陳鑫 張澤 李東慶
摘 ? 要:為探究圍壓對水泥土強度特性的影響以及建立不同圍壓影響下的損傷本構(gòu)模型,開展室溫和凍結(jié)狀態(tài)不同圍壓下三軸剪切試驗. 考察了圍壓對水泥土力學(xué)參數(shù)的影響規(guī)律,建立能夠反映出低圍壓對凍結(jié)水泥土強度的強化作用和高圍壓的弱化作用的修正Hoek-Brown強度準則. 假設(shè)水泥土微元強度的分布規(guī)律服從雙參數(shù)的Weibull函數(shù),基于Hoek-Brown強度準則和其修正形式分別確定室溫和凍結(jié)狀態(tài)下水泥土微元強度,建立了考慮圍壓的統(tǒng)計損傷本構(gòu)模型. 結(jié)果表明,基于Hoek-Brown強度準則和其修正形式建立的損傷本構(gòu)模型能夠較好地描述室溫和凍結(jié)狀態(tài)下水泥土應(yīng)力-應(yīng)變曲線,且能夠反映出凍結(jié)狀態(tài)水泥土低圍壓下的應(yīng)變軟化現(xiàn)象與高圍壓下的應(yīng)變硬化現(xiàn)象. 室溫狀態(tài)時不同圍壓下?lián)p傷變量隨軸向應(yīng)變變化曲線形狀相似,均隨軸向應(yīng)變增加呈“S”型單調(diào)遞增. 凍結(jié)狀態(tài)下低圍壓抑制水泥土損傷劣化程度;高圍壓使其損傷劣化程度增加,在軸向應(yīng)變很小時,損傷變量就達到較大值.
關(guān)鍵詞:水泥土;強度;應(yīng)力應(yīng)變關(guān)系;Hoek-Brown強度準則;損傷本構(gòu)模型
中圖分類號:TU443 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A
Abstract:In order to investigate the influence of confining pressure on strength characteristics of cemented soil and establish a damage constitutive model under different confining pressures, triaxial shear tests under different confining pressures at room temperature and freezing state were carried out. The influence of confining pressure on mechanical parameters of cement soil was investigated. A modified Hoek-Brown strength criterion which can reflect the strengthening effect of low confining pressure and the weakening effect of high confining pressure on the strength of frozen cement soil was established. It is assumed that the distribution law of cement soil micro-element strength obeys the two-parameter Weibull function. Based on the Hoek-Brown strength criterion and its modified form, the micro-element strength of cement soil at room temperature and frozen state is determined, respectively, and the statistical damage constitutive model considering the influence of confining pressure is established. The results show that the damage constitutive model based on Hoek-Brown strength criterion and its modified form can describe the stress-strain curves of cement soil at room temperature and freezing state, and can reflect the strain softening phenomenon under low confining pressure and strain hardening phenomenon under high confining pressure. Under different confining pressures at room temperature, the damage variables change with the axial strain in a similar shape, showing a monotonic "S" pattern as the axial strain increases. Low confining pressure inhibits the damage and deterioration of cement soil under freezing condition. High confining pressure increases the degree of damage deterioration, and the damage variable reaches a larger value when the axial strain is very small.
Key words:cement soil;strength;stress-strain relationship;Hoek-Brown strength criterion;damage constitutive model
2 ? 試驗結(jié)果分析
2.1 ? 變形特征
圖2為室溫和凍結(jié)狀態(tài)水泥土在不同圍壓下偏應(yīng)力-軸向應(yīng)變曲線.
從圖2中可以看出,當軸向應(yīng)變較小時,室溫和凍結(jié)狀態(tài)下偏應(yīng)力隨軸向應(yīng)變增大近似呈線性增大,隨后過渡到彈塑性階段. 室溫狀態(tài)下試驗設(shè)定圍壓較小,偏應(yīng)力-應(yīng)變曲線均表現(xiàn)出明顯的應(yīng)變軟化現(xiàn)象. 凍結(jié)狀態(tài)下水泥土偏應(yīng)力-應(yīng)變曲線形態(tài)受圍壓影響明顯,圍壓小于3.5 MPa時,其應(yīng)力-應(yīng)變關(guān)系表現(xiàn)出明顯的應(yīng)變軟化現(xiàn)象;圍壓大于等于3.5 MPa時,其應(yīng)力-應(yīng)變關(guān)系則呈應(yīng)變硬化現(xiàn)象. 室溫和凍結(jié)狀態(tài)下施加不同圍壓時水泥土偏應(yīng)力-應(yīng)變曲線可用文獻[21]提出的改進鄧肯-張模型描述,擬合線示于圖2,該模型表達式如下:
室溫狀態(tài)下施加的圍壓較小時,偏應(yīng)力-應(yīng)變曲線峰后脆性明顯,隨著圍壓增大,應(yīng)力峰值附近的塑性變形也增大. 峰值應(yīng)變與圍壓的關(guān)系如圖3所示.
可知式(3)中參數(shù)a1代表試驗初始切線模量E0的倒數(shù). 室溫和凍結(jié)狀態(tài)下水泥土的E0與圍壓關(guān)系如圖4所示.
從圖4可知室溫和凍結(jié)狀態(tài)下初始切線模量E0均隨圍壓增大而增大,但變化形式不同. 室溫狀態(tài)下初始切線模量E0隨圍壓增大而增大,但增大趨勢迅速變緩,可借鑒圍壓對巖石楊氏模量影響公式來描述二者之間關(guān)系[22],擬合公式示于圖4中. 認為水泥土試樣內(nèi)部含若干裂隙缺陷,軸向荷載增加時,裂隙之間可能發(fā)生有摩擦的滑移,也可能不發(fā)生滑移. 當圍壓較大時發(fā)生滑移的裂隙較少,表現(xiàn)出初始切線模量E0隨圍壓增大而增大. 較小的圍壓就可使大部分裂隙缺陷受到約束而不發(fā)生滑移,隨著圍壓繼續(xù)增大,受約束的裂隙缺陷數(shù)目增加較小,表現(xiàn)為初始切線模量E0增大趨勢變緩. 凍結(jié)狀態(tài)下初始切線模量E0同樣隨圍壓增大而增大,開始時增長趨勢較緩,隨著圍壓增大,增長趨勢也越來越大. 凍結(jié)水泥土強度較大,較小圍壓難以使其壓密,其內(nèi)部受約束的裂隙缺陷數(shù)目較少,表現(xiàn)為初始切線模量E0隨圍壓增大緩慢增大. 凍結(jié)水泥土在較大圍壓作用下變得更加致密,雖然較大圍壓會使凍結(jié)水泥土內(nèi)部冰晶壓融而產(chǎn)生新的裂隙缺陷,但其內(nèi)部越來越多的裂隙缺陷受到約束,表現(xiàn)為初始切線模量E0隨圍壓增大迅速增大. 凍結(jié)狀態(tài)下水泥土E0與圍壓的關(guān)系可用指數(shù)函數(shù)表示,擬合公式如圖4(b)所示.
2.3 ? 強度特征
本文強度取值說明,當圖2中水泥土偏應(yīng)力-軸向應(yīng)變曲線呈應(yīng)變軟化時取峰值偏應(yīng)力作為極限強度;當偏應(yīng)力-應(yīng)變曲線呈應(yīng)變硬化時,取軸向應(yīng)變?yōu)?5%對應(yīng)的偏應(yīng)力值作為極限強度.
室溫和凍結(jié)狀態(tài)水泥土強度隨圍壓的變化規(guī)律如圖5所示. 從圖5中可以看出,室溫狀態(tài)下水泥土強度隨圍壓增加而增大;凍結(jié)狀態(tài)水泥土強度隨圍壓增加呈現(xiàn)出先增大后略微減小的趨勢. 圍壓小于3.5 MPa時,凍結(jié)狀態(tài)水泥土強度隨圍壓增加迅速增大;圍壓大于3.5 MPa時,強度基本不變甚至略有減小.
室溫和凍結(jié)狀態(tài)下水泥土試樣的最大軸向應(yīng)力 σ1max與圍壓σ3的關(guān)系如圖6所示. 隨著圍壓σ3增大,室溫和凍結(jié)狀態(tài)下水泥土的最大軸向應(yīng)力σ1max逐漸增大. 利用Coulomb準則進行回歸,回歸參數(shù)及相關(guān)系數(shù)示于圖6中. 可得室溫狀態(tài)下黏聚力c為0.641 MPa,內(nèi)摩擦角φ為37.08°,破壞面的法向與試樣軸向的夾角為63.54°;凍結(jié)狀態(tài)下黏聚力c為2.70 MPa,內(nèi)摩擦角12.79°,破壞面的法向與試樣軸向的夾角為51.40°. 室溫和凍結(jié)狀態(tài)下水泥土試樣的最大軸向應(yīng)力σ1max與圍壓σ3的關(guān)系雖然均可用線性的Mohr-Coulomb強度準則回歸且得到的相關(guān)系數(shù)較高,但是當σ1 = 0時外推得到的抗拉強度σt分別為0.64、4.32 MPa,與實際情況差別較大.
此外,大量有關(guān)凍土強度的研究表明,圍壓較小時,由于受到圍壓的作用,凍土三軸剪切過程中其內(nèi)部裂隙和孔洞發(fā)展受到限制,顆粒間的膠結(jié)作用得到一定程度的增強,最終表現(xiàn)為圍壓對凍土強度的強化作用;隨著圍壓的進一步增大,凍土內(nèi)的冰晶發(fā)生壓融,使未凍水含量增大,顆粒間膠結(jié)強度減小,最終表現(xiàn)為高圍壓對凍土強度的弱化作用. 從圖2中凍結(jié)狀態(tài)水泥土偏應(yīng)力-軸向應(yīng)變曲線可知,當圍壓大于等于3.5 MPa時,隨著圍壓進一步增大,最大偏應(yīng)力幾乎不變. 從圖6可以看出,非線性的Hoek-Brown強度準則在描述室溫狀態(tài)下水泥土的第一主應(yīng)力σ1和第三主應(yīng)力σ3關(guān)系時與Mohr-Coulomb強度準則相比相關(guān)系數(shù)更高,在拉伸區(qū)得到更符合實際的抗拉強度σt . 但是其同樣無法反映出高圍壓對凍土強度的弱化效應(yīng),因此對Hoek-Brown強度準則進行如下形式的修正:
利用修正的Hoek-Brown強度準則對凍結(jié)狀態(tài)下水泥土試樣的最大軸向應(yīng)力σ1max與圍壓σ3的關(guān)系進行回歸,結(jié)果如圖6所示,相關(guān)系數(shù)較高且在拉伸區(qū)得到的抗拉強度σt為0.69 MPa. 采用巴西劈裂法對凍結(jié)狀態(tài)下水泥土抗拉強度σt進行測試,結(jié)果如圖7所示,試驗測得的抗拉強度為0.65 MPa. 對比可知利用修正的Hoek-Brown強度準則計算得到的拉伸區(qū)抗拉強度σt與試驗實測值比較接近.
通過以下方式將試驗數(shù)據(jù)代入上述兩種強度準則來確定強度準則中包含的參數(shù):考慮所有8組試驗數(shù)據(jù)確定強度準則中的參數(shù),然后依次去掉最小圍壓時試驗數(shù)據(jù),采用剩余試驗數(shù)據(jù)確定強度準則中的參數(shù),得到兩種強度準則中參數(shù)及相關(guān)系數(shù)如表1所示,分別統(tǒng)計兩種強度準則中參數(shù)平均值和最大相對誤差.
從表1中可以看出,兩種強度準則中參數(shù)變化較小,相關(guān)系數(shù)較高. 從表1中還可以看出根據(jù)不同圍壓組數(shù)下試驗數(shù)據(jù)確定的改進Hoek-Brown強度準則參數(shù)計算出的臨界圍壓σcr變化很小,最大相對誤差僅為1.288%.
3 ? 基于Hoek-Brown強度準則的損傷本構(gòu)模型
假設(shè)室溫和凍結(jié)狀態(tài)下水泥土微元體強度的分布規(guī)律服從雙參數(shù)的Weibull分布[16-23],基于前文非線性的Hoek-Brown強度準則和修正的Hoek-Brown強度準則描述室溫和凍結(jié)狀態(tài)下水泥土微元破損時有效第一主應(yīng)力和有效第三主應(yīng)力的關(guān)系,通過水泥土三軸試驗數(shù)據(jù)確定模型參數(shù)值,建立復(fù)雜受力狀態(tài)下水泥土損傷本構(gòu)模型.
3.1 ? 模型建立
3.2 ? 模型參數(shù)確定
利用上述方法,根據(jù)室溫和凍結(jié)狀態(tài)水泥土三軸壓縮試驗數(shù)據(jù)對損傷本構(gòu)模型中參數(shù)進行確定,模型參數(shù)m和F0如表2所示.
已有關(guān)于模型參數(shù)m和F0物理意義的研究表明[23]:參數(shù)m反映了材料的脆性及延性特征,m越大,材料脆性特征越明顯,峰值應(yīng)變越小;參數(shù)F0反映了材料的強度特征,F(xiàn)0越大,材料強度越大,抵抗破壞的能力越強. 從表2可以看出,擬合得到的參數(shù)m和F0隨圍壓的變化而變化. 參照文獻[27-28]的方法,利用模型參數(shù)m和F0隨圍壓的變化規(guī)律對模型參數(shù)進行修正,以凍結(jié)狀態(tài)下數(shù)據(jù)為例,模型參數(shù)m和F0修正結(jié)果如式(27)所示,模型參數(shù)與圍壓關(guān)系如圖10所示.
3.4 ? 損傷變量演化特性
根據(jù)公式(17)(22)(27)可得室溫和凍結(jié)狀態(tài)荷載作用下水泥土損傷變量D,圖12為室溫和凍結(jié)狀態(tài)水泥土在不同圍壓下的損傷變量D演化曲線.
從圖12(a)中可看出,室溫狀態(tài)時不同圍壓下?lián)p傷變量D與軸向應(yīng)變關(guān)系曲線形狀相似,均隨軸向應(yīng)變增加呈“S”型單調(diào)遞增. 圍壓越大,達到相同應(yīng)變時損傷變量D越小,表現(xiàn)出較高圍壓下水泥土損傷劣化過程變緩,損傷程度減小. 這是由于較高圍壓限制了變形過程中試樣內(nèi)部缺陷的發(fā)展,使其力學(xué)性質(zhì)得到改善. 結(jié)合圖11(a)還可看出,在偏應(yīng)力-應(yīng)變曲線線彈性階段,損傷變量D增長緩慢,線彈性階段結(jié)束時,不同圍壓下?lián)p傷變量D較小且差別不大. 在偏應(yīng)力-應(yīng)變曲線由線彈性階段過渡到塑性階段,不同圍壓下?lián)p傷變量D迅速增加且差別逐漸增大.
凍結(jié)狀態(tài)時水泥土在不同圍壓下的損傷變量D同樣表現(xiàn)出隨軸向應(yīng)變增加而增加,但圍壓對損傷變量曲線形狀影響較大. 當圍壓較?。?.5 ~ 2.5 MPa)時,圍壓對損傷變量D的影響機制與室溫狀態(tài)類似,結(jié)合偏應(yīng)力-應(yīng)變曲線可知此時圍壓對凍結(jié)水泥土的強化作用占優(yōu)勢. 隨著圍壓進一步增大,相同軸向應(yīng)變時損傷變量D表現(xiàn)出隨圍壓增大而增大,即高圍壓使得損傷加劇. 高圍壓下(如圍壓為7.0 MPa),損傷變量D在軸向應(yīng)變很小時就表現(xiàn)出急劇的增長趨勢. 軸向應(yīng)變?yōu)?%時,圍壓為1.0、5.0、7.0 MPa時損傷變量分別為0.08、0.27、0.41. 說明高圍壓導(dǎo)致凍結(jié)水泥土試樣內(nèi)部冰晶壓融,水泥石顆粒間膠結(jié)強度減小,此時圍壓對凍結(jié)水泥土的弱化作用占優(yōu)勢.
4 ? 結(jié) ? 論
本文考慮水泥土材料非均勻性和隨機性的特點,基于連續(xù)介質(zhì)損傷力學(xué)理論,結(jié)合Hoek-Brown強度準則及其修正形式,建立了室溫和凍結(jié)狀態(tài)下水泥土統(tǒng)計損傷本構(gòu)方程,得到的主要結(jié)論如下:
1)室溫狀態(tài)時水泥土在不同圍壓下的應(yīng)力-應(yīng)變曲線均表現(xiàn)出應(yīng)變軟化現(xiàn)象. 當圍壓小于3.5 MPa時,凍結(jié)狀態(tài)下水泥土的應(yīng)力-應(yīng)變曲線表現(xiàn)為應(yīng)變軟化現(xiàn)象,圍壓大于等于3.5 MPa時表現(xiàn)為應(yīng)變硬化現(xiàn)象.
2)非線性的Hoek-Brown強度準則在描述室溫和凍結(jié)狀態(tài)下水泥土極限第一主應(yīng)力和第三主應(yīng)力關(guān)系時具有較高的精度,通過對Hoek-Brown強度準則的形式進行修正,其能夠描述低圍壓對凍結(jié)水泥土強度的強化作用和高圍壓的弱化作用.
3)基于Hoek-Brown強度準則及其修正形式建立的損傷本構(gòu)模型能夠較好地描述室溫和凍結(jié)狀態(tài)下水泥土應(yīng)力-應(yīng)變曲線,且能夠反映出凍結(jié)狀態(tài)水泥土低圍壓下的應(yīng)變軟化現(xiàn)象與高圍壓下的應(yīng)變硬化現(xiàn)象. 凍結(jié)狀態(tài)下得到的尺度參數(shù)F0隨圍壓增大呈現(xiàn)出先增加后減小的二次曲線變化規(guī)律,與凍結(jié)水泥土強度隨圍壓變化規(guī)律吻合.
4)室溫狀態(tài)時不同圍壓下?lián)p傷變量D均隨軸向應(yīng)變增加呈“S”型單調(diào)遞增. 圍壓越大,相同應(yīng)變時損傷變量D越小,表現(xiàn)出較高圍壓下水泥土損傷劣化程度減小. 凍結(jié)狀態(tài)下低圍壓抑制水泥土損傷劣化程度;高圍壓使其損傷劣化程度增加.
參考文獻
[1] ? ?胡向東. 上海灰黃色粉砂水泥改良土凍脹融沉性質(zhì)實驗[J]. 煤炭學(xué)報,2009,34(3):334—339.
HU X D. Laboratory research on properties of frost heave and thaw settlement of cement-improved Shanghai's grey-yellow silty sand[J]. Journal of China Coal Society,2009,34(3):334—339. (In Chinese)
[2] ? ?鮑俊安,楊平,王許諾. 水泥土凍脹特性試驗研究[J]. 鄭州大學(xué)學(xué)報(工學(xué)版),2013,34(1) :5—9.
BAO J A,YANG P,WANG ?X N. Experimental study on frost heave properties of cement-improved soil[J]. Journal of Zhengzhou University (Engineering Science),2013,34(1):5—9. (In Chinese)
[3] ? ?任輝,胡向東,洪澤群,等. 超淺埋暗挖隧道管幕凍結(jié)法積極凍結(jié)方案試驗研究[J]. 巖土工程學(xué)報,2019,41(2):320—328.
REN H,HU X D,HONG Z Q,et al. Experimental study on active freezing scheme of freeze-sealing pipe roof used in ultra-shallow buried tunnels[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):320—328. (In Chinese)
[4] ? ?馬巍,徐學(xué)祖,張立新. 凍融循環(huán)對石灰粉土剪切強度特性的影響[J]. 巖土工程學(xué)報,1999,21(2):158—160.
MA W,XU X Z,ZHANG L X. Influence of frost and thaw cycles on shear strength of lime silt[J]. Chinese Journal of Geotechnical Engineering,1999,21(2):158—160. (In Chinese)
[5] ? ?王天亮,劉建坤,田亞護. 凍融循環(huán)作用下水泥及石灰改良土靜力特性研究[J]. 巖土力學(xué),2011,32(1):193—198.
WANG T L,LIU J K,TIAN Y H. Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics,2011,32(1):193—198. (In Chinese)
[6] ? ?譚麗華. 水泥改良土凍脹融沉特性研究[D]. 上海:同濟大學(xué)土木工程學(xué)院,2008:18—33.
TAN L H. Investigation on properties of frost heave and thawing settlement of cement-improved soil[D]. Shanghai:School of Civil Engineering,Tongji University,2008:18—33. (In Chinese)
[7] ? ?胡俊. 高水壓砂性土層地鐵大直徑盾構(gòu)始發(fā)端頭加固方式研究[D]. 南京:南京林業(yè)大學(xué)土木工程學(xué)院,2012:16—28.
HU J. Study on the reinforcement methods of subway large-diameter shield launching in the sandy clay with high water pressure[D] Nanjing:School of Civil Engineering,Nanjing Forestry University,2012:16—28. (In Chinese)
[8] ? ?劉瑞鋒. 水泥改良土人工凍土性能及抑制凍脹融沉機理研究[D]. 上海:同濟大學(xué)土木工程學(xué)院,2008:43—49.
LIU R F. Study on the properties of artificial frozen soil of cement modified soil and the mechanism of inhibiting frost heaving[D]. Shanghai:School of Civil Engineering,Tongji University,2008:43—49. (In Chinese)
[9] ? ?儲鵬. 凍結(jié)條件下水泥改良土力學(xué)特性試驗研究[J].洛陽理工學(xué)院學(xué)報(自然科學(xué)版),2017,27(3):9—11.
CHU P. Test research on unconfined compressive strength of freezing cement soil[J]. Journal of Luoyang Institute of Science and Technology(Natural Science Edition), 2017, 27(3): 9—11. (In Chinese)
[10] ?王許諾,楊平,鮑俊安,等. 凍結(jié)水泥土無側(cè)限抗壓試驗研究[J]. 水文地質(zhì)與工程地質(zhì),2013,40(3) :79—83.
WANG X N,YANG P,BAO J A,et al. Test research on unconfined compressive strength of freezing cement soil[J]. Hydrogeology & Engineering Geology,2013,40(3):79—83. (In Chinese)
[11] ?于學(xué)敏,先注漿后凍結(jié)綜合方法加固粉細砂地層的試驗研究[D].北京:北京交通大學(xué)土木建筑工程學(xué)院,2009:31—69.
YU ?X M. Experimental study on strengthening fine sand stratum by grouting and grouting comprehensive method[D]. Beijing:School of Civil and Architectural Engineering,Beijing Jiaotong University,2009:31—69. (In Chinese)
[12] ?游小鋒,劉建坤,胡向東,等. 先注漿再凍結(jié)對粉細砂力學(xué)性質(zhì)影響的低溫三軸試驗[J]. 長安大學(xué)學(xué)報(自然科學(xué)版),2017,37(4):50—59.
YOU X F,LIU J K,HU X D,et al. Influence of freezing after grouting on mechanical properties of fine sand base on low-temperature triaxial test[J]. Journal of Chang'an University (Natural Science Edition),2017,37(4):50—59. (In Chinese)
[13] ?張向東,李軍,孫琦. 水泥改良風(fēng)積砂負溫動力性能與流變特征研究[J]. 巖土力學(xué),2018,12(39):4395—4403.
ZHANG X D,LI J,SUN Q,et al. Study of dynamic performance under negative temperature and rheology characteristic for cement improved aeolian sand[J]. Rock and Soil Mechanics,2018,12(39):4395—4403. (In Chinese)
[14] ?牛亞強,王旭,廖孟柯,等. 凍結(jié)改良黃土三軸強度和變形特性試驗研究[J]. 巖土工程學(xué)報,2016,38(增刊2):198—203.
NIU Y Q,WANG X,LIAO M K,et al. Experimental study on triaxial strength and deformation characteristics of frozen-improved loess[J]. Chinese Journal of Geotechnical Engineering,2016,38(S2):198—203. (In Chinese)
[15] ?張土喬. 水泥土的應(yīng)力-應(yīng)變關(guān)系及攪拌樁破壞特性研究[D]. 浙江:浙江大學(xué)建筑工程學(xué)院,1992:15—44.
ZHANG T Q. Stress-strain relationship of cemented soil and failure characteristics of mixing piles[D]. Zhejiang:School of Architecture and Engineering,Zhejiang University,1992:15—44. (In Chinese)
[16] ?童小東. 龔曉南,蔣永生. 水泥土的彈塑性損傷試驗研究[J]. 土木工程學(xué)報,2002,35(4):82—85.
TONG X D,GONG X N,JIANG Y S. Experimental study on elastic plastic damage of Cementedsoil[J]. China Civil Engineering Journal,2002,35(4):82—85. (In Chinese)
[17] ?陳慧娥. 有機質(zhì)影響水泥加固軟土效果的研究[D]. 長春:吉林大學(xué)建設(shè)工程學(xué)院,2006:98—110.
CHEN H E. A study on the behavior of organic matter in the progress of solidifying soft soil by cement[D]. Changchun:College of Construction Engineering,Jilin University,2006:98—110. (In Chinese)
[18] ?王立峰,朱向榮,張學(xué)文,等. 水泥土損傷模型的試驗研究[J]. 科技通報,2003,19(2):136—139.
WANG L F,ZHU X R,ZHANG X W,et al. Experimental analysis of yielding criterion of nanometer silicon and cement soil[J]. Bulletin of Science and Technology,2005,(21)3:327—331. (In Chinese)
[19] ?JGJ/T233—2011 水泥土配合比設(shè)計規(guī)程[S]. 北京:中國建筑工業(yè)出版社,2011:6.
JGJ/T233—2011 Specification for mix proportion design of cement soil[S]. Beijing:China Building Industry Press,2011:6. (In Chinese)
[20] ?柴明堂. 無機膠凝材料對高溫凍土的改良效果與機理研究[D]. 蘭州:中國科學(xué)院西北生態(tài)環(huán)境資源研究院,2018:21—24.
CHAI M T. Effectiveness and mechanism on modification of warm frozen soil with inorganic cementitious material[D]. Lanzhou:Northwest Institute of Eco-Environment and Resources,University of Chinese Academy of Sciences,2018:21—24. (In Chinese)
[21] ?賴遠明,程紅彬,高志華,等. 凍結(jié)砂土的應(yīng)力-應(yīng)變關(guān)系及非線性莫爾強度準則[J]. 巖石力學(xué)與工程學(xué)報,2007,26(8):1612—1617.
LAI Y M,CHENG H B,GAO Z H,et al. Stress-strain relationships and nonlinear Mohr strength criteria of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1612—1617. (In Chinese)
[22] ?尤明慶. 巖石試樣的楊氏模量與圍壓的關(guān)系[J]. 巖石力學(xué)與工程學(xué)報,2003,22(1):43—50.
YOU M Q. Effect of confining pressure on the young's modulus of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(1):43—50. (In Chinese)
[23] ?曹文貴,趙明華,劉成學(xué). 基于Weibull 分布的巖石損傷軟化模型及其修正方法研究[J]. 巖石力學(xué)與工程學(xué)報,2004,23(19):3226—3231.
CAO W G,ZHAO M H,LIU C X. Study on the model and its modifying method for rock softening and damage based on Weibull random distribution[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(19):3226—3231. (In Chinese)
[24] ?LEMAITRE J. How to use damage mechanics[J]. Nuclear Engineering and Design,1984,80(2):233—245.
[25] ?曹文貴,趙明華,劉學(xué)成. 巖石損傷統(tǒng)計強度理論研究[J]. 巖土工程學(xué)報,2004,26(6):820—823.
CAO W G,ZHAO M H,LIU X C. A study on damage statistical strength theory for rock[J]. Chinese Journal of Geotechnical Engineering,2004,26(6):820—823. (In Chinese)
[26] ?LI S Y,LAI Y M,ZHANG S J. An improved statistical damage constitutive model for warm frozen clay based on Mohr-Coulomb criterion[J]. Cold Regions Science and Technology,2009,57:154—159.
[27] ?張德,劉恩龍,劉星炎,等. 基于修正Mohr-Coulomb屈服準則的凍結(jié)砂土損傷本構(gòu)模型[J]. 巖石力學(xué)與工程學(xué)報,2018,37(4):1234—1241.
ZHANG D,LIU E L,LIU X Y. et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Geotechnical Engineering,2018,37(4):1234—1241. (In Chinese)
[28] ?曹文貴,張升. 基于Mohr-Coulomb準則的巖石損傷統(tǒng)計分析方法研究[J]. 湖南大學(xué)學(xué)報(自然科學(xué)版),2005,32(1):43—47.
CAO W G,ZHANG S. Study on the statistical analysis of rock damage based on Mohr-Coulomb criterion[J]. Journal of Hunan University (Natural Sciences),2005,32(1):43—47. (In Chinese)