• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      可可FAT基因家族進(jìn)化及表達(dá)模式分析

      2020-06-19 08:53李付鵬鄧云梅伍寶朵秦曉威閆林賴劍雄
      熱帶作物學(xué)報(bào) 2020年5期

      李付鵬 鄧云梅 伍寶朵 秦曉威 閆林 賴劍雄

      摘? 要:在植物中,?;?ACP硫酯酶(fatty acyl-ACP thioesterase, FAT)是調(diào)控脂肪酸合成的關(guān)鍵酶。為解析可可FAT基因家族成員的特點(diǎn)與功能,本研究從可可基因組中篩選鑒定出FAT基因家族的6個(gè)成員,分別命名為TcFATA、TcFATB1、TcFATB2、TcFATB3、TcFATB4、TcFATB5。6個(gè)基因外顯子數(shù)目為6~7個(gè),編碼區(qū)(CDS)長(zhǎng)度介于1128~1263 bp,預(yù)測(cè)蛋白分子量介于42.72~46.47 kDa,等電點(diǎn)介于6.57~9.10。進(jìn)化分析結(jié)果表明可可FAT基因家族分成FATA與FATB亞群,F(xiàn)ATA亞群包含1個(gè)可可TcFATA成員,F(xiàn)ATB亞群包含5個(gè)可可TcFATBs成員。不同可可種子發(fā)育時(shí)期表達(dá)分析結(jié)果表明:TcFATA和TcFATB1伴隨果實(shí)發(fā)育成熟,表達(dá)量呈下降趨勢(shì),TcFATA和TcFATB1在不同種質(zhì)中表達(dá)量與油酸(C18:1)和棕櫚酸(C16:0)比例呈正相關(guān),表明其與脂肪酸組分比例調(diào)控有緊密關(guān)聯(lián)。

      關(guān)鍵詞:可可;酰基載體蛋白硫酯酶(FAT);系統(tǒng)進(jìn)化;表達(dá)模式

      中圖分類號(hào):S571.3? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A

      Phylogeny and Expression Profile of Fatty Acyl-ACP Thioesterase (FAT) Gene Family in Cacao (Theobroma cacao L.)

      LI Fupeng1, DENG Yunmei1, 2, WU Baoduo1, QIN Xiaowei1, YAN Lin1, LAI Jianxiong1

      1. Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs / Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533, China; 2. College of Tropical Crop Science, Yunnan Agricultural University, Pu'er, Yunnan 665099, China

      Abstract: Fatty acyl-ACP thioesterase (FAT) is the key enzyme regulating the synthesis of plant lipid. In order to better understand the characteristics of FAT gene family in Theobroma cacao, six novel FAT genes were identified from economically important cacao trees, designated as TcFATA, TcFATB1, TcFATB2, TcFATB3, TcFATB4, TcFATB5, respectively. Sequences analyses revealed that CDS of TcFATs was 1128–1263 bp, containing 6–7 exons. The molecular weight of the six predicted protein was 42.72–46.47 kDa, and pI of the proteins was 6.57–9.10. FAT family could be divided into FATA (one TcFATA) and FATB (five TcFATBs) subfamily. The expression patterns of the genes were investigated via real-time PCR in various developmental phases. The transcription level of TcFATA and TcFATB1 was continuously decreased along with pod development. Furthermore, the expression level of TcFATA and TcFATB1 was positively associated with the ratio of oleic acid (C18:1) and palmitic acid (C16:0) respectively. The results indicate that TcFATA and TcFATB1 are significantly related with the regulation of fatty acid component.

      Keywords: Theobroma cacao; fatty acyl-ACP thioesterase (FAT); phylogenetic; expression profile

      DOI: 10.3969/j.issn.1000-2561.2020.05.014

      在高等植物中,脂肪酸合成在細(xì)胞的質(zhì)體脂肪酸合酶復(fù)合體(fatty acid synthetases, FAS)中進(jìn)行,F(xiàn)AS由乙酰CoA-ACP轉(zhuǎn)移酶、丙二酸單酰CoA轉(zhuǎn)移酶、β-酮脂酰ACP合酶、β-酮脂酰ACP還原酶、β-羥脂酰ACP脫水酶、烯脂酰ACP還原酶和1個(gè)含巰基的?;d體蛋白(acyl carrier protein, ACP)組合形成的復(fù)雜而松散結(jié)構(gòu)[1]。FAS催化乙酰輔酶A與酰基-ACP縮合成4:0-ACP,進(jìn)而連續(xù)催化?;兼溡悦總€(gè)循環(huán)增加2個(gè)碳單位進(jìn)行延伸[2]。對(duì)于多數(shù)植物而言,僅有少量的硬脂酸(C18:0)被轉(zhuǎn)運(yùn)出質(zhì)體,因此硬脂酸很少在種子中富集[3];FAS雖偏愛合成18:0-ACP,部分16:0-ACP也會(huì)提前從FAS中釋放出來,從而形成棕櫚酸(16:0),一些植物會(huì)合成更短的癸酸(C10:0)或月桂酸(C12:0)[4-5]。18:0-ACP在十八烷酰-ACP去飽和酶(stearoyl-ACP desaturase, SAD)的催化下生成18:1-ACP,進(jìn)而形成油酸(C18:1)。

      ?;?ACP硫酯酶(fatty acyl-ACP thioesterase, FAT)水解酰基和ACP 之間的硫酯鍵,釋放出游離脂肪酸和ACP,終止脂肪酸合成[6-7]。脂肪酸之后被運(yùn)送到細(xì)胞質(zhì)中進(jìn)一步酯化形成脂酰-CoA,在甘油-3-磷酸?;D(zhuǎn)移酶(glycerol-3-phosphate acyltransferase, GPAT)和溶血磷脂酸?;D(zhuǎn)移酶(lysophosphatidic acid acyltransferase, LPAT)的催化下,分別轉(zhuǎn)移到甘油-3-磷酸(G3P)sn-1和sn-2位置,依次生成溶血磷脂酸(LPA)和磷脂酸(PA),sn-3位置上的磷酸由磷脂酸磷酸酶(phosphatidic acid phosphatase, PAP)催化脫去,生成二酰甘油(diacylglycerol, DAG)。在二酰甘油?;D(zhuǎn)移酶(diacylglycerol acyltransferase, DGAT)催化下,將酰基CoA的脂肪酸轉(zhuǎn)移到DAG上sn-3位置,生成三酰甘油(TAG)[8-9]。

      FAT是由核基因編碼,在質(zhì)體中發(fā)揮作用的靶向可溶性酶,根據(jù)氨基酸序列和底物偏好性分為FATA和FATB 2個(gè)亞族[10]。FATA偏好不飽和?;?ACP,尤其對(duì)18:1-ACP活性最高;而FATB通常對(duì)飽和?;?ACP顯示出高活性,對(duì)18:1-ACP也有一定的活性[11-12]。FAT的功能在很大程度上決定植物體內(nèi)脂肪酸鏈的長(zhǎng)度和不飽和度,并影響脂肪酸組分及含量[13-14]。擬南芥AtFATB功能缺失后,不同組織中飽和脂肪酸的總量相比于野生型減少了40%~50%,并且棕櫚酸比例明顯降低[15]。將麻風(fēng)樹JcFATB1在擬南芥中過表達(dá)會(huì)導(dǎo)致飽和脂肪酸含量增加,尤其是棕櫚酸比例大幅增加,而不飽和脂肪酸比例顯著降低[16]。

      可可(Theobroma cacao L.)與咖啡、茶并稱為世界三大飲料作物,有悠久的栽培歷史,被譽(yù)為“上帝的食物”。可可屬于梧桐科(Stercu liaceae)可可屬(Theobroma),多年生常綠小喬木,莖干上開花結(jié)果,果實(shí)為紡錘形,成熟呈橙黃色,內(nèi)含30~50粒種子,種子富含油脂(可可脂)、蛋白、纖維、多酚等成分。可可脂作為最重要的成分,含量占可可豆的50%左右??煽芍邆洫?dú)特的物理與化學(xué)性質(zhì),熔點(diǎn)在35~36.5 ℃之間,入口即化,并具有舒緩、保濕功效,是制作巧克力、化妝品、藥品等的重要原料[17]。成熟可可種子中棕櫚酸(16:0)、硬脂酸(18:0)、油酸(18:1)總量占到可可脂含量的90%以上[18];脂肪酸聚合形成1,3-二棕櫚酸-2-油酸甘油酯(1,3-dipalmitoyl-2-oleoylglycerol, POP)、1,3-二硬脂酸-2-油酸甘油酯(1,3-distearoyl-2-oleo ylglycerol, SOS)、1(3)-棕櫚酸-2-油酸-3(1)-硬脂酸甘油酯(1(3)-palmitoyl-3(1)stearoyl-2-oleoylgl ycerol, POS)[19]。三者在可可種子中配比穩(wěn)定,合成的POP、POS、SOS比例趨于22∶46∶32,歸因于三酰甘油結(jié)構(gòu)與配比,可可脂具體獨(dú)特的理化性質(zhì),熔點(diǎn)剛低于人體溫度。

      目前,F(xiàn)AT基因已在擬南芥[15]、麻風(fēng)樹[16]、蓖麻[20]、椰子[21]、花生[22]等植物中相繼被克隆。目前為止,可可FAT基因家族的研究尚未見報(bào)道。本研究對(duì)可可FAT基因家族進(jìn)行進(jìn)化、表達(dá)模式系統(tǒng)分析,為研究可可FAT基因特征及可可種子脂肪酸比例調(diào)控提供理論依據(jù)。

      1? 材料與方法

      1.1? 材料

      試驗(yàn)所用種質(zhì)材料,保存于中國(guó)熱帶農(nóng)業(yè)科學(xué)院香料飲料研究所試驗(yàn)基地,為前期鑒定篩選出的性狀差異可可種質(zhì)‘Z216和‘Z115;2份種質(zhì)幼果顏色均為綠色,其中種質(zhì)‘Z216鮮果重為653.6 g、果長(zhǎng)為153.9 cm、種子厚為6.1 mm、種子可可脂含量為49.1%,種質(zhì)‘Z115鮮果重為504.0 g、果長(zhǎng)為165.7 cm、種子厚為8.6 mm、種子可可脂含量為42.5%??煽蓸溟_花成果時(shí)期,掛牌標(biāo)記,在果實(shí)不同發(fā)育時(shí)期分別剝?nèi)》N子,立即置于液氮中速凍后,保存于?80 ℃冰箱中備用。試驗(yàn)用RNA提取試劑盒(R6827-01)購自O(shè)mega公司,cDNA反轉(zhuǎn)錄試劑盒(K1621)購自Fermentas公司,實(shí)時(shí)熒光定量PCR試劑SYBR? Green Realtime PCR Master Mix(QPK- 201)購自TaKaRa公司,其他生化試劑均為進(jìn)口或國(guó)產(chǎn)分析純?cè)噭?/p>

      1.2? 可可FAT基因序列獲取及分析

      依托可可全基因組序列,利用BLAST工具搜索分析可可FAT基因家族成員序列。具體方法如下,利用油棕已知FAT基因序列在可可全基因組數(shù)據(jù)庫(http://www.cacaogenomedb.org)進(jìn)行BlastP分析,篩選鑒定可可FAT基因序列。利用GSDS軟件分析可可FAT基因的外顯子/內(nèi)含子基因結(jié)構(gòu)。在ExPASy網(wǎng)站(http://expasy.org/tools/)利用在線工具對(duì)可可FAT蛋白保守性、等電點(diǎn)、分子量、跨膜結(jié)構(gòu)、亞細(xì)胞定位等進(jìn)行分析預(yù)測(cè)。

      1.3? 可可FAT基因進(jìn)化分析

      基于可可FAT蛋白序列,在NCBI GenBank數(shù)據(jù)庫搜索出木本棉(Gossypium arboretum,8條)、辣椒(Capsicum annuum,3條)、巴西橡膠(Hevea brasiliensis,10條)、海島棉(Gossypium barba dense,14條)、蓖麻(Ricinus communis,5條)、鳳梨(Ananas comosus,1條)、金錢橘(Citrus clementine,2條)、獼猴桃(Actinidia chinensis,5條)、中粒種咖啡(Coffea canephora,2條)、海棗(Phoenix dactylifera,2條)、蘋果(Malus domestica,8條)、油桐樹(Vernicia fordii,2條)、油棕(Elaeis guineensis,1條)、花生(Arachis hypogaea,10條)、陸地棉(Gossypium hirsutum,18條)、谷子(Setaria italic,1條)、芝麻(Sesamum indicum,4條)、芒果(Mangifera indica,1條)、番茄(Solanum lycopersicum,1條)、大豆(Glycine max,7條)、山竹(Garcinia mangostana,1條)、油菜(Brassica napus,2條)、長(zhǎng)蒴黃麻(Corchorus olitorius,6條)、藜麥(Chenopodium quinoa,2條)、胡桃(Juglans regia,8條)、甜橙(Citrus sinensis,6條)、萵苣(Lactuca sativa,1條)、亞麻薺(Camelina sativa,1條)、歐洲橄欖(Olea europaea,4條)、擬南芥(Arabidopsis thaliana,1條)、煙草(Nicotiana tabacum,3條)、葡萄(Vitis vinifera,9條)、榴蓮(Durio zibethinus,13條)FAT同源序列,結(jié)合可可(Theobroma cacao,6條)FAT序列,利用MEGA 5.0軟件[23]對(duì)以上33種植物169條FAT序列進(jìn)行分子系統(tǒng)學(xué)分析;采用Neighbour-joining聚類方法,進(jìn)行1000次bootstrap統(tǒng)計(jì)學(xué)檢測(cè)。

      2.4? 可可FAT基因表達(dá)量與脂肪酸組分關(guān)系

      GC-MS生成的可可脂肪酸質(zhì)譜數(shù)據(jù),經(jīng)數(shù)據(jù)庫檢索分析和面積歸一化計(jì)算,結(jié)果表明棕櫚酸(C16:0)、硬脂酸(C18:0)、油酸(C18:1)和亞油酸(C18:2)是可可脂的主要組分,4種主要脂肪酸占比達(dá)可可脂的98%以上。在‘Z115種質(zhì)中,棕櫚酸、硬脂酸、油酸和亞油酸比例分別是29.16%、30.30%、35.78%、3.01%;在‘Z216種質(zhì)中,棕櫚酸、硬脂酸、油酸和亞油酸比例分別是38.76%、29.56%、28.58%、2.14%?!甖115種質(zhì)的油酸比例比‘Z216種質(zhì)高7.20%,而棕櫚酸比例低9.6%,與TcFATA和TcFATB1表達(dá)趨勢(shì)一致(圖4)。

      3? 討論

      可可是世界重要的飲料作物,也是一種油料作物,可可脂中主要的組分是棕櫚酸、硬脂酸和油酸,因其脂肪酸組分的特定比例,表現(xiàn)出特定的理化性質(zhì),熔點(diǎn)35~37 ℃,是制作巧克力等主要原料??死飱W洛(Criollo)和弗拉斯特洛(Forastero)可可全基因組已經(jīng)測(cè)序完成,為可可基因家族的克隆提供了便利,本研究從可可基因組中獲得6條FAT序列;然而,已測(cè)得的可可基因組序列分別占到克里奧洛和弗拉斯特洛可可的76%和92%,在未測(cè)得的可可基因組序列中仍可能存在未知的可可FAT基因。獲得的6條FAT基因序列,TcFATB3和TcFATB4含有5個(gè)內(nèi)含子,其余4條序列均含有6條內(nèi)含子,基因的內(nèi)含子數(shù)目保守;6個(gè)預(yù)測(cè)蛋白平均含有392個(gè)氨基酸,平均分子量為44.5 kDa,與植物中其他FAT成員類似[21, 25]。

      系統(tǒng)進(jìn)化樹分析結(jié)果表明FAT擁有2個(gè)類群,F(xiàn)ATA類群成員明顯少于FATB類群成員,在33個(gè)物種中FATA成員比例僅占整個(gè)FAT家族的19.53%;FATB類群包含3個(gè)亞類群,其分支構(gòu)成較為復(fù)雜,可能是由于FATB有多種進(jìn)化途徑從而導(dǎo)致其類群成員較多[26]。可可FATA和FATBs成員分別歸屬FATA和FATB兩大類群;擬南芥中含有3個(gè)FAT基因,其中2個(gè)AtFATAs基因、1個(gè)AtFATB基因,而6個(gè)可可TcFAT基因中有5個(gè)是FATB類基因[27-28],表明可可TcFATB基因發(fā)生復(fù)制多元化,與脂肪酸組分及比例特異性可能存在一定關(guān)系。

      在本研究中,TcFATA和TcFATB1伴隨種子發(fā)育成熟,表達(dá)量呈下降趨勢(shì),表明在種子發(fā)育前中期基因大量表達(dá),決定著可可脂肪酸組分。然而,不同可可種質(zhì)的脂肪酸組分比例存在一定差異,‘Z216可可種質(zhì)棕櫚酸(C16:0)比例較高,‘Z115可可種質(zhì)油酸(C18:1)比例較高,這與TcFATA和TcFATB1表達(dá)模式相同。FAT是調(diào)控脂肪組分的關(guān)鍵酶,F(xiàn)ATA對(duì)油酯-ACP(C18:1-ACP)有較高活性,決定C18:1轉(zhuǎn)運(yùn)到質(zhì)體外的水平,對(duì)C18:0-ACP和C16:0-ACP活性較低;而FATB對(duì)飽和油酯-ACP活性較高,偏向于水解C18:0的脂酰-ACP[29-30]。在種子發(fā)育的不同時(shí)期,TcFATA在‘Z115種質(zhì)中的表達(dá)量均高于‘Z216,而TcFATB1在‘Z216種質(zhì)中的表達(dá)量均高于‘Z115,從一定程度印證了FATA和FATB對(duì)底物的偏向性。

      本研究對(duì)可可FAT基因家族成員的基因組織結(jié)構(gòu)、進(jìn)化關(guān)系、基因表達(dá)模式及與脂肪酸組分間關(guān)系進(jìn)行了系統(tǒng)的分析,結(jié)果可為分析FAT基因家族成員理化功能提供研究基礎(chǔ),為解析可可脂特定理化性質(zhì)提供參考。

      參考文獻(xiàn)

      Chen G, He Q, Xuan N, et al. Functional expression analysis of an acyl-ACP thioesterase FatB1 from Arachis hypogaea L. seeds in Escherichia coli[J]. Journal of Food Agriculture and Environment, 2012, 10: 332-336.

      Chen G, Peng Z, Shan L, et al. Cloning of acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli[J]. Journal of Biomedicine and Biotechnology, 2012: 652579.

      Pidkowitch M S, Nguyen H T, Heilmann I, et al. Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil[J]. Proceedings of the National Academy of Sciences, 2007, 104(11): 4742-4747.

      Hellyer A, Leadlay P F, Slabas A R. Induction, purification and characterization of acyl-ACP thioesterase from developing seeds of oil seed rape (Brassica napus)[J]. Plant Molecular Biology, 1992, 20(5): 763-780.

      Knutzon D S, Bleibaum J L, Nelsen J, et al. Isolation and characterization if two safflower oleoyl-acyl-carrier protein thioesterase cDNA clones[J]. Plant Physiology, 1992, 100(4): 1751-1758.

      Qigen W, Yong L, Jiaquan H, et al. Molecular cloning and characterization of an acyl-ACP thioesterase gene (AhFatB1) from allotetraploid peanut (Arachis hypogaea L.)[J]. African Journal of Biotechnology, 2012, 11(77): 14123-14131.

      Yuan Y, Chen Y, Yan S, et al. Molecular cloning and characterization of an acyl carrier protein thioesterase gene (CocoFatB1) expressed in the endosperm of coconut (Cocos nucifera) and its heterologous expression in Nicotiana tabacum to engineer the accumulation of different fatty acids[J]. Functional Plant Biology, 2014, 41(1): 80-86.

      Graham I A. Seed storage oil mobilization[J]. Annual Review of Plant Biology, 2008, 59: 115-142.

      周? 丹, 趙江哲, 柏? 楊, 等. 植物油脂合成代謝及調(diào)控的研究進(jìn)展[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 35(5): 77-86.

      元冬娟, 吳? 湃, 江黎明. 高等植物的?;?ACP硫酯酶研究進(jìn)展[J]. 中國(guó)油料作物學(xué)報(bào), 2009, 31(1): 103-109.

      Dong S, Huang J, Li Y, et al. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioe sterase B from seeds of Chinese Spicehush (Lindera communis)[J]. Gene, 2014, 542(1): 16-22.

      Zhou Z, Zhang D, Lu M. Cloning and expression analysis of PtFATB gene encoding the acyl-acyl carrier protein thioesterase in Populus tomentosa Carr[J]. Journal of Genetics and Genomics, 2007, 34(3): 267-274.

      Tan K W M, Lee Y K. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii[J]. Journal of Biotechnology, 2017, 247: 60-67.

      Dong S, Liu Y, Xiong B, et al. Transcriptomic analysis of a potential bioenergy tree, Pistacia chinensis Bunge, and identification of candidate genes involved in the biosynthesis of oil[J]. Bioenergy Research, 2016, 9(3): 740-749.

      Bonaventure G, Bao X, Ohlrogge J, et al. Metabolic responses to the reduction in palmitate caused by disruption of the FATB gene in Arabidopsis[J]. Plant Physiology, 2004, 135(3): 1269-1279.

      Wu P Z, Li J, Wei Q, et al. Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas[J]. Tree Physiology, 2009, 29(10): 1299-1305.

      Lehrian D W, Keeney P G. Changes in lipid components of seed during growth and ripening of cacao fruit[J]. Journal of the American Oil Chemists Society, 1980, 57(2): 61-65.

      Padilla F C, Liendo R, Quintana A. Characterization of cocoa butter extracted from hybrid cultivars of Theobroma cacao L.[J]. Archivos Latinoamericanos de Nutricion, 2000, 50(2): 200-205.

      Shekarchizadeh H, Tikani R, Kadivar M. Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm[J]. Journal of Food Science and Technology, 2014, 51(9): 2099-2105.

      Sánchez-García A, Moreno-Pérez A J, Muro-Pastor A M, et al. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation[J]. Phytochemistry, 2010, 71(8-9): 860-869.

      肖? 勇, 楊耀東, 夏? 薇, 等. 椰子Acyl-ACP硫酯酶相關(guān)基因的克隆及其表達(dá)分析[J]. 廣東農(nóng)業(yè)科學(xué), 2013, 40(12): 149-152.

      張? 會(huì), 單? 雷, 李新國(guó), 等. 花生FAT基因家族的全基因組分析[J]. 山東農(nóng)業(yè)科學(xué), 2018, 50(6): 19-26.

      Kumar S, Nei M, Dudley J, et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and proteinsequences[J]. Briefings in Bioinformatics, 2008, 9(4): 299-306.

      Pinheiro T T, Litholdo Jr C G, Sereno M L, et al. Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues[J]. Genetics and Molecular Research, 2011, 10(4): 3291-3305.

      李昊遠(yuǎn), 郝翠翠, 潘麗娟, 等. 花生?;d體蛋白硫酯酶(FATB2)基因的克隆與表達(dá)分析[J]. 花生學(xué)報(bào)2017, 46(4): 7-14.

      Huynh T T, Pirtle R M, Chapman K D. Expression of a Gossypium hirsutum cDNA encoding a FatB palmitoyl-acyl carrier protein thioesterase in Escherichia coli[J]. Plant Physiology and Biochemistry, 2002, 40(1): 1-9.

      程? 濤, 楊建明, 劉? 輝, 等. 擬南芥硫酯酶基因(AtFATA)在大腸桿菌中的表達(dá)及其對(duì)游離脂肪酸合成的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2011, 17(4): 568-571.

      郝昭程, 王騰飛, 李忠奎, 等. 擬南芥硫酯酶基因在畢赤酵母中的表達(dá)[J]. 生物工程學(xué)報(bào), 2015, 31(1): 115-122.

      Rodríguez-Rodríguez M F, Salas J J, Garcés R, et al. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition[J]. Phytochemistry, 2014, 107: 7-15.

      Jing F. Characterization of acyl-ACP thioesterases for the purpose of diversifying fatty acid synthesis pathway[D]. Ames: Iowa State University, 2013.

      福海县| 红河县| 抚宁县| 隆德县| 罗平县| 台北市| 开远市| 吉木萨尔县| 通江县| 新巴尔虎左旗| 米林县| 固阳县| 咸宁市| 呼和浩特市| 炉霍县| 手游| 呼伦贝尔市| 汤原县| 武强县| 凌海市| 罗定市| 延安市| 沙雅县| 太湖县| 彭山县| 合江县| 丹寨县| 墨竹工卡县| 额敏县| 繁峙县| 衡南县| 黄龙县| 德安县| 信宜市| 旬阳县| 德清县| 广丰县| 镇平县| 马尔康县| 无锡市| 鞍山市|