• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      金黃色葡萄球菌的群體效應(yīng)研究進(jìn)展

      2020-06-08 15:38洪正善黃郁梅楊柯曾春暉
      湖北農(nóng)業(yè)科學(xué) 2020年4期
      關(guān)鍵詞:金黃色葡萄球菌毒性

      洪正善 黃郁梅 楊柯 曾春暉

      摘要:金黃色葡萄球菌(Staphylococcus aureus)中已知的群體效應(yīng)系統(tǒng)是Agr系統(tǒng)和LuxS/AI-2系統(tǒng),其在細(xì)菌濃度等于或大于1×107 CFU/mL時(shí)會(huì)被激活,通過(guò)調(diào)控相應(yīng)基因,間接或直接調(diào)控生物被膜的產(chǎn)生和降解、細(xì)菌毒素的分泌以及細(xì)菌的生長(zhǎng)。綜述了金黃色葡萄球菌的群體效應(yīng)研究進(jìn)展,旨在為今后對(duì)金黃色葡萄球菌的研究尋找新方向,金黃色葡萄球菌致病性及生物被膜的形成與金黃色葡萄球菌的群體效應(yīng)系統(tǒng)之間存在必然聯(lián)系。

      關(guān)鍵詞:群體效應(yīng);金黃色葡萄球菌(Staphylococcus aureus);生物被膜

      中圖分類號(hào):R378.1+1? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A

      文章編號(hào):0439-8114(2020)04-0010-03

      Abstract: The known group effect systems in Staphylococcus aureus are the Agr system and LuxS/AI-2 system, which are activated when the bacterial concentration is equal to or greater than 1×107 CFU/mL, and indirectly or directly regulates the production and degradation, bacterial toxin secretion, and bacterial growth of the biofilm? by regulating the corresponding genes. The research progress of the group effects of Staphylococcus aureus were reviewed, and a new direction for future research on Staphylococcus aureus was found. There is an inevitable relationship between the pathogenicity of Staphylococcus aureus and the formation of biofilms and the quorum sensing system of Staphylococcus aureus.

      Key words: quorum sensing; Staphylococcus aureus; biofilms

      金黃色葡萄球菌(Staphylococcus aureus,SA)是造成社區(qū)和醫(yī)院獲得性感染的常見病原菌之一,是導(dǎo)致人血液感染的主要原因之一,可以感染各種器官?gòu)亩鸶腥拘孕膬?nèi)膜炎、化膿性關(guān)節(jié)炎和骨髓炎[1]。SA可躲避宿主的免疫系統(tǒng),并不斷對(duì)抗生素產(chǎn)生抗性[2],給治療帶來(lái)很大的阻礙。

      細(xì)菌通過(guò)對(duì)環(huán)境中信號(hào)分子的感應(yīng)而進(jìn)行一系列基因調(diào)控的現(xiàn)象,稱為群體效應(yīng)(QS),也稱為自誘導(dǎo)[3]。細(xì)菌之間通過(guò)某些其自身分泌的次級(jí)代謝產(chǎn)物作為信號(hào)分子,在細(xì)菌達(dá)到某個(gè)閾濃度的時(shí)候通過(guò)對(duì)這些信號(hào)分子的識(shí)別而產(chǎn)生基因表達(dá),從而產(chǎn)生一系列生理變化[4,5]。

      目前的試驗(yàn)表明,SA的QS系統(tǒng)與SA的毒性和耐藥性密切相關(guān)[6,7]。因此,對(duì)SA的QS系統(tǒng)進(jìn)行干擾從而治療SA感染,已成為目前新興的研究熱點(diǎn)[8]。本研究就目前對(duì)金黃色葡萄球菌的QS系統(tǒng)對(duì)生物被膜及金黃色葡萄球菌的QS機(jī)制進(jìn)行了綜述,旨在為今后對(duì)金黃色葡萄球菌的毒性及耐藥性相關(guān)研究提供參考。

      1? SA的QS調(diào)控網(wǎng)絡(luò)

      目前發(fā)現(xiàn)SA至少有2個(gè)QS系統(tǒng),按照其信號(hào)分子的種類劃分,分為短肽類(AIPs)的Agr系統(tǒng)[9]和呋喃硼酸二酯(AI-2)的LuxS/AI-2系統(tǒng)[10]。

      Agr系統(tǒng)是葡萄球菌屬中已知的QS系統(tǒng),其與SA的毒性因子合成以及細(xì)胞表面黏附性有著密切聯(lián)系[11]。agr基因座大小為3.5 kb,由RNAⅡ和RNAⅢ 2個(gè)不同的轉(zhuǎn)錄單位組成,其分別由P2和P3啟動(dòng)子激活。RNAⅡ基因座包含4個(gè)基因,分別是agrB、agrD、agrC和agrA。agrD負(fù)責(zé)編碼胞外的可作為agr的QS信號(hào)分子的前肽AIPs;agrB的基因產(chǎn)物是一種跨膜肽鏈內(nèi)切酶,用于引入內(nèi)脂修改、C端裂解和AIP的傳出;agrC和agrA基因編碼1個(gè)雙組分信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng),包括1個(gè)組氨酸激酶?jìng)鞲衅鰽grC、1個(gè)可以結(jié)合AIP并使之磷酸化的跨膜蛋白和其相關(guān)的響應(yīng)調(diào)節(jié)器AgrA[12]。在AgrC的磷酸化激活后,AgrA結(jié)合RNAⅡ上的P2啟動(dòng)子區(qū)域和RNAⅢ上的P3啟動(dòng)子區(qū)域[13],并進(jìn)一步激活RNAⅢ,然后RNAⅢ翻譯產(chǎn)生由hld編碼的δ毒素[14]。

      LuxS/AI-2系統(tǒng)是以呋喃硼酸二酯(AI-2)為信號(hào)分子的QS系統(tǒng),起初從哈氏弧菌中發(fā)現(xiàn)[15],隨后發(fā)現(xiàn)廣泛存在于大多數(shù)細(xì)菌中,被推測(cè)為菌種間的通用語(yǔ)言的1個(gè)QS系統(tǒng)[16]。AI-2是細(xì)菌甲基循環(huán)中的副產(chǎn)物。在甲基循環(huán)中,s-腺苷甲硫氨酸(SAM)被轉(zhuǎn)變成S-腺苷高半朧氨酸(SAH),SAH隨后被5-甲硫腺苷/S-腺苷高半胱氨酸核苷酶(Pfs)水解成S-核糖高半胱氨酸(SRH)和腺嘌呤,AI-2的合成代謝酶LuxS將SRH催化成AI-2的前體化合物4,5-二羥基-2,3-戊二酮,即DPD。DPD自身不穩(wěn)定,進(jìn)一步轉(zhuǎn)化生成AI-2[17]。AI-2與SA具有多種致病性,如生物被膜的形成、對(duì)抗生素敏感性以及毒性有著緊密的聯(lián)系[9,18]。

      2? SA的QS系統(tǒng)對(duì)SA生物被膜的影響

      細(xì)菌生物被膜最早在1978年由Costerton等[19]提出,之后學(xué)界普遍認(rèn)為細(xì)菌生物被膜是細(xì)菌為了適應(yīng)環(huán)境而分泌的一種多糖復(fù)合物,用于黏附接觸物體的表面,并保護(hù)膜中的細(xì)菌免受抗菌藥物的影響,同時(shí)分泌抗生素滅活酶而使抗菌藥物作用下降[20]。生物被膜的形成過(guò)程主要分為幾個(gè)步驟:①細(xì)菌黏著在非生物或者宿主基質(zhì)蛋白表面,然后聚集成多細(xì)胞結(jié)構(gòu),并形成膜狀;②增殖并成長(zhǎng);③分解、擴(kuò)散至其他部位,然后又從第一步開始[21]。近年來(lái)的研究表明,細(xì)菌QS系統(tǒng)在細(xì)菌生物被膜的生成中起重要作用[22]。具體機(jī)制是,LuxS/AI-2系統(tǒng)激活后會(huì)激活A(yù)gr系統(tǒng),AgrA激活產(chǎn)生RNAⅢ,RNAⅢ進(jìn)一步與其靶蛋白TRAP結(jié)合,促進(jìn)SA的生物被膜生成[23]。其中,LuxS/AI-2系統(tǒng)可以通過(guò)對(duì)icaR作用而影響ica通路[9],從而影響生物被膜的形成及擴(kuò)散;Agr系統(tǒng)也可以通過(guò)影響ica通路而影響生物被膜[24],還可以獨(dú)立地通過(guò)agrA通路影響生物被膜[25]。

      Agr系統(tǒng)在SA生物被膜的形成及擴(kuò)散中起重要作用。Agr控制蛋白酶,在體外通過(guò)降解生物被膜黏附素的蛋白組件而影響生物被膜的擴(kuò)大,并加大生物被膜的擴(kuò)散程度[26]。低活性的Agr生成的少量PSM肽通過(guò)干擾生物被膜黏附素PIA和細(xì)胞表面的相互作用,使細(xì)菌集合長(zhǎng)成大的集合體[27]。在菌濃度低時(shí),Agr系統(tǒng)會(huì)抑制SA的生物被膜形成,從而增加SA的流動(dòng)和數(shù)量,直至高濃度時(shí)產(chǎn)生毒性因子并促進(jìn)生物被膜形成。進(jìn)一步研究發(fā)現(xiàn),Agr上有許多影響生物被膜生成的因子,如CodY、SarA等[28]。CodY是Agr系統(tǒng)的負(fù)調(diào)節(jié)因子,CodY間接影響Agr系統(tǒng)的RNAⅢ轉(zhuǎn)錄,CodY的增多會(huì)導(dǎo)致AIPⅢ堆積,從而使生物被膜生成減少[29]。SarA是影響生物被膜生成的主要因子之一,Beenken等[30]指出,在SA的生物被膜生成過(guò)程中,Agr是SarA的上級(jí),Agr會(huì)使SarA對(duì)生物被膜的生成產(chǎn)生更多作用。

      AI-2通過(guò)對(duì)二元信號(hào)系統(tǒng)KdpDE作用,抑制kdpD和kdpE的轉(zhuǎn)錄水平,使和cap結(jié)合的kdpE量減少,使莢膜多糖生成減少,從而抑制生物被膜的合成[31]。Yu等[9]通過(guò)對(duì)LuxS缺失SA株添加不同劑量的DPD,LuxS缺失SA株與正常SA株中的生物被膜生成量對(duì)比,發(fā)現(xiàn)添加DPD后LuxS缺失SA株的生物被膜量會(huì)減少,進(jìn)一步對(duì)加入DPD后LuxS缺失SA株的icaA和icaR基因的表達(dá)量研究發(fā)現(xiàn),AI-2可以通過(guò)激活icaR而抑制icaADBC的表達(dá),從而抑制了生物被膜生成。

      3? SA的QS系統(tǒng)對(duì)SA毒力因子的影響

      細(xì)菌的QS系統(tǒng)除了與生物被膜相關(guān)之外,還主要與細(xì)菌毒性有關(guān)。QS系統(tǒng)是一種319氨基酸組成的β-桶形成孔毒素,與宿主細(xì)胞膜上的解聚素和金屬蛋白酶10(ADAM10)受體結(jié)合[25,26]。Hla與人體中的多種葡萄球菌感染有關(guān)。在葡萄球菌感染的肺炎動(dòng)物模型[27,28]中發(fā)現(xiàn),皮膚和軟組織感染[29,30]、血管內(nèi)感染[9]中,與標(biāo)準(zhǔn)型菌株相比,hla基因缺陷突變株都表現(xiàn)出更低的致病性。

      酚溶調(diào)制肽(PSM)是一種肽類毒素家族,在Agr控制的毒力因子中是惟一受AgrA直接控制的毒力因子[9],其在葡萄球菌的非傳染性活動(dòng)中起重要作用[14]。在PSM類中,在金黃色葡萄球菌的psmα基因座中編碼的蛋白,尤其是PSMα3,對(duì)多種細(xì)胞類型包括嗜中性粒細(xì)胞、巨噬細(xì)胞、成骨細(xì)胞和紅細(xì)胞具有較強(qiáng)的促炎和溶解性[32]。這導(dǎo)致PSMα肽類對(duì)急性金黃色葡萄球菌感染,如皮膚和軟組織感染、敗血癥和骨髓炎等有較強(qiáng)的影響[33,34]。

      4? 討論

      近年來(lái)抗生素濫用,金黃色葡萄球菌的耐藥性成為目前越來(lái)越棘手的治療阻礙。對(duì)金黃色葡萄球菌QS系統(tǒng)的研究成為一個(gè)新的研究方向。然而QS系統(tǒng)十分復(fù)雜,目前尚未能繪制出完整的金黃色葡萄球菌QS系統(tǒng),但已有的研究表明,金黃色葡萄球菌的致病性與其QS系統(tǒng)相關(guān),說(shuō)明今后對(duì)其的抗菌研究可以向其自身Agr QS系統(tǒng)和LuxS QS系統(tǒng)進(jìn)行。

      參考文獻(xiàn):

      [1] RASMUSSEN R V,JR F V,SKOV R,et al. Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA[J].Future microbiology,2011,6(1):43-56.

      [2] ROOIJAKKERS S H,VAN KESSEL K P,VAN STRIJP J A. Staphylococcal innate immune evasion[J].Trends in microbiology,2005,13(12):596-601.

      [3] FUQUA W C,WINANS S C,GREENBERG E P. Quorum sensing in bacteria:The LuxR-LuxI family of cell density-responsive transcriptional regulators[J].Journal of bacteriology,1994, 176(2):269-275.

      [4] ENGEBRECHT J,NEALSON K,SILVERMAN M. Bacterial bioluminescence:Isolation and genetic analysis of functions from Vibrio fischeri.[J].Cell,1983,32(3):773-781.

      [5] CAO J G,MEIGHEN E A. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi.[J].Journal of biological chemistry,1989,264:21670-21676.

      [6] YARWOOD J M,BARTELS D J,VOLPER E M,et al. Quorum sensing in Staphylococcus aureus biofilms[J].Journal of bacteriology,2004,186(6):1838-1850.

      [7] QUECK S Y,JAMESON-LEE M,VILLARUZ A E,et al. RNAIII-independent target gene control by the quorum-sensing system:Insight into the evolution of virulence regulation in Staphylococcus aureus[J].Molecular cell,2008,32(1):150-158.

      [8] CASTILLO-JU?魣REZ I,MAEDA T,MANDUJANO-TINOCO E A,et al. Role of quorum sensing in bacterial infections[J].World journal of clinical cases,2015,3(7):575-598.

      [9] YU D,ZHAO L P,XUE T,et al. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner[J].BMC microbiology,2012,12:288.

      [10] PENG H L,NOVICK R P,KREISWIRTH B,et al. Cloning,characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus[J].Journal of bacteriology,1988, 170(9):4365-4372.

      [11] THOENDEL M,KAVANAUGH J S,F(xiàn)LACK C E,et al. Peptide signaling in the staphylococci[J].Chemical reviews,2011,111(1):117-151.

      [12] GRAY B,HALL P,GRESHAM H. Targeting agr-and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections[J].Sensors,2013,13(4):5130-5166.

      [13] GEISINGER E,CHEN J,NOVICK R P. Allele-Dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus[J].Journal of bacteriology,2012,194(11):2854-2864.

      [14] CHEUNG G Y C,JOO H S,CHATTERJEE S S,et al. Phenol-soluble modulins-critical determinants of staphylococcal virulence[J].Fems microbiology reviews,2014,38(4):698-719.

      [15] BASSLER B L,GREENBERG E P,STEVENS A M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi.[J].Journal of bacteriology,1997,179(12):4043-4045.

      [16] WINZER K,HARDIE K R,WILLIAMS P. LuxS and autoinducer-2:Their contribution to quorum sensing and metabolism in bacteria[J].Advances in applied microbiology,2003,53(4):291-396.

      [17] 趙麗萍.金黃色葡萄球菌中AI-2群體感應(yīng)系統(tǒng)的調(diào)控[D].合肥:中國(guó)科學(xué)技術(shù)大學(xué),2010.

      [18] XUE T,ZHAO L P,SUN B L,et al. LuxS/AI-2 system is involved in antibiotic susceptibility and autolysis in Staphylococcus aureus NCTC 8325[J].International journal of antimicrobial agents,2013,41(1):85-89.

      [19] COSTERTON J W,GEESEY G G,CHENG K J. How bacteria stick[J].Scientific American,1978,238(1):86-95.

      [20] LI J,XIE S Y,AHMED S,et al. Antimicrobial activity and resistance:Influencing factors[J].Frontiers in pharmacology,2017, 8:364.

      [21] KUDVA I T,CORNICK N A,PLUMMER P J,et al. Virulence mechanisms of bacterial pathogens,fifth edition[M].Atlanta:American society for microbiology,2016.

      [22] TOWNSLEY L,SHANK E A. Natural-product antibiotics:Cues for modulating bacterial biofilm formation[J].Trends in microbiology,2017,25(12):1016-1026.

      [23] KIRAN M D,ADIKESAVAN N V,CIRIONI O,et al. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening[J].Molecular pharmacology,2008,73(5):1578-1586.

      [24] AUDRETSCH C,LOPEZ D,SRIVASTAVA M,et al. A semi-quantitative model of quorum-sensing in Staphylococcus aureus,approved by microarray meta-analyses and tested by mutation studies[J].Molecular biosystems,2013,9(11):2665-2680.

      [25] FOSTER T J,GEOGHEGAN J A,GANESH V K,et al. Adhesion,invasion and evasion:The many functions of the surface proteins of Staphylococcus aureus[J].Nature reviews microbiology,2014,12(1):49-62.

      [26] LAUDERDALE K J,BOLES B R,CHEUNG A L,et al. Interconnections between sigma B,agr,and proteolytic activity in Staphylococcus aureus biofilm maturation[J].Infection & immunity,2009,77(4):1623-1635.

      [27] DASTGHEYB S S,VILLARUZ A E,LE K Y,et al. Role of phenol-soluble modulins in formation of Staphylococcus aureus biofilms in synovial fluid[J].Infection & immunity,2015,83(7):2966-2975.

      [28] RUTHERFORD S T,BASSLER B L. Bacterial quorum sensing:Its role in virulence and possibilities for its control[J]. Cold spring harbor perspectives in medicine,2012,2(11):705-709.

      [29] ROUX A,TODD D A,VEL?魣ZQUEZ J V,et al. CodY-Mediated regulation of the Staphylococcus aureus agr system integrates nutritional and population density signals[J].Journal of bacteriology,2014,196(6):1184-1196.

      [30] BEENKEN K E,MRAK L N,GRIFFIN L M,et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation[J].PloS one,2010,5(5):e10790.

      [31] ZHAO L P,XUE T,SHANG F,et al. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence[J].Infection & immunity,2010,78(8):3506-3515.

      [32] RASIGADE J P, TROUILLET-ASSANT S,F(xiàn)ERRY T,et al. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts[J].PLoS one,2013,8:e63176.

      [33] WANG R,BRAUGHTON K R,KRETSCHMER D,et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA[J].Nat Med,2007,13:1510-1514.

      [34] CASSAT J E,HAMMER N D,CAMPBELL J P,et al.A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis[J].Cell host microbe,2013,13:759-772.

      猜你喜歡
      金黃色葡萄球菌毒性
      動(dòng)物之最——毒性誰(shuí)最強(qiáng)
      如何防治兔葡萄球菌病
      那一抹金黃色
      那一抹金黃色
      肉雞葡萄球菌病診療
      RGD肽段連接的近紅外量子點(diǎn)對(duì)小鼠的毒性作用
      PM2.5中煤煙聚集物最具毒性
      吸入麻醉藥的作用和毒性分析
      一例水牛疥螨繼發(fā)感染葡萄球菌病的診治
      雞葡萄球菌病的綜合防治措施
      陕西省| 金乡县| 肥东县| 吉隆县| 乐东| 城口县| 开封市| 虹口区| 通城县| 龙海市| 碌曲县| 汉中市| 宁河县| 怀化市| 读书| 铜陵市| 青冈县| 万盛区| 铜陵市| 旌德县| 托克托县| 台北县| 清苑县| 昌平区| 墨江| 丹巴县| 泗洪县| 平果县| 通山县| 新干县| 盐亭县| 安顺市| 邢台县| 金阳县| 永城市| 中江县| 章丘市| 平顶山市| 庆安县| 合水县| 松溪县|