董國(guó)旗,王東東,劉海燕,毛 強(qiáng),尹露生
鄂爾多斯盆地南部延安組巨厚煤層內(nèi)古氣候旋回分析
董國(guó)旗,王東東,劉海燕,毛 強(qiáng),尹露生
(山東科技大學(xué) 地球科學(xué)與工程學(xué)院,山東 青島 266590)
煤是一種氣候敏感型沉積物,為了查明煤層中蘊(yùn)含的古氣候信息及其演化控制因素,選取鄂爾多斯盆地南部延安組一段4號(hào)巨厚煤層為研究對(duì)象,通過(guò)系統(tǒng)密集采樣,并測(cè)試煤的有機(jī)顯微組分含量、主量和微量元素及有機(jī)質(zhì)穩(wěn)定碳同位素含量。利用煤巖顯微組分、特征元素和碳同位素等方法,分別在該巨厚煤層內(nèi)部識(shí)別出4個(gè)溫濕–干熱交替的古氣候旋回,且識(shí)別結(jié)果非常一致;該結(jié)果與前人在鄰區(qū)4號(hào)煤層中使用古植物含量系數(shù)法的識(shí)別結(jié)果也非常吻合。在此基礎(chǔ)上,與前人在該巨厚煤層中識(shí)別出的米蘭科維奇旋回信息進(jìn)行比較,綜合分析認(rèn)為該巨厚煤層中古氣候旋回的發(fā)育與演化主要受到天體軌道參數(shù)中偏心率長(zhǎng)周期的控制。研究成果證實(shí)了方法的可靠性,闡明了古氣候旋回的成因機(jī)制。
巨厚煤層;古氣候旋回;米蘭科維奇旋回;控制因素;偏心率;彬長(zhǎng)礦區(qū)
煤是一種氣候敏感型沉積能源礦產(chǎn),其中記錄了豐富的成煤期古氣候信息,特別是巨厚煤層能夠記錄較長(zhǎng)時(shí)期的古氣候變化,為古氣候恢復(fù)和演化規(guī)律研究提供了良好的素材。此外,研究地史上古氣候的變化規(guī)律及其控制因素,可以在一定程度上預(yù)測(cè)未來(lái)全球的氣候變化。因此,煤層內(nèi)部古氣候特征的研究一直是煤地質(zhì)學(xué)的熱點(diǎn)問(wèn)題。
煤中常量、微量元素的含量及分布規(guī)律,可以用來(lái)分析成煤期的古氣候[1-3]及變化規(guī)律[4-7]。煤中鋁、鎵在高嶺石中普遍富集,與溫暖潮濕氣候有關(guān)[2-4];而煤中鉀和銣的含量與伊利石相關(guān),反映干冷氣候條件[4]。煤巖成分包含成煤期的古氣候信息,可以用來(lái)分析成煤期的古氣候演化,時(shí)間跨度較小的煤層甚至一層煤的形成過(guò)程中,可以很好地反映出氣候的細(xì)微差別[8]。煤中蘊(yùn)含的孢粉信息可以重建成煤期的古植物類型,根據(jù)成煤植物的生活習(xí)性也可以分析成煤期古氣候的基本格局和演化規(guī)律[9-10]。煤(泥炭)中生物標(biāo)志物(芳烴和二萜化合物等)分析,并將其與海洋[11]和陸地[12]沉積物中生物標(biāo)志物進(jìn)行比較,可以準(zhǔn)確地識(shí)別成煤期的干濕氣候變化[13-14]。此外,煤層中穩(wěn)定碳同位素值及其變化也可以反映成煤期的古氣候特征[15-16]。
基于前人的研究成果可知,煤中蘊(yùn)含豐富的古氣候信息。為此,筆者以鄂爾多斯盆地南部彬長(zhǎng)礦區(qū)延安組巨厚煤層為例,采用煤巖顯微組分法、特征元素法和有機(jī)質(zhì)穩(wěn)定碳同位素法分別識(shí)別巨厚煤層中蘊(yùn)含的古氣候旋回信息,探究巨厚煤層中古氣候旋回發(fā)育的控制因素,闡明古氣候旋回的成因機(jī)制。
鄂爾多斯盆地是中國(guó)中北部大型的中、新生代坳陷盆地,是我國(guó)第二大沉積盆地,跨陜西、甘肅、寧夏、內(nèi)蒙古和山西5個(gè)省(自治區(qū)),面積約25萬(wàn)km2,周圍被秦嶺、六盤山、賀蘭山、大青山及呂梁山環(huán)繞。盆地南緣緊鄰渭河斷陷,南界大致位于渭河河谷一線;北緣緊鄰河套斷陷,北界大致在烏拉山–大青山一線;東界應(yīng)在大同–義馬一線以東;西界位于賀蘭山西麓–青銅峽–固原一線。彬長(zhǎng)礦區(qū)位于鄂爾多斯盆地的西南部,成煤期在煤田內(nèi)存在幾個(gè)古隆起,成為區(qū)域性的物源;彬長(zhǎng)礦區(qū)的大佛寺煤礦位于該煤田的南部(圖1)。
彬長(zhǎng)礦區(qū)的含煤地層為中侏羅統(tǒng)延安組,其巖相由河、湖相砂巖及泥巖夾煤層組成,含豐富的植物化石,按其沉積特點(diǎn),延安組自下而上可以分為5段,延一段至延五段[17],每段上部發(fā)育一個(gè)煤組,下部以砂巖沉積為主(圖1c)。大佛寺煤礦延安組煤層普遍較厚,本次的研究對(duì)象是彬長(zhǎng)礦區(qū)大佛寺煤礦ZK1鉆孔中的延安組一段4號(hào)巨厚煤層,單層厚度11.30 m,主要成煤環(huán)境為河漫沼澤、濱湖沼澤等(圖1c)。
彬長(zhǎng)礦區(qū)延安組一段4號(hào)煤中主要發(fā)育孢粉組合,裸子植物花粉含量高于蕨類植物孢子,以花粉含量高為特色,孢子也占重要比例,反映出成煤植物主要為蕨類和裸子植物[10]。一般認(rèn)為的母體植物主要為掌鱗杉科,一般出現(xiàn)在干旱炎熱的氣候條件[18-20],也能適應(yīng)潮濕氣候[21];而孢子母體植物主要為桫欏科和蚌殼蕨科(部分),主要生長(zhǎng)在潮濕的熱帶和亞熱帶[22]。古植物孢粉、孢子組合等特征,反映了延安組4號(hào)煤層成煤期古氣候環(huán)境的復(fù)雜性;成煤沼澤以森林沼澤為主,局部存在草本植物相對(duì)富集的沼澤環(huán)境。該時(shí)期植物群落的發(fā)育情況,反映了成煤期主要為暖溫帶–亞熱帶氣候。
在彬長(zhǎng)礦區(qū)延安組一段4號(hào)煤層中按0.5 m等間距系統(tǒng)采集22個(gè)樣品。各樣品分別進(jìn)行煤巖測(cè)試、有機(jī)質(zhì)穩(wěn)定碳同位素測(cè)試和微量元素測(cè)試。
煤巖顯微組分定量依據(jù)GB/T 8899—2013《煤的顯微組分組和礦物測(cè)定方法》測(cè)定。
有機(jī)質(zhì)穩(wěn)定碳同位素測(cè)試采用MAT251/252系列同位素質(zhì)譜儀,根據(jù)GB/T 18340.2—2010《有機(jī)質(zhì)穩(wěn)定碳同位素測(cè)定同位素質(zhì)譜法》分析,樣品測(cè)試前需鹽酸酸化去除無(wú)機(jī)碳元素。
微量元素測(cè)試采用等離子體質(zhì)譜儀(ICP-MS),型號(hào)為X Series 2,按照GB/T 14506.30—2010《硅酸鹽巖石化學(xué)分析方法第30部分:44個(gè)元素量測(cè)定》進(jìn)行測(cè)試。
在充分吸收借鑒前人相關(guān)研究成果的基礎(chǔ)上,本次主要通過(guò)煤巖顯微組分法、特征元素法、碳同位素法分析鄂爾多斯盆地南部延安組4號(hào)巨厚煤層中蘊(yùn)含的古氣候旋回信息。
煤巖特征與古氣候的溫度、濕度密切相關(guān),氣候越潮濕,植物遺體越能充分分解形成富鏡質(zhì)組的煤層;相反,氣候越干燥,越易形成富惰性組的煤層[8,23]。所以鏡質(zhì)組是在覆水還原的條件下,經(jīng)凝膠化作用形成;惰質(zhì)組是在干熱的氧化沼澤環(huán)境下,經(jīng)絲炭化作用形成[24]。如果泥炭沼澤是水位高、覆水和潮濕的微環(huán)境,形成的泥炭進(jìn)而變質(zhì)形成的煤中鏡質(zhì)組就高;反之如果泥炭沼澤水位低、干燥微環(huán)境居多,最后形成的煤惰質(zhì)組就高[25-26]。根據(jù)各顯微組分含量關(guān)系,利用其統(tǒng)計(jì)值,引入幾個(gè)參數(shù)更加直觀地反映煤層的成因特征[27],其中,煤中鏡惰比(/,也稱潮濕系數(shù))大小,反映了成煤期泥炭沼澤的潮濕–干燥程度[28-29]。古氣候溫暖濕潤(rùn)與鏡質(zhì)組、惰質(zhì)組含量和鏡惰比有關(guān),/>1,反映氣候較為溫暖潮濕;/<1,反映氣候較為炎熱干燥。
圖1 鄂爾多斯盆地彬長(zhǎng)礦區(qū)地質(zhì)簡(jiǎn)圖
根據(jù)鏡質(zhì)組、惰質(zhì)組含量和/的變化趨勢(shì),可以在彬長(zhǎng)礦區(qū)4號(hào)巨厚煤層中識(shí)別出4次溫濕–干熱的古氣候旋回變化,由早到晚各古氣候旋回依次標(biāo)號(hào)為Ⅰ、Ⅱ、Ⅲ、Ⅳ,該煤層厚度為11.30 m,平均每個(gè)氣候旋回厚度為2.83 m;4次溫濕–干熱的古氣候旋回變化都表現(xiàn)為溫濕–干熱–溫濕的變化過(guò)程,且曲線的變化趨勢(shì)總體較為一致(圖2)。
穩(wěn)定同位素是研究古環(huán)境的重要手段[30],碳同位素組成是古氣候、古環(huán)境等生態(tài)效應(yīng)的綜合體現(xiàn)[31-32],許多學(xué)者通過(guò)研究沉積物中碳同位素組成(13C)以提取古氣候信息[33]。煤層中有機(jī)碳同位素13C可以表示泥炭沉積時(shí)的溫度和濕度條件,氣候因子(濕度和溫度)對(duì)植物碳同位素組成具有重要的影響[16,34-35],所以,13C與降水量具有負(fù)相關(guān)關(guān)系,即隨著降雨量的增多,13C值減小(變輕);在較干旱環(huán)境下,植物通過(guò)調(diào)節(jié)氣孔阻力以避免過(guò)多的水分蒸發(fā),導(dǎo)致細(xì)胞內(nèi)CO2濃度降低,進(jìn)而引起13C值變化[16,36-37]。在植物種類、大氣成分等條件一定情況下,干熱氣候有利于13C在植物體內(nèi)的富集,成煤植物13C值偏高;相反,濕暖氣候不利于13C在植物體內(nèi)富集,成煤植物13C值偏低[38]。即隨著溫度升高13C值變大,反映溫濕—干熱的古氣候變化;相反,13C值變小,反映干熱—溫濕的古氣候變化。
圖2 彬長(zhǎng)礦區(qū)延安組4號(hào)煤層煤巖組分含量與古氣候旋回變化
彬長(zhǎng)礦區(qū)延安組4號(hào)煤層中13C具有明顯的負(fù)偏移趨勢(shì)和正偏移趨勢(shì),揭示了由干熱向溫濕、由溫濕向干熱的古氣候轉(zhuǎn)變,進(jìn)而也可識(shí)別出4號(hào)煤層沉積期經(jīng)歷了溫濕–干熱–溫濕的古氣候演化過(guò)程,編號(hào)為Ⅰ、Ⅱ、Ⅲ、Ⅳ(圖3)。
不同的表生自然環(huán)境對(duì)不同性質(zhì)元素的分解、遷移、富集行為等具有影響,因此,元素在沉積物中的波動(dòng)性可一定程度地反映沉積時(shí)氣候環(huán)境條件。筆者在參考前人關(guān)于古氣候地球化學(xué)判別標(biāo)志[39-40]的前提下,采用元素對(duì)比值進(jìn)行沉積環(huán)境分析。
前人研究認(rèn)為,喜濕型微量元素主要有Cr、Ni、Mn、Cu、Fe、Ba、Br、Co、Cs、Hf、Rb、Sc、Th等,而喜干型微量元素主要有Sr、Pb、Au、As、Ca、Na、Ta、U、Zn、Mg、Mo、B等[41]。元素Sr含量大于20 μg/g,反映氣候干熱,小于0.15 μg/g,反映氣候溫濕;元素Mn含量大于0.15 μg/g,反映氣候干熱,小于0.15 μg/g反映氣候溫濕;Sr/Cu值大于10反映干熱氣候,小于10反映溫濕氣候[42-45]。使用微量元素對(duì)古氣候進(jìn)行研究過(guò)于單一,本文還探討了具有特征指示意義的常量元素的比值變化。一般情況下,(Mg)/(Ca)值大于0.5反映溫濕氣候,小于0.5反映干旱氣候[46];(FeO)/(Fe2O3)比值大于0.7反映潮濕氣候,小于0.7反映干旱氣候[30,47];(CaO)/((MgO+Al2O3))值大于0.6反映溫暖氣候,小于0.6反映較冷氣候;(CaO+K2O+Na2O)/(Al2O3)值大于5反映干旱氣候,小于5反映濕潤(rùn)氣候[48-49]。
在彬長(zhǎng)礦區(qū)延安組4號(hào)煤層中,各元素含量及各元素比值的變化趨勢(shì)基本相似,變化幅度局部略有差別。根據(jù)元素含量及其比值的變化趨勢(shì)識(shí)別出4號(hào)煤層沉積期經(jīng)歷了4次溫濕–干熱的古氣候旋回變化,由早到晚各古氣候旋回依次標(biāo)號(hào)為Ⅰ、Ⅱ、Ⅲ、Ⅳ,該煤層厚度為11.30 m,平均每個(gè)氣候旋回厚度為2.83 m(圖4)。
圖3 彬長(zhǎng)礦區(qū)延安組4號(hào)煤層碳同位素與古氣候旋回變化
根據(jù)煤巖顯微組分法、特征元素法和有機(jī)質(zhì)穩(wěn)定碳同位素法,均可在鄂爾多斯南部彬長(zhǎng)礦區(qū)延安組4號(hào)巨厚煤層中識(shí)別出4個(gè)溫濕–干熱的古氣候旋回,每個(gè)旋回變化都表現(xiàn)為溫濕–干熱–溫濕的變化過(guò)程,平均每個(gè)氣候旋回厚度為2.83 m。
植物歷來(lái)有自動(dòng)“溫度計(jì)”之稱,實(shí)踐證明,一定的植物群落反映一定的氣候,古植物遺體的大量堆積是聚煤作用發(fā)生的物質(zhì)基礎(chǔ),通過(guò)對(duì)煤層(夾矸)中古植物孢粉組合的相關(guān)分析與古植物化石的識(shí)別,可以恢復(fù)成煤期的古植物群落。古植物孢粉在煤層及細(xì)碎屑巖中數(shù)量繁多、保存完好,不同類型的古植物孢粉組合及生態(tài)特征可反映成煤期氣候。
根據(jù)煤層中古植物的孢粉類型、含量及孢粉母體的生態(tài)特征(干濕、冷熱等),提取煤層中蘊(yùn)含的古氣候信息。本文利用3種識(shí)別方法所得出的古氣候旋回變化次數(shù),與莊軍等[10]在鄂爾多斯盆地南部黃隴煤田延安組4號(hào)巨厚煤層中識(shí)別出的4次溫濕–干熱的古氣候旋回變化一致,論證了以上3種識(shí)別方法的可靠性。
前人研究表明,新近紀(jì)煤層中蘊(yùn)含著米蘭科維奇旋回信息,并且可以利用頻譜分析等信號(hào)尋找這些旋回信息,進(jìn)而研究煤層中的古氣候旋回[50-52]。通過(guò)對(duì)4號(hào)巨厚煤層的測(cè)井?dāng)?shù)據(jù)(自然伽馬、巖石密度測(cè)井?dāng)?shù)據(jù))進(jìn)行頻譜分析處理,查明其中蘊(yùn)含的地球公轉(zhuǎn)軌道參數(shù),識(shí)別出米蘭科維奇旋回,進(jìn)而分析巨厚煤層中由地球公轉(zhuǎn)軌道參數(shù)形成的古氣候旋回次數(shù)和平均厚度,從成因機(jī)制上闡明古氣候旋回機(jī)理,進(jìn)而驗(yàn)證上述3種方法綜合識(shí)別出的古氣候旋回的可靠性。
Wang Dongdong等[53]通過(guò)對(duì)彬長(zhǎng)礦區(qū)延安組4號(hào)煤層的自然伽馬和巖石密度測(cè)井?dāng)?shù)據(jù)進(jìn)行一維連續(xù)小波變換分析,根據(jù)頻譜分析識(shí)別出的低頻、中頻和高頻的平均值分別為0.28、0.65、1.33周期/m,進(jìn)而識(shí)別出其中蘊(yùn)含的米蘭科維奇旋回,并進(jìn)一步劃分出4號(hào)煤層中存在的不同軌道參數(shù)控制的米蘭科維奇旋回,即4個(gè)偏心率控制的長(zhǎng)周期旋回、9個(gè)斜率控制的中周期旋回和15個(gè)歲差控制的短周期旋回。由此可知,筆者用3種方法識(shí)別出的4號(hào)煤層中的古氣候旋回,是由偏心率控制的天文周期旋回,再次驗(yàn)證了本文方法判定的旋回結(jié)果的可靠性。
a. 通過(guò)煤巖顯微組分、特征元素及有機(jī)質(zhì)穩(wěn)定碳同位素等方法均可在鄂爾多斯盆地彬長(zhǎng)礦區(qū)延安組4號(hào)煤層內(nèi)識(shí)別出4個(gè)溫濕–干熱的古氣候旋回。識(shí)別結(jié)果與前人在鄰區(qū)使用古植物含量系數(shù)法識(shí)別的古氣候旋回結(jié)果非常吻合,證實(shí)本研究方法的可靠性。
b. 通過(guò)比較分析彬長(zhǎng)礦區(qū)巨厚煤層中蘊(yùn)含的控制氣候演化的米蘭科維奇旋回信息,認(rèn)為該巨厚煤層中古氣候旋回的發(fā)育與演化主要受到天體軌道參數(shù)中偏心率長(zhǎng)周期的控制。
圖4 彬長(zhǎng)礦區(qū)延安組4號(hào)煤層元素特征與古氣候旋回變化
請(qǐng)聽作者語(yǔ)音介紹創(chuàng)新技術(shù)成果等信息,歡迎與作者進(jìn)行交流
[1] SUTTNER L J,DUTTA P K. Alluvial sandstone composition and palaeoclimate. Framework mineralogy[J]. Journal of Sedimentary Petrology,1986,56:329–345.
[2] HIERONYMUS B,KOTSCHOUBEY B,BOULEGUE J. Gallium behavior in some contrasting lateritic profiles from Cameroon and Brazil[J].Journal of Geochemical Exploration,2001,72(2):147–163.
[3] BECKMANN B,F(xiàn)L?GEL S,HOFMANN P,et al. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response[J]. Nature,2005,437(7056):241–244.
[4] RATCLIFFE K T,WRIGHT A M,HALLSWORTH C,et al. Alternative correlation techniques in the petroleum industry:An example from the(Lower Cretaceous) Basal Quartz,southern Alberta,Bullet[J]. American Association of Petroleum Geologists Bulletin,2004,88(10):1419–1432.
[5] ROY D K,ROSER B P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments,Khalaspir basin,Bangladesh[J]. Gondwana Research,2013,23(3):1163–1171.
[6] 武子玉,周永昶. 吉南地區(qū)不同沉積環(huán)境原煤微量元素地球化學(xué)特征[J]. 巖石礦物學(xué)雜志,2004,23(4):361–364. WU Ziyu,ZHOU Yongchang. Microelements geochemical characteristics of coals in different sedimentary environments of southern Jilin Province[J]. Acta Petrologica Et Mineralogica,2004,23(4):361–364.
[7] YANDOKA SARKI B M,ABDULLAH H W,ABUBAKAR M B,et al. Geochemistry of the Cretaceous coals from Lamja Formation,Yola sub-basin,northern Benue trough,NE Nigeria:Implications for paleoenvironment,paleoclimate and tectonic setting[J]. Journal of African Earth Sciences,2015,104:56–70.
[8] 周春光,楊起,潘治貴,等. 從煤巖成分看延安期古氣候變遷[J]. 中國(guó)煤田地質(zhì),1996,8(4):12–14. ZHOU Chunguang,YANG Qi,PAN Zhigui,et al. Paleo-climate evolution of Yan’an stage inferred from petrographic composition of coal[J]. Coal Geology of China,1996,8(4):12–14.
[9] 閻存鳳,袁劍英,趙應(yīng)成,等. 蒙、甘、青地區(qū)侏羅紀(jì)孢粉組合序列及古氣候[J]. 天然氣地球科學(xué),2006,17(5):634–639. YAN Cunfeng,YUAN Jianying,ZHAO Yingcheng,et al. Jurassic spora-pollen assemblages and paleoclimate in Inner Mongolia,Gansu,Qinghai,China[J]. Natural Gas Geoscience,2006,17(5):634–639.
[10] 莊軍,吳景鈞. 鄂爾多斯盆地南部早中侏羅世聚煤特征與煤的綜合利用[M]. 北京:地質(zhì)出版社,1996. ZHUANG Jun,WU Jingjun.Comprehensive research on Lower and Middle Jurassic coal-accumulation and Multi-utilization of coal resources in southern part of Ordos basin [M]. Beijing:Geological Publishing House,1996.
[11] BIRGENHEIER L P,F(xiàn)RANK T D,F(xiàn)IELDING C R,et al. Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the Late Palaeozoic Ice Age[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2010,286(3/4):178–193.
[12] RETALLACK G J,SHELDON N D,CARR P F,et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction[J]. Palaeogeography,Palaeoclima-tology,Palaeoecology,2011,308(1/2):233–251.
[13] LóPEZ-DíAS V,URBANCZYK J,BLANCO C G,et al. Biomarkers as paleoclimate proxies in peatlands in coastal high plains in Asturias,N Spain[J]. International Journal of Coal Geology,2013,116/117:270–280.
[14] IZART A,SUAREZ-RUIZ I,BAILEY J. Paleoclimate reconstruction from petrography and biomarker geochemistry from Permian humic coals in Sydney coal basin(Australia)[J]. International Journal of Coal Geology,2015,138:145–157.
[15] BECHTEL A,GRUBER W,SACHSENHOFER R F,et al. Organic geochemical and stable carbon isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps(Austria)[J]. Organic Geochemistry,2001,32(11):1289–1310.
[16] 魯靜,邵龍義,王占剛,等. 柴北緣侏羅紀(jì)煤層有機(jī)碳同位素組成與古氣候[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2014,43(4):612–618. LU Jing,SHAO Longyi,WANG Zhangang,et al. Organic carbon isotope composition and paleoclimatic evolution of Jurassic coal seam in the northern Qaidam basin[J]. Journal of China University of Mining & Technology,2014,43(4):612–618.
[17] 王雙明,張玉平. 鄂爾多斯侏羅紀(jì)盆地形成演化和聚煤規(guī)律[J]. 地學(xué)前緣,1999,6(增刊1):147–155. WANG Shuangming,ZHANG Yuping. Study on the formation,evolution and coal-accumulating regularity of the Jurassic Ordos basin[J]. Earth Science Frontiers,1999,6(S1):147–155.
[18] 苗淑娟. 內(nèi)蒙古固陽(yáng)含煤層中生代地層及古生物(九):孢子花粉[M]. 北京:地質(zhì)出版社,1982. MIAO Shujuan. Mesozoic strata and paleontology of Guyang coal bearing seam, Inner Mongolia(九):Spores pollen[M]. Beijing:Geological Publishing House,1982.
[19] HARRIS T M. A Litassic-Rhaetic flora in south Wales[J]. Proceedings of the Royal Society of London,Series B, Biological Sciences,1957,147(928):289–308.
[20] VAKHRAMEEV V A. Range and paleontology of Mesozoic conlfers,Cheirilepidiaceae[J]. Paleontological Journal,1970,70(1):19–34.
[21] 段宗懷.花粉及其古氣候意義[J]. 煤田地質(zhì)與勘探,1991,19(6):14–21. DUAN Zonghuai.pollen and its paleoclimate meaning[J]. Coal Geology & Exploration,1991,19(6):14–21.
[22] 錢麗君,吳景鈞. 陜西北部侏羅紀(jì)含煤地層及聚煤特征[M]. 西安:西北大學(xué)出版社,1987. QIAN Lijun,WU Jingjun. Jurassic coal-bearing strata and accumulation from northern Shaanxi[M]. Xi’an:Northwest University Press,1987.
[23] 宋孝忠. 煤巖顯微圖象假邊界對(duì)顯微組分組自動(dòng)識(shí)別的影響[J]. 煤田地質(zhì)與勘探,2019,47(6):45–50. SONG Xiaozhong. Effect of false boundary of microscopic image on automatic identification of maceral group[J]. Coal Geology & Exploration,2019,47(6):45–50.
[24] 楊起,韓德馨. 中國(guó)煤田地質(zhì)學(xué)[M]. 北京:煤炭工業(yè)出版社,1979. YANG Qi,HAN Dexin. Coalfield geology of China[M]. Beijing:China Coal Industry Publishing House,1979.
[25] 王東東,侯懿雋,劉海燕,等. 巨厚煤層沉積間斷面的綜合判別方法與成因模式[J]. 煤炭科學(xué)技術(shù),2018,46(2):56–64. WANG Dongdong,HOU Yijun,LIU Haiyan,et al. Comprehensive identification method of sedimentary hiatal surface in ultra thick coal seam and its genetic mode[J]. Coal Science and Technology,2018,46(2):56–64.
[26] STACH E. Stach’s textbook of coal petrology,third revision[M]. Beijing:China Coal Industry Publishing House,1990.
[27] 方愛民,雷家錦,金奎勵(lì),等. 山西西山煤田7號(hào)煤層煤相研究[J]. 中國(guó)煤田地質(zhì),2003,15(5):12–16. FANG Aimin,LEI Jiajin,JIN Kuili,et al. An anthracographic study on No.7 coal in Xishan coalfield,Shanxi[J]. Coal Geology of China,2003,15(5):12–16.
[28] 李清. 山西延川南煤層氣田2號(hào)煤層煤相研究:煤層氣開發(fā)選區(qū)意義[J]. 石油實(shí)驗(yàn)地質(zhì),2014,36(2):245–248. LI Qing. Coal facies of No.2 coal in Yanchuannan coal field of Shanxi:Significance for constituencies of coalbed methane exploitation[J]. Petroleum Geology & Experiment,2014,36(2):245–248.
[29] 王德祖. 華亭礦區(qū)5號(hào)煤層煤相研究[J]. 中國(guó)煤田地質(zhì),2005,17(4):6–8. WNAG Dezu. A study on 5 coal seam facies,Huating mining area[J]. Coal Geology of China,2005,17(4):6–8.
[30] 騰格爾,劉文匯,徐永昌,等. 缺氧環(huán)境及地球化學(xué)判識(shí)標(biāo)志的探討:以鄂爾多斯盆地為例[J]. 沉積學(xué)報(bào),2004,22(2):365–372. Tonger,LIU Wenhui,XU Yongchang,et al. The discussion on anoxic environments and its geochemical identifying indices[J]. Acta Sedimentologica Sinica,2004,22(2):365–372.
[31] 何剛,李雙應(yīng). 晚古生代全球古氣候特征及其研究方法[J]. 安徽地質(zhì),2006,16(4):241–246. HE Gang,LI Shuangying. Global palaeoclimate characteristics and research technique of Late Palaeozoic[J]. Geology of Anhui,2006,16(4):241–246.
[32] 邵龍義,JONES T P. 桂中晚二疊世碳酸鹽巖碳同位素的地層學(xué)意義[J]. 沉積學(xué)報(bào),1999,17(1):84–88. SHAO Longyi,JONES T P. Carbon isotopes and the stratigraphical implication of the Late Permian carbonates in central Guangxi[J]. Acta Sedimentologica Sinica,1999,17(1):84–88.
[33] 李相博,陳踐發(fā),張平中. 青藏高原(東北部)現(xiàn)代植物碳同位素組成特征及其氣候信息[J]. 沉積學(xué)報(bào),1999,17(2):325–329. LI Xiangbo,CHEN Jianfa,ZHANG Pingzhong. The characteristics of carbon isotope composition of modern plants over Qinghai-Tibet plateau(NE) and its climatic information[J]. Acta Sedimentologica Sinica,1999,17(2):325–329.
[34] 邵龍義. 碳酸鹽巖氧、碳同位素與古溫度等的關(guān)系[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),1994,23(1):39–45. SHAO Longyi. The relation of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc.[J]. Journal of China University of Mining & Technology,1994,23(1):39–45.
[35] 邵龍義,竇建偉,張鵬飛. 西南地區(qū)晚二疊世氧、碳穩(wěn)定同位素的古地理意義[J]. 地球化學(xué),1996,25(6):575–581. SHAO Longyi,DOU Jianwei,ZHANG Pengfei. Paleogeographic significances of carbon and oxygen isotopes in Late Permian rocks of southwest China[J]. Geochimica,1996,25(6):575–581.
[36] 王謀,李勇,黃潤(rùn)秋,等. 青藏高原腹地植物碳同位素組成對(duì)環(huán)境條件的響應(yīng)[J]. 山地學(xué)報(bào),2005,23(3):274–279. WANG Mou,LI Yong,HUANG Runqiu,et al. The responses of floral carbonate isotopic compositions of the central Qinghai-Tibet plateau plants to environmental conditions[J]. Journal of Mountain Science,2005,23(3):274–279.
[37] 尹錦濤,吳穎,姜呈馥,等. 子長(zhǎng)–延川礦權(quán)區(qū)晚三疊世聚煤環(huán)境及聚煤規(guī)律[J]. 煤田地質(zhì)與勘探,2016,44(4):8–13. YIN Jintao,WU Ying,JIANG Chengfu,et al. Late Triassic coal-forming environment and coal-accumulating law in Zichang-Yanchuan mining area[J]. Coal Geology & Exploration,2016,44(4):8–13.
[38] 魯靜,楊敏芳,邵龍義,等. 陸相盆地古氣候變化與環(huán)境演化、聚煤作用[J]. 煤炭學(xué)報(bào),2016,41(7):1788–1797. LU Jing,YANG Minfang,SHAO Longyi,et al. Paleoclimate change and sedimentary environment evolution,coal accumulation:A Middle Jurassic terrestrial[J]. Journal of China Coal Society,2016,41(7):1788–1797.
[39] 陳海霞. 川西雅安地區(qū)白堊紀(jì)古環(huán)境古氣候研究[D]. 成都:成都理工大學(xué),2009. CHEN Haixia.Research of paleoenvironment and paleoclimate of Cretaceous in Ya’an area, western Sichuan basin[D]. Chengdu:Chengdu University of Technology,2009.
[40] 付亞飛,邵龍義,張亮,等. 焦作煤田石炭–二疊紀(jì)泥質(zhì)巖地球化學(xué)特征及古環(huán)境意義[J]. 沉積學(xué)報(bào),2018,36(2):415–426. FU Yafei,SHAO Longyi,ZHANG Liang,et al. Geochemical characteristics of mudstones in the Permo-Carboniferous Strata of the Jiaozuo coalfield and their paleoenvironmental significance[J]. Acta Sedimentologica Sinica,2018,36(2):415–426.
[41] 范玉海,屈紅軍,王輝,等. 微量元素分析在判別沉積介質(zhì)環(huán)境中的應(yīng)用:以鄂爾多斯盆地西部中區(qū)晚三疊世為例[J]. 中國(guó)地質(zhì),2012,39(2):382–389. FAN Yuhai,QU Hongjun,WANG Hui,et al. The application of trace elements analysis to identifying sedimentary media environment:A case study of Late Triassic strata in the middle part of western Ordos basin[J]. Geology in China,2012,39(2):382–389.
[42] 熊小輝,肖加飛. 沉積環(huán)境的地球化學(xué)示蹤[J]. 地球與環(huán)境,2011,39(3):405–414. XIONG Xiaohui,XIAO Jiafei. Geochemical indicators of sedimentary environments:A summary[J]. Earth and Environment,2011,39(3):405–414.
[43] 王隨繼,黃杏珍,妥進(jìn)才,等. 泌陽(yáng)凹陷核桃園組微量元素演化特征及其古氣候意義[J]. 沉積學(xué)報(bào),1997,15(1):65–70. WANG Suiji,HUANG Xingzhen,TUO Jincai,et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation,Biyang depression[J]. Acta Sedimentologica Sinica,1997,15(1):65–70.
[44] 薛羅. 恩平凹陷古近系烴源巖元素地球化學(xué)綜合評(píng)價(jià)[D]. 武漢:中國(guó)地質(zhì)大學(xué)(武漢),2013. XUE Luo.Element geochemistry evaluation of Paleogene source rocks in Enping depression[D]. Wuhan:China University of Geosciences(Wuhan),2013.
[45] 胡曉峰,劉招君,柳蓉,等. 撫順盆地始新統(tǒng)計(jì)軍屯組微量元素特征及油頁(yè)巖的有利成礦條件[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2012,42(增刊1):60–71.HU Xiaofeng,LIU Zhaojun,LIU Rong,et al. Trace element characteristics of Eocene Jijuntun Formation and the favorable metallogenic conditions of oil shale in Fushun basin[J]. Journal of Jilin University(Earth Science Edition),2012,42(S1):60–71.
[46] 張彬,姚益民. 利用微量元素統(tǒng)計(jì)分析東營(yíng)凹陷新生代沙四晚期湖泊古環(huán)境[J]. 地層學(xué)雜志,2013,37(2):186–192. ZHANG Bin,YAO Yimin. Trace element and palaeoenvironmental analyses of the Cenozoic Lacustrine deposits in the Upper E4 Submember of the Dongying basin[J]. Journal of Stratigraphy,2013,37(2):186–192.
[47] 梁文君,肖傳桃,肖勝. 川西地區(qū)中二疊世—中三疊世微量、常量元素與古環(huán)境、古氣候關(guān)系研究[J]. 科學(xué)技術(shù)與工程,2015,15(11):14–24. LIANG Wenjun,XIAO Chuantao,XIAO Sheng. Study on relationships between paleoenvironment,paleoclimate of Middle Permian-Middle Triassic and constant,trace elements in western Sichuan[J]. Science Technology and Engineering,2015,15(11):14–24.
[48] 杜晨,張兵,張世濤,等. 淺談湖泊沉積環(huán)境演變中元素地球化學(xué)的應(yīng)用及原理[J]. 地質(zhì)與資源,2012,21(5):487–492. DU Chen,ZHANG Bing,ZHANG Shitao,et al. Application and principle of element geochemistry in the evolution of lake sedimentary environment[J]. Geology and Resources,2012,21(5):487–492.
[49] 趙錫文. 古氣候?qū)W概論[M]. 北京:地質(zhì)出版社,1992. ZHAO Xiwen. Introduction to paleoclimatology[M]. Beijing:Geology Publishing House,1992.
[50] LARGE D J. A 1.16 Ma record of carbon accumulation in western European peatland during the Oligocene from the Bally money lignite,northern Ireland[J]. Journal of the Geological Society,2007,164(6):1233–1240.
[51] LARGE D J,JONES T F,SOMERFIELD C,et al. High-resolution terrestrial record of orbital climate forcing in coal[J]. Geology,2003,31(4):303–306.
[52] 邵龍義,王學(xué)天,魯靜,等. 再論中國(guó)含煤巖系沉積學(xué)研究進(jìn)展及發(fā)展趨勢(shì)[J]. 沉積學(xué)報(bào),2017,35(5):1016–1031. SHAO Longyi,WANG Xuetian,LU Jing,et al. A reappraisal on development and prospect of coal sedimentology in China[J]. Acta Sedimentologica Sinica,2017,35(5):1016–1031.
[53] WANG Dongdong,YAN Zhiming,LIU Haiyan,et al. The net primary productivity of Mid-Jurassic peatland and its control factors:Evidenced by the Ordos basin[J]. International Journal of Mining Science and Technology,2018,28(2):177–185.
Analysis of paleoclimatic cycles in the ultra thick coal seam of Yan’an Formation in the southern Ordos basin
DONG Guoqi, WANG Dongdong, LIU Haiyan, MAO Qiang, YIN Lusheng
(College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)
Coal is a climate-sensitive sediment that contains abundant paleoclimate information. In order to find out the paleoclimate information contained in the coal seam and the evolution of its controlling factors, the No.4 thick coal seam in the first member of Yan’an Formation in the south of Ordos basin was studied. Based on the intensive sampling of the thick coal seam, the information of organic macerals, major and trace elements, and stable carbon isotopes of organic matter were systematically tested. By using the macerals, characteristic elements and carbon isotopes of coal and rocks, four cycles of paleoclimate with alternation of warm-wet and dry-heat have been identified in the thick coal seam. The results of this study are similar to those of the previous studies in the same seam in the adjacent area, and the paleoclimatic cycle identified by the method of paleovegetation content coefficient was very consistent. Based on the comparative analysis of the Milankovitch cycle information which controlled the climate evolution in the thick coal seam, it is considered that the development and evolution of the paleoclimate cycle in the thick coal seam were mainly controlled by the long period of eccentricity in the orbit parameters of the celestial body. The results confirm the reliability of the method and elucidate the genetic mechanism of paleoclimate cycloaddition.
ultra thick coal seam; paleoclimate cycle; Milankovitch cycle; controlling factor; eccentricity; Binchang mining area
P539.2;P618.11
A
10.3969/j.issn.1001-1986.2020.03.008
1001-1986(2020)03-0051-08
2019-04-15;
2019-08-05
國(guó)家自然科學(xué)基金項(xiàng)目(41402086)
National Natural Science Foundation of China(41402086)
董國(guó)旗,1993年生,男,安徽阜陽(yáng)人,碩士,研究方向?yàn)槊旱刭|(zhì)學(xué). E-mail:2410693539@qq.com
王東東,1983年生,男,山東濰坊人,博士,副教授,碩士生導(dǎo)師,從事煤田地質(zhì)與勘探研究工作. E-mail:wdd02_1@163.com
董國(guó)旗,王東東,劉海燕,等. 鄂爾多斯盆地南部延安組巨厚煤層內(nèi)古氣候旋回分析[J]. 煤田地質(zhì)與勘探,2020,48(3):51–58.
DONG Guoqi,WANG Dongdong,LIU Haiyan,et al. Analysis of paleoclimatic cycles in the ultra thick coal seam of Yan’an Formation in the southern Ordos basin[J]. Coal Geology & Exploration,2020,48(3):51–58.
(責(zé)任編輯 范章群)