東、福建、浙江等省份,另外新疆、甘肅和遼寧等地區(qū)也零星分布[4]。MEAM 1隱種具有較高的入侵能力和競(jìng)爭(zhēng)力,MED隱種的入侵性較差,但其具有較強(qiáng)的抗藥性[16-18]。有研究表明雙重感染Rickettsia-Arsenophonus菌或Wolbachia-Arsenophonus菌的MED煙粉虱對(duì)啶蟲(chóng)脒、噻蟲(chóng)嗪、吡蟲(chóng)啉和螺甲螨酯的抗藥性較高[19]。這可能是MED隱種取代MEAM 1隱種成為我國(guó)主要入侵煙粉虱的原因之一。近年來(lái),也有研究者認(rèn)為,共生菌在煙粉虱種群擴(kuò)散和入侵方面發(fā)揮了重要作用,因此,可把內(nèi)共生菌作為對(duì)象來(lái)研究其對(duì)煙粉虱不同隱種的生物學(xué)特性、入侵能力及隱種間取代的影響[20-21]。

      煙粉虱體內(nèi)的共生菌分為初生內(nèi)共生菌和次生內(nèi)共生菌。初生內(nèi)共生菌為“Candidatus Portiera aleyrodidarum”,能夠?yàn)槠涮峁┚S持生命所需的必需氨基酸和類(lèi)胡蘿卜素來(lái)彌補(bǔ)取食韌皮部汁液所缺乏的營(yíng)養(yǎng)[22-24]。此外,不同煙粉虱隱種通常還含有不同的次生內(nèi)共生菌,因此,煙粉虱復(fù)合種中可能含有一種或多種次生內(nèi)共生菌,目前已在煙粉虱復(fù)合種中發(fā)現(xiàn)了7屬/種次生內(nèi)共生菌,分別命名為Candidatus Hamiltonella defensa、Candidatus Wolbachia spp.、Arsenophonus spp.、Candidatus Cardinium hertigii、Candidatus Fritschea bemisiae、Rickettsia sp.和Candidatus Hemipteriphilus asiaticus[25-29]。目前對(duì)煙粉虱次生內(nèi)共生菌的研究主要集中在其傳播方式、分布形式以及功能上[20,25,30-34]。煙粉虱次生內(nèi)共生菌的功能主要表現(xiàn)在提高煙粉虱的適合度(包括產(chǎn)卵量、存活率和性比偏雌性)[32-33]、高溫耐受性和提高番茄黃化曲葉病毒(TYLCV)的傳播速率[34]以及增加煙粉虱的抗藥性[35]等方面。煙粉虱次生內(nèi)共生菌是一個(gè)復(fù)雜的群體,其可隨物種、寄主植物和地理分布的不同而變化[32]。例如,以色列的MEAM 1隱種攜帶有Hamiltonella和Rickettsia菌,而MED隱種則攜帶Rickettsia、Wolbachia和Arsenophonus菌,但Cardinium和Fritschea菌在這兩個(gè)隱種中均未檢測(cè)到,并且鼠尾草上的MED隱種中Rickettsia和Arsenophonus菌的感染率顯著高于其他寄主植物上的MED隱種[36]。在我國(guó),除了Fritschea菌外,Wolbachia、Rickettsia、Hamiltonella、Cardinium和Arsenophonus菌在MEAM 1和MED隱種中均能檢測(cè)到,其中Hamiltonella菌在兩個(gè)種群中的感染率均最高,Arsenophonus卻相反,并且Wolbachia、Rickettsia和Hamiltonella的感染率在MEAM 1中顯著高于MED隱種,而在MEAM 1中,Cardinium的感染率卻顯著低于MED隱種[21]。

      目前,針對(duì)我國(guó)煙粉虱MEAM1隱種體內(nèi)主要共生菌的定位和分布還不是很清楚。本研究選取我國(guó)境內(nèi)的煙粉虱MEAM 1隱種為對(duì)象,采用熒光原位雜交技術(shù)(fluorescence in situ hybridization,簡(jiǎn)稱(chēng)FISH技術(shù)),明確煙粉虱MEAM1隱種體內(nèi)3種主要內(nèi)共生菌Portiera、Hamiltonella和Rickettsia的具體定位和分布,研究結(jié)果將為進(jìn)一步揭示內(nèi)共生菌對(duì)煙粉虱生活史和入侵能力的影響打下基礎(chǔ)。

      1 材料與方法

      1.1 供試?yán)ハx(chóng)

      試驗(yàn)使用的原始種群于2017年采自中國(guó)甘肅酒泉。參照羅晨等[37]的方法,采用分子方法對(duì)種群進(jìn)行鑒定,確定為MEAM 1隱種,同時(shí)建立室內(nèi)種群。

      1.2 供試植物

      寄主植物為棉花Gossypium spp.,品種為‘創(chuàng)優(yōu)棉168。將種子播種至塑料花盆中,每盆3粒,并置于大型養(yǎng)蟲(chóng)籠中,保證寄主植物的清潔。培養(yǎng)條件:28℃±2℃,相對(duì)濕度:70%~80%。待棉花長(zhǎng)出4~6片葉時(shí)供試。

      1.3 試驗(yàn)方法

      1.3.1 探針的制備

      本試驗(yàn)所使用的不同共生菌的探針序列如下:初生內(nèi)共生菌Portiera:5′-Cy3-TGTCAGTGTCAGCCCAGAAG-3′,次生內(nèi)共生菌Rickettsia:5′-Cy5-TCCACGTCGCCGTCTTGC-3′,Hamiltonella:5′- Cy5-CCAGATTCCCAGACTTTACTCA-3′[38],探針由生工生物工程(上海)股份有限公司合成。

      1.3.2 各階段蟲(chóng)態(tài)的收集

      在顯微鏡下用解剖針?lè)謩e挑取卵、不同齡期若蟲(chóng)100頭,用吸蟲(chóng)管取成蟲(chóng)若干頭,置于1.5 mL的離心管中,3個(gè)重復(fù)。卵從卵柄部位進(jìn)行挑取,其他齡期若蟲(chóng)從蟲(chóng)體一側(cè)進(jìn)行挑取。

      1.3.3 原位雜交

      首先將收集的樣本分別置于適量Carnoy固定液中過(guò)夜處理,然后棄掉固定液;用50%乙醇漂洗3次;加入200 μL Triton X-100(細(xì)胞滲透液),金屬浴35℃,30 min,然后棄掉細(xì)胞滲透液;加入400 μL蛋白酶K,金屬浴56℃,30 min,然后棄掉蛋白酶K;加入適量的Carnoy固定液固定過(guò)夜,棄掉后加入200 μL含有6% H2O2的乙醇溶液4℃過(guò)夜處理;用雜交緩沖液洗滌3次,加入100 μL雜交緩沖液和50 μL 10 pmol/mL熒光探針,金屬浴60℃,避光處理24 h;雜交緩沖液洗滌2次。

      采用LSM T-PMT Carl Zeiss蔡司激光共聚焦顯微880觀(guān)察拍照,Carl Zeiss蔡司照片處理軟件ZEN 2012對(duì)照片進(jìn)行處理。

      2 結(jié)果與分析

      2.1 煙粉虱MEAM 1隱種中Portiera和Hamiltonella的定位 ?經(jīng)FISH檢測(cè)Portiera和Hamiltonella在煙粉虱MEAM 1隱種卵(圖1)、若蟲(chóng)(圖2)和成蟲(chóng)(圖3)3個(gè)階段均有分布,且兩種共生菌均“集中”分布于含菌細(xì)胞內(nèi),其中Portiera聚集分布于含菌細(xì)胞的中心部位,Hamiltonella呈環(huán)形包裹于含菌細(xì)胞周邊。

      2.2 煙粉虱MEAM1隱種攜帶Portiera和Rickettsia的定位 ?經(jīng)FISH檢測(cè)發(fā)現(xiàn)Portiera和Rickettsia在煙粉虱MEAM 1隱種各蟲(chóng)態(tài)均有分布,初生內(nèi)共生菌Portiera“集中”分布于含菌細(xì)胞內(nèi),次生內(nèi)共生菌Rickettsia分布在含菌細(xì)胞內(nèi),也“隨機(jī)”分布于蟲(chóng)體其他部位或器官的兩種分布類(lèi)型(圖4~6)。

      3 討論

      煙粉虱的初生內(nèi)共生菌Portiera集中分布于含菌細(xì)胞中,能夠?yàn)闊煼凼a(bǔ)充植物韌皮部汁液中缺失的營(yíng)養(yǎng)物質(zhì),比如類(lèi)胡蘿卜素等。Gottlieb等[38]證實(shí)以色列的MEAM 1隱種和MED隱種的初生內(nèi)共生菌均集中分布于含菌細(xì)胞中。Singh等[39]發(fā)現(xiàn)印度的Asia Ⅰ和Asia Ⅱ兩個(gè)隱種均攜帶有初生內(nèi)共生菌且均集中分布于含菌細(xì)胞中。我們的試驗(yàn)結(jié)果與前人的研究結(jié)果是一致的。

      次生內(nèi)共生菌Hamiltonella也廣泛分布于不同的煙粉虱隱種和不同地理種群中。在我國(guó),除了幾種煙粉虱本地隱種外,入侵煙粉虱MEAM 1和MED兩種隱種均攜帶有此種內(nèi)共生菌[40]。本研究結(jié)果發(fā)現(xiàn)入侵我國(guó)的煙粉虱MEAM 1隱種攜帶的次生共生菌Hamiltonella分布于含菌細(xì)胞中但呈環(huán)形分布,包裹在初生共生菌的周邊。Su等[41]發(fā)現(xiàn)我國(guó)煙粉虱MED種群攜帶有次生內(nèi)共生菌Hamiltonella,且通過(guò)原位雜交技術(shù)證實(shí)該菌的分布特征跟初生共生菌Portiera類(lèi)似,主要分布于含菌細(xì)胞中。Gottlieb等[38]和Singh等[39]均在不同煙粉虱隱種和不同地理種群中發(fā)現(xiàn)類(lèi)似的結(jié)果。

      本研究發(fā)現(xiàn),煙粉虱MEAM 1隱種攜帶的Rickettsia不僅存在于含菌細(xì)胞中,還隨機(jī)分布于其他不同的器官和部位,證明Rickettsia在MEAM 1隱種中的分布包含“集中”分布和“隨機(jī)”分布兩種不同類(lèi)型。類(lèi)似地,Gottlieb等[25]對(duì)MEAM1 煙粉虱中不同發(fā)育階段的Rickettsia進(jìn)行了定位觀(guān)察,發(fā)現(xiàn)在卵期、若蟲(chóng)期以及成蟲(chóng)期均有分布。蛹期煙粉虱的Rickettsia主要存在腸道中,成蟲(chóng)期主要分布于腹部和腸道附近,集中分布于中腸中,推測(cè)其可能在食物消化過(guò)程中發(fā)揮作用;此外,Rickettsia還隨機(jī)分布于寄主全身[25]。然而,Brumin等[31]利用電子熒光顯微鏡來(lái)研究Rickettsia入侵的特性,發(fā)現(xiàn)除含菌細(xì)胞外,煙粉虱的消化器官、唾液腺、生殖器官均被感染;同時(shí)觀(guān)察到類(lèi)似Rickettsia的信號(hào)附著在菌胞外表面并可能被菌胞吞噬,該現(xiàn)象與Munderloh和Kurtti[42]所報(bào)道的Rickettsia能通過(guò)引起吞噬泡的形成而頻繁地在寄主細(xì)胞和組織之間移動(dòng)的結(jié)論一致。總之,昆蟲(chóng)體內(nèi)Rickettsia的分布研究為未知的細(xì)菌-昆蟲(chóng)間特殊相互作用和可能的傳播途徑提供了線(xiàn)索。

      共生菌在寄主中的傳播方式主要有水平傳播和垂直傳播兩種。Caspi-Fluger等[30]研究發(fā)現(xiàn)Rickettsia菌可以通過(guò)寄主轉(zhuǎn)移到植物韌皮部細(xì)胞中,植物作為Rickettsia菌水平傳播的儲(chǔ)存器介導(dǎo)了昆蟲(chóng)與共生菌之間的水平傳播。而煙粉虱體內(nèi)攜帶的內(nèi)共生菌的垂直傳播與含菌細(xì)胞有密切聯(lián)系。Himler等[20]研究發(fā)現(xiàn)Rickettsia菌在煙粉虱體內(nèi)通過(guò)母代垂直傳播率達(dá)到99.17%,在同一寄主植物上,感染Rickettsia菌的雄蟲(chóng)與未感染的雌蟲(chóng)之間沒(méi)有水平傳播。Brumin等[31]研究發(fā)現(xiàn)Rickettsia菌沒(méi)有分布在含菌細(xì)胞內(nèi),而是通過(guò)早期侵入卵母細(xì)胞并存在于卵泡細(xì)胞和細(xì)胞質(zhì)中,待卵子成熟后,它大部分被排除在外,然而,一些細(xì)菌細(xì)胞留在卵子中,確保它們轉(zhuǎn)移到后代。Rickettsia菌的垂直傳播主要由卵母細(xì)胞介導(dǎo)而不是含菌細(xì)胞。初生內(nèi)共生菌Portiera和次生內(nèi)共生菌Hamiltonella存在于含菌細(xì)胞內(nèi)[38-39],并通過(guò)煙粉虱雌蟲(chóng)由含菌細(xì)胞垂直傳遞給子代。本研究結(jié)果證明3種共生菌均能通過(guò)煙粉虱雌蟲(chóng)垂直傳播給子代,但是垂直傳播的過(guò)程和機(jī)制有待一進(jìn)步研究。

      利用熒光原位雜交技術(shù)對(duì)煙粉MEAM1隱種攜帶的初生內(nèi)共生菌Portiera和次生內(nèi)共生菌Hamiltonella和Rickettsia定位研究表明,在煙粉虱各個(gè)發(fā)育階段,3種內(nèi)共生菌均有分布,其中Portiera和Hamiltonella集中分布于含菌細(xì)胞中,而Rickettsia既分布于含菌細(xì)胞中,也均勻分布于蟲(chóng)體其他部位。這些結(jié)果一方面證明了3種共生菌均能通過(guò)煙粉虱雌蟲(chóng)完成垂直傳播,同時(shí)也明確了這些共生菌在入侵煙粉虱MEAM 1隱種各個(gè)發(fā)育階段的分布特征,研究結(jié)果為進(jìn)一步揭示內(nèi)共生菌參與的煙粉虱入侵機(jī)制打下基礎(chǔ)。

      參考文獻(xiàn)

      [1] BROWN J K, FROHLICH D R, ROSELL R C. The sweet potato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex?[J]. Annual Review of Entomology, 1995, 40(1): 511-534.

      [2] OLIVEIRA M R V, HENNEBERRY T J, ANDERSON P. History, current status, and collaborative research projects for Bemisia tabaci [J]. Crop Protection, 2001, 20(9): 709-723.

      [3] JONES D R. Plant viruses transmitted by whiteflies [J]. European Journal of Plant Pathology, 2003, 109(3): 195-219.

      [4] WAN Fanghao, YANG Nianwan. Invasion and management of agricultural alien insects in China [J]. Annual Review of Entomology, 2016, 61(1): 77-98.

      [5] BOYKIN L M, SHATTERS R G J R, ROSELL R C, et al. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences[J]. Molecular Phylogenetics and Evolution, 2007, 44(3): 1306-1319.

      [6] DE BARRO P J, LIU Shusheng, BOYKIN L M, et al. Bemisia tabaci: a statement of species status [J]. Annual Review of Entomology, 2010, 56(1): 1-19.

      [7] DINSDALE A, COOK L, RIGINOS C, et al. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries [J]. Annals of the Entomological Society of America, 2010, 103(2): 196-208.

      [8] LIU Shusheng, COLVIN J, DE BARRO P J. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there?[J]. Journal of Integrative Agriculture, 2012, 11(2): 176-186.

      [9] FIRDAUS S, VOSMAN B, HIDAYATI N, et al. The Bemisia tabaci species complex: additions from different parts of the world [J]. Insect Science, 2013, 20(6): 723-733.

      [10] TAY W T, EVANS G A, BOYKIN L M, et al. Will the real Bemisia tabaci please stand up?[J/OL]. PLoS ONE, 2012, 7(11): e50550.

      [11] DALTON R. Whitefly infestations: the christmas invasion[J]. Nature, 2006, 443(7114): 898-900.

      [12] ZHANG Changrong, SHAN Hongwei, XIAO Na, et al. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments [J/OL]. Scientific Reports, 2015, 5: 15898.

      [13] CHU Dong, ZHANG Youjun, BROWN J K, et al. The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops [J]. Florida Entomologist, 2006, 89(2): 168-174.

      [14] CHU Dong, WAN Fanghao, ZHANG Youjun, et al. Change in the biotype composition of Bemisia tabaci in Shandong province of China from 2005 to 2008 [J]. Environmental Entomology, 2010, 39(3): 1028-1036.

      [15] PAN Huipeng, CHU Dong, GE Daqing, et al. Further spread of and domination by Bemisia tabaci biotype Q on field crops in China [J]. Journal of Economic Entomology, 2011, 104(3): 978-985.

      [16] PASCUAL S, CALLEJAS C. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain[J]. Bulletin of Entomological Research, 2004, 94(4): 369-375.

      [17] HOROWITZ A R, GORMAN K, ROSS G, et al. Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q Biotype) [J]. Archives of Insect Biochemistry and Physiology, 2003, 54(4): 177-186.

      [18] DENNEHY T J, DEGAIN B A, HARPOLD V S, et al. Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci in the New World [J]. Journal of Economic Entomology, 2010, 103(6): 2174-2186.

      [19] GHANIM M, KONTSEDALOV S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities [J]. Pest Management Science, 2009, 65(9): 939-942.

      [20] HIMLER A G, ADACHI-HAGIMORI T, BERGEN J E, et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias [J]. Science, 2011, 332(6026): 254-256.

      [21] CHU D, GAO C S, DE BARRO P, et al. Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: comparison of secondary symbionts from biotypes B and Q in China [J]. Bulletin of Entomological Research, 2011, 101(4): 477-486.

      [22] SLOAN D B, MORAN N A.Endosymbiotic bacteria as a source of carotenoids in whiteflies [J]. Biology Letters, 2012, 8(6): 986-989.

      [23] SANTOS-GARCIA D, FARNIER P A, BEITIA F J, et al. Complete genome sequence of “Candidatus Portiera aleyrodidarum” BT-QVLC, an obligate symbiont that supplies amino acids and carotenoids to Bemisia tabaci [J]. Journal of Bacteriology, 2012, 194(23): 6654-6655.

      [24] RAO Qiong, ROLLAT-FARNIER P A, ZHU Dantong, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci [J]. BMC Genomics, 2015, 16(1): 226-239.

      [25] GOTTLIEB Y, GHANIM M, CHIEL E, et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae) [J]. Applied and Environmental Microbiology, 2006, 72(5): 3646-3652.

      [26] NIRGIANAKI A, BANKS G K, FROHLICH D R, et al. Wolbachia infections of the whitefly Bemisia tabaci [J]. Current Microbiology, 2003, 47(2): 93-101.

      [27] BING Xiaoli, YANG Jiao, ZCHORI-FEIN E, et al. Characterization of a newly discovered symbiont in the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) [J]. Applied and Environmental Microbiology, 2013, 79(2): 569-575.

      [28] EVERETT K D E, THAO M L, HORN M, et al. Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae strain Falk and ‘Candidatus Fritschea eriococci strain Elm [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(4): 1581-1587.

      [29] ZCHORI-FEIN E, BROWN J K. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) [J]. Annals of the Entomological Society of America, 2002, 95(6): 711-718.

      [30] CASPI-FLUGER A, INBAR M, MOZES-DAUBE N, et al. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated [J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1734): 1791-1796.

      [31] BRUMIN M, LEVY M, GHANIM M. Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci [J]. Applied and Environmental Microbiology, 2012, 78(16): 5565-5574.

      [32] CASS B N, HIMLER A G, BONDY E C, et al. Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest [J]. Oecologia, 2015, 180(1): 169-179.

      [33] CASS B N, YALLOUZ R, BONDY E C, et al. Dynamics of the endosymbiont Rickettsia in an insect pest [J]. Microbial Ecology, 2015, 70(1): 287-297.

      [34] KLIOT A, CILIA M, CZOSNEK H, et al. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus [J]. Journal of Virology, 2014, 88(10): 5652-5660.

      [35] KONTSEDALOV S, ZCHORI-FEIN E, CHIEL E, et al. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides[J]. Pest Management Science, 2008, 64(8): 789-792.

      [36] CHIEL E, GOTTLIEB Y, ZCHORI-FEIN E, et al. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci [J]. Bulletin of Entomological Research, 2007, 97(4): 407-413.

      [37] 羅晨, 姚遠(yuǎn), 王戎疆, 等. 利用 mtDNA COI 基因序列鑒定我國(guó)煙粉虱的生物型[J]. 昆蟲(chóng)學(xué)報(bào), 2002, 45(6): 759-763.

      [38] GOTTLIEB Y, GHANIM M, GUEGUEN G, et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies [J]. The FASEB Journal, 2008, 22: 2591-2599.

      [39] SINGH R H, SINGH A, POPLI S, et al. Infection of bacterial endosymbionts in insects: a comparative study of two techniques viz PCR and FISH for detection and localization of symbionts in whitefly, Bemisia tabaci [J/OL]. PLoS ONE, 2015, 10(8):e0136159.

      [40] BING Xiaoli, RUAN Yongming, RAO Qiong, et al. Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci [J]. Insect Science, 2013, 20(2): 194-206.

      [41] SU Qi, OLIVER K M, PAN H P, et al. Facultative symbiont Hamiltonella confers benefits to Bemisia tabaci, an invasive agricultural pest worldwide[J]. Environmental Entomology, 2013, 42: 1265-1271.

      [42] MUNDERLOH U G, KURTTI T J. Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens[J]. Annual Review of Entomology, 1995, 40: 221-243.

      (責(zé)任編輯: 田 喆)

      莲花县| 界首市| 商南县| 南涧| 和顺县| 莆田市| 息烽县| 贞丰县| 韶山市| 南昌市| 枣庄市| 宁乡县| 随州市| 义乌市| 鄂州市| 阿拉善左旗| 松滋市| 兴义市| 集贤县| 聂荣县| 保山市| 神木县| 平乡县| 项城市| 西充县| 北安市| 收藏| 定安县| 呼伦贝尔市| 峨眉山市| 海丰县| 郯城县| 资讯 | 久治县| 禹州市| 贵南县| 徐闻县| 广平县| 林州市| 太仆寺旗| 德州市|