• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SYNCHRONIZATION OF SINGULAR MARKOVIAN JUMPING NEUTRAL COMPLEX DYNAMICAL NETWORKS WITH TIME-VARYING DELAYS VIA PINNING CONTROL?

    2020-08-02 05:28:44ANAND

    K. S. ANAND

    APS College of Engineering, Bangalore 560082, India

    J. YOGAMBIGAI

    MMES College of Arts and Science, Melvisharam, Tamilnadu, India

    G. A. HARISH BABU

    Reva Institute of Technology and Management, Bengaluru- 560064

    M. SYED ALI

    Department of Mathematics, Thiruvalluvar University, Vellore, Tamilnadu 632 115, India E-mail: syedgru@gmail.com

    S. PADMANABHAN

    RNS Institute of Technology, Channasandra, Bangalore 560098, India

    Abstract This article discusses the synchronization problem of singular neutral complex dynamical networks (SNCDN) with distributed delay and Markovian jump parameters via pinning control. Pinning control strategies are designed to make the singular neutral complex networks synchronized. Some delay-dependent synchronization criteria are derived in the form of linear matrix inequalities based on a modified Lyapunov-Krasovskii functional approach. By applying the Lyapunov stability theory,Jensen’s inequality,Schur complement,and linear matrix inequality technique, some new delay-dependent conditions are derived to guarantee the stability of the system. Finally, numerical examples are presented to illustrate the effectiveness of the obtained results.

    Key words Singular complex networks;synchronization;Lyapunov-krasovski method;markovian jump; pinning control; linear matrix inequality

    1 Introduction

    Over the past decade,complex networks have been studied intensively in various disciplines,such as sociology, biology, mathematics, and engineering [1–6]. A complex network is a large set of interconnected nodes, where the nodes and connections can be anything, and a node is a fundamental unit having specific contents and exhibiting dynamical behavior. There are two ways of connection between nodes: directed connection and undirected connection, and the connection relationship can be unweighted and weighted. According to different ways of connection and whether there are weights or not between nodes, we get some different kinds of complex networks, such as undirected unweighted network, directed weighted network, etc.A complex network can exhibit complicated dynamics which may be absolutely different from that of a single node.

    The most well-known examples are electrical power grids, communication networks, internet, World Wide Web, metabolic systems, food webs, and so on. Hence, the investigation of complex dynamical networks is of great importance, and many systems in science and technology can be modeled as complex networks[8–10]. Time delay is encountered in many dynamical systems and often results in poor performance and even instability of control systems [11–13].Because delay is usually time-varying in many practical system, many approaches were developed to investigate the stability of systems with time-varying delay such as descriptor model transformation method; the improved bounding technique; free weighting matrices; and the properly chosen Lyapunov-Krasovskii functional (LKFs) (see [14–16] and references therein).

    Synchronization is a kind of typical collective behaviors and basic motions in nature[17–19].Recently, one of the interesting and significant phenomena in complex dynamical networks is the synchronization of all dynamical nodes in a network. It is well known that there are many useful network synchronization phenomena in our real life, such as the synchronous transfer of digital or analog signals in communication networks [20]. More recently, adaptive synchronization in networks or coupled oscillators has received an increasing attention [21]. In particular,one of the interesting phenomena in complex networks is the synchronization, which is an important research subject with the rapidly increasing research, and there are amounts of results[22]. There are many different kinds of synchronization, such as generalized synchronization,phase synchronization, projective synchronization, cluster synchronization, and so on [23–27].Moreover, synchronization has some potential applications in real-world systems, such as synchronization phenomena on the Internet, synchronization related to biological neural networks.As we know the real-world complex networks normally have a large number of nodes. Therefore, it is usually difficult to control a complex network by adding the controllers to all nodes.To reduce the number of the controllers, a natural approach is to control a complex network by pinning part of nodes. In [28–32], the authors explored the controllability of complex networks via pinning. In [33], authors analyzed the synchronization of general complex dynamical network via pinning control.

    Singular systems describe the physical systems better than the regular (nonsingular) ones.They have variety of physical processes such as power systems and circuit systems. These systems are sometimes called generalized systems, descriptor systems, differential-algebraic systems, or implicit systems. It has been noted that a considerable number of results of regular(nonsingular) systems were extended to singular systems (see references [34–37]). As pointed out in [38], singular systems can be introduced to improve the traditional complex networks to describe the singular dynamic behaviours of nodes.

    Singular systems can be introduced to improve the traditional complex networks to describe the singular dynamic behaviors of nodes. Recently, there has been a growing interest in singular systems for their extensive application in control theory, circuits, economics, mechanical systems, and other areas, inspired by [39–42]. The neutral-type complex dynamic network of coupled identical nodes is described by a group of neutral functional differential equations, in which the derivatives of the past state variables are involved as well in the present state of the system [43]. Synchronization of neutral complex dynamical networks (NCDNs) with coupling time-varying delays is investigated in[44]. Synchronization of neutral complex dynamical networks with Markovian switching based on sampled-data controller is discussed in [45].

    Motivated by the above, we investigate synchronization of Markovian jumping singular neutral complex dynamical network with time- delays via pinning control by utilizing a novel Lyapunov - Krasovskii functional. The novel delay dependent synchronization conditions are derived in terms of linear matrix inequalities, then synchronization problem is studied for the complex networks. By constructing a new Lyapunov-Krasovskii functional containing tripleintegral terms,employing Newton-Leibnitz formulation and linear matrix inequality techniques,and introducing free-weighting matrices,some robust global asymptotic stability criteria are derived in terms of linear matrix inequalities (LMIs). To the best of our knowledge, synchronization of singular neutral complex dynamical network with Markovian jumping and time delays via pinning control have received very little research attention, therefore, the main purpose of this article is to shorten such a gap. By employing some analysis techniques, less conservative sufficient conditions are derived in terms of LMIs. Finally, numerical example are provided to demonstrate the advantage and applicability of the proposed result.

    NotationThe following notations are used throughout this article. Rndenotes the n dimensional Euclidean space and Rm×nis the set of all m×n real matrices. The superscript′T′denotes matrix transposition, and the notation X ≥Y (respectively, X < Y), where X and Y are symmetric matrices, means that X-Y is positive semidefinite (respectively, positive definite),anddenotes the Euclidean norm in Rn. If A is a square matrix,denote by λmax(A)(respectively, λmin(A)) means the largest(respectively, smallest) eigenvalue of A. Moreover, let(?,F,{Ft}t≥0,P)be a complete probability space with a filtration{Ft}t≥0satisfying the usual conditions (that is, the filtration contains all P-null sets and is right continuous). The asterisb?in a symmetric matrix is used to denote term that is induced by symmetry. Given a complete probability space{?,F,{Ft}t≥0,P},let a natural filtration{Ft}t≥0satisfy the usual conditions,where ? is the sample space, F is the algebra of events, and P is the probability measure defined on F. Let {r(t)(t ≥0)} be a right-continuous Markovian chain on the probability space (?,F,{Ft}t≥0,P) taking values in the finite space S = {1,2,··· ,m} with generator Π={πij}m×m(i,j ∈S) given by

    Here, ?>0 and πij≥0 is the transition rate from i to j ifwhile

    2 Problem Formulation and Preliminaries

    2.1 Problem description

    Consider the following Markovian jumping singular neutral complex dynamical network with time varying distributed delay consisting of N identical nodes, in which each node is an n-dimensional dynamical subsystem:

    where E ∈Rn×nis a singular matrix and rank(E) = r(0 < r < n);xk(t) ∈Rnis the state variable of the node k ∈1,2,··· ,N;{r(t)(t ≥0)} is the continuous-time Markov process which describes the evolution of the mode at time t;A(r(t)),B(r(t)),C(r(t)),D(r(t)),L(r(t)),H(r(t)),and J(r(t))∈Rn×nare parametric matrices with real values in mode r(t);and f1,f2,f3:Rn→Rnare continuously nonlinear vector functions which are,with respect to the current state xk(t),the delayed state xk(t ?d(t,r(t))) and the neutral delay state(t ?τ(t,r(t))).

    The nonlinear functions are globally Lipschitz,

    where lk1,lk2, and lk3are non-negative constants.

    Γ1(r(t)) ∈Rn×n, Γ2(r(t)) ∈Rn×n, and Γ3(r(t)) ∈Rn×nrepresent the inner-coupling matrices linking between the subsystems in mode r(t)., G(2)(r(t)) =andare the coupling configuration matrices of the networks representing the coupling strength and the topological structure of the SNCDN in mode r(t),in whichis defined as follows: if there exists a connection between kthandnodes, then, otherwise,and

    For simplicity of notations,we denote A(r(t)),B(r(t)),C(r(t)),D(r(t)),L(r(t)),H(r(t)),J(r(t)),G(m)(r(t)),Γm(r(t)),(m=1,2,3), by Ai,Bi,Ci,Di,Li,Hi,Ji,,Γmifor r(t)=i ∈s.

    Remark 2.1The synchronization of Markovian jumping SNCDN (2.1) is investigated in this work, which is devoted to revealing the effect of pinning controller over the Markovian switching network topologies. The network topology switching is governed by a time homogenous Markov process, whose state space corresponds to all the possible topologies. However, a general complex network always has a fixed network topology, which can not describe the situation changing, so the research on the complex networks under randomly switching topologies,such as SNCDN (2.1), is very significant and important.

    Assumption 1τ(t,r(t)),h(t,r(t)),and d(t,r(t))denote the mode-dependent time-varying neutral delay, distributed delay, and retarded delay, respectively. They are assumed to satisfy the followings:

    Correspondingly the response complex network with the control inputs uk(t) ∈RN(k =1,2,··· ,N) can be written as

    where uk(t) is defined by

    2.2 Basic ideas and Lemmas

    In this section, we provide some definitions and lemmas which are absolutely necessary to derive the proposed synchronization criterion.

    Definition 2.2([50]) Complex dynamical network (2.1) is said to be global (asymptotically) synchronized by pinning control, if

    Definition 2.3([51]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is said to be regular, if the det(aE ?(Ai+b1Γ1iλk?b4σkΓ4)), for some finite complex number a, is not identically zero.

    Definition 2.4([51]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is said to be impulse free, if deg(det(aE ?(Ai+b1Γ1iλk?b4σkΓ4)))=rank(E) for some finite complex number ‘a(chǎn)’.

    Lemma 2.5([50]) The eigenvalues of an irreducible matrix G = (gkw) ∈RN×Nwithsatisfy the following properties:

    (i) Real parts of all eigenvalues of G are less than or equal to 0 with multiplicity 1;

    (ii) G has an eigenvalue 0 with multiplicity 1 and the right eigenvector (1,1,··· ,1)T.

    Lemma 2.6([52]) The pair (E,Ai+b1Γ1iλk?b4σkΓ4) is regular and impulse free if and only if there exist matrices Pkisuch that the following inequalities hold for k =2,3,··· ,N :

    Lemma 2.7([53]) If for any constant matrix R ∈Rm×m,R=RT>0, scalar γ >0, and a vector function ? : [0,γ] →Rmsuch that the integrations concerned are well defined, the following inequality holds:

    Let the error be ek(t) = yk(t)?xk(t). So, the error dynamics of Markovian jumping SNCDN(2.1) can be derived as follows:

    Remark 2.8The pinning controllers are applied to achieve synchronization of the Markovian jumping SNCDN (2.1). It can be seen that the synchronization problem of (2.1) is equivalent to the stabilization problem of the error dynamical systems (2.7) at the origin. The controller (2.5) accelerate each node to synchronizing with the target node according to the instantaneous state information, and the similar one also can be found in [28]. We only exert control actions on the pinned nodes to achieve the synchronization and reduce the number of controllers.

    Remark 2.9The novelty of this article can be summarized as follows: (1) Synchronization of Markovian jumping singular neutral complex dynamical networks via pinning control is considered in this article; (2) A new Lyapunov-Krasovskii functional is constructed with triple-integral term.

    3 Main Results

    3.1 Asymptotic stability of complex dynamical systems

    In this section,we derive delay-dependent stability criteria for the error dynamical network system (2.7). We also discuss the impact of additive time-varying delays on the stability of the system.

    Denoting σk=0(k =l+1,l+2,··· ,N),then we may write the error system in its compact form as

    where e(t) = (e1(t),e2(t),··· ,eN(t)), F1(e(t)) = (F11(e1(t)),F21(e2(t)),··· ,FN1(eN(t))),F2(e(t ?di(t))=(F12(e1(t ?di(t)),F22(e2(t ?di(t)),··· ,FN2(eN(t ?di(t))), F3((t ?τi(t)))=(F13((t ?τi(t))),F23((t ?τi(t))),··· ,FN3((t ?τi(t)))), and σ =diag{σ1,σ2,··· ,σN}.

    By the properties of the outer-coupling matrix(a=1,2,3), there exists a unitary matrix U =[U1,U2,··· ,UN]∈RN×Nsuch that UT=ΛiUTwith Λi=diag{λ1i,λ2i,··· ,λNi}(a = 1,2,3) and UUT= I. Using the nonsingular transform e(t)U = z(t) = [z1(t),z2(t),··· ,zN(t)]∈RN×N, from equation (3.1), it follows the matrix equation

    In a similar way, model (3.2) can be written as

    where hk1(t)=F1(e(t))Uk,hk2(t)=F2(e(t ?di(t))Uk, and hk3(t)=F3(˙e(t ?τi(t)))Uk.

    So far, we transformed the synchronization problem of the singular complex dynamical networks (3.1) into the synchronization problem of the N pieces of the corresponding error dynamical network (3.3). From Lemma 2.5, λi1= 0 and z1(t) = e(t)U1= 0. Therefore, if the following (N ?1) pieces of the corresponding error dynamical network,

    are asymptotically stable, which implies that the synchronized states (3.1) are asymptotically stable.

    Let us define

    The inequality(2.2)and the Lipschitz continuity of hk1(t)can be used to make hk1(t)to satisfy

    where ukwis the ω-th element of Ukand=max lk1. Therefore, the following inequality

    holds, if the inequality

    is satisfied. Similarly, the following inequalities holds:

    if the following inequalities are satisfied that

    where

    Theorem 3.1For given scalars,νi,,σi,d1i,d2i,μiand constant scalar dmisatisfying d1i< dmi< d2i, the Markovian jumping singular error dynamical network (3.4) is asymptotically stable if there exist positive constants αk, matrices Pki>0,Qk1i>0,Qk2i>0,Rk1i>0,Rk2i> 0, Tk1i> 0, Qkj> 0,Rkj> 0 (j = 3,4),Tkj> 0 (j = 2,3,4),Ukj> 0 (j = 1,2,3),Wkj> 0, Mkj> 0,Nkj> 0 (j = 1,2,3,4,5), and positive diagonal matrices Skj(j = 1,2,3)such that the following LMIs hold for all i ∈S:

    where

    ProofConstruct the Lyapunov-Krasovskii functional:

    where

    The derivative of Vkr(zk(t),i,t) along the trajectory of (3.4) with respect to t is given by

    Notice (a) of Lemma 2.7, then,

    Notice (b) of Lemma 2.7, then,

    From equations (3.12) and (3.17)–(3.34), we obtain

    By Schur complement Lemma, we get (3.14), and

    As ETPki=PkiE ≥0, the stable result cannot be obtained via the Lyapunov stability theory because the rank of ETPkiin the Lyapunov function Vk1(zk(t),i,t) is r

    By Lemma 2.6,it is clear that the pair(E,Ai+b1Γ1iλk?b4σkΓ4)is regular and impulse free whenever inequalities(3.13)–(3.16)hold. Then,the nonsingular matrices areand. The following decomposition holds:

    where Xk1∈Rr×n, Xk2∈R(n?r)×n, Yk1∈Rn×r,Yk2∈Rn×(n?r), and∈Rr×r, k =2,3,··· ,N.

    The network system (3.4) is equivalent to

    If we choose Wk,such that,which leads

    This completes the proof.

    Remark 3.2In the literature,the authors([2,5,7,13,20,21])investigated the problem of complex dynamical networks with time delay components. It is noted that unfortunately in the existing literature the problem of synchronization criteria for a class of singular neutral complex dynamical networks with distributed delay and Markovian jump parameters via pinning control has not been considered yet. Motivated by this,in this article we provided a sufficient condition to ensure that the SNCDN (3.1) is global (asymptotically) synchronized.

    Remark 3.3Synchronization of the Markovian jumping neutral complex dynamical networks is considered in[45]. In this article,Markovian jumping singular neutral complex dynamical networks with pinning control is employed. Synchronization conditions are established in the form of linear matrix inequalities(LMIs). The solvability of derived conditions depends not only on the pinned nodes but also on the initial values of the Markovian jumping parameter.It is pointed out that there is no useful term is ignored while maintaining our stability results.

    4 Numerical Examples

    In this section, numerical examples are presented to demonstrate the effectiveness of the synchronization for pinning control.

    Example 4.1Consider the following time-varying delayed Markovian jumping SNCDN with 3-node and mode s=2,

    with

    (a = 1,2,3),Ji= Hi= 0,i = {1,2}. Let us consider b1= 1,b2= b3= 0.5,b4= 0.6, σ1= 0.4,σ2= 0.5, σ3= 0.3,== 0.2, ν1= ν2= 0.5,== 0.3, δ1= δ2= 0.6, d11= 0.4,d21= 0.6, dm1= 0.5,μ1= μ2= 0.4, and the eigenvalues ofare found to be λi1= 0,λi2= ?3 and λi3= ?3. By using Matlab LMI Toolbox, we solve the LMIs (3.13)–(3.16) in Theorem 3.1, we obtain the feasible solutions for N =3,k =1,i=1,2 as follows:

    Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (3.1)achieve synchronization through the pinning controller uk(t) with the above mentioned parameters.

    Example 4.2Consider the following time-varying delayed Markovian jumping SNCDN

    with 5-node and mode s=2:

    with

    Ji= Hi= 0,i = {1,2}. Let us consider b1= 0.1,b2= b3= 0.3,b4= 0.2,σ1= 0.4, σ2= 0.5,σ3= 0.3,== 0.2, ν1= ν2= 0.5,== 0.3, δ1= δ2= 0.6, d11= 0.4, d21= 0.6,dm1= 0.5, μ1= μ2= 0.4. The eigenvalues ofandare found to be λ11= 0,λ12=λ13=λ14=?0.5, λ15=2.5, and λ21=0, λ22=λ23=λ24=λ25=?0.5. Using Matlab LMI Toolbox, we solve the LMIs (3.13)–(3.16) in Theorem 3.1, then we obtain the feasible solutions for N =5,k =1,i=1,2 as follows:

    Therefore, by Theorem 3.1, the Markovian jumping SNCDN with time-varying delays (2.1)achieve synchronization through the pinning controller uk(t) with the above mentioned parameters.

    Figure 1 State trajectories of the system in Example 2

    5 Conclusion

    In this article,some new synchronization stability criteria are proposed for a class of Markovian jumping SNCDNs with distributed delay and pinning control. On the basis of appropriate Lyapunov-Krasovskii functional which contains triple integral terms and bounding techniques,the novel delay dependent synchronization condition is derived in terms of linear matrix inequalities. We established some sufficiency conditions for synchronization, and the numerical results can demonstrate the effectiveness of the obtained result. In future,the preosed methods can be further extended to deal with some other problems on pinning control and synchronization for general stochastic dynamical networks, complex systems with impulsive perturbation,etc.

    成人毛片60女人毛片免费| 精品免费久久久久久久清纯 | 嫩草影视91久久| 另类亚洲欧美激情| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 综合色丁香网| 亚洲五月色婷婷综合| 搡老岳熟女国产| 99精国产麻豆久久婷婷| 男人操女人黄网站| 国产激情久久老熟女| 亚洲国产最新在线播放| 丁香六月天网| 国产色婷婷99| 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 亚洲欧洲精品一区二区精品久久久 | 丁香六月欧美| √禁漫天堂资源中文www| 在线天堂中文资源库| 最近的中文字幕免费完整| 91精品伊人久久大香线蕉| 精品久久久精品久久久| 久久ye,这里只有精品| 18禁观看日本| 超碰成人久久| 国产精品久久久久久精品电影小说| 国产亚洲av高清不卡| 美女视频免费永久观看网站| 伊人久久国产一区二区| av有码第一页| 日本一区二区免费在线视频| 久久97久久精品| 婷婷色av中文字幕| 十八禁网站网址无遮挡| 亚洲色图 男人天堂 中文字幕| 久久午夜综合久久蜜桃| 麻豆精品久久久久久蜜桃| 精品人妻在线不人妻| 成人毛片60女人毛片免费| 777米奇影视久久| 欧美 亚洲 国产 日韩一| 男人舔女人的私密视频| 精品亚洲成a人片在线观看| 最新的欧美精品一区二区| 最近中文字幕2019免费版| 亚洲精品美女久久av网站| 亚洲,欧美,日韩| 丝袜美腿诱惑在线| 国产成人免费观看mmmm| 人妻人人澡人人爽人人| 波多野结衣av一区二区av| 大陆偷拍与自拍| 精品一区二区免费观看| 精品久久久精品久久久| 免费少妇av软件| 国产伦人伦偷精品视频| 亚洲精品乱久久久久久| 国产精品熟女久久久久浪| 天天影视国产精品| 久久99一区二区三区| 大码成人一级视频| 一边摸一边抽搐一进一出视频| 美女午夜性视频免费| 亚洲七黄色美女视频| av网站在线播放免费| 精品少妇久久久久久888优播| 天堂8中文在线网| 制服人妻中文乱码| 欧美人与善性xxx| 18禁国产床啪视频网站| 久久亚洲国产成人精品v| 免费高清在线观看日韩| 交换朋友夫妻互换小说| 69精品国产乱码久久久| 久久精品久久久久久噜噜老黄| 电影成人av| 一区二区av电影网| 国产激情久久老熟女| av在线播放精品| 美女国产高潮福利片在线看| 欧美人与性动交α欧美软件| 99久国产av精品国产电影| 如何舔出高潮| 久久久国产精品麻豆| 亚洲国产av影院在线观看| 久久 成人 亚洲| www.自偷自拍.com| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看 | bbb黄色大片| 久久韩国三级中文字幕| 黄色 视频免费看| 深夜精品福利| 99精品久久久久人妻精品| 一区二区三区四区激情视频| 三上悠亚av全集在线观看| 女性生殖器流出的白浆| 免费不卡黄色视频| 老司机亚洲免费影院| 人妻 亚洲 视频| 最新的欧美精品一区二区| 国产成人av激情在线播放| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| e午夜精品久久久久久久| 在现免费观看毛片| 国产精品久久久人人做人人爽| av在线观看视频网站免费| 亚洲情色 制服丝袜| 国语对白做爰xxxⅹ性视频网站| 久久久国产欧美日韩av| 国产免费福利视频在线观看| 激情五月婷婷亚洲| 国产精品久久久久久久久免| 国产av精品麻豆| 777米奇影视久久| 久热爱精品视频在线9| 国产成人一区二区在线| 久久精品亚洲av国产电影网| 久久 成人 亚洲| 亚洲精品一区蜜桃| 你懂的网址亚洲精品在线观看| xxx大片免费视频| av女优亚洲男人天堂| 免费看不卡的av| 久久久亚洲精品成人影院| 91老司机精品| 自线自在国产av| 大陆偷拍与自拍| 最近最新中文字幕免费大全7| 国产精品熟女久久久久浪| 亚洲国产看品久久| 91国产中文字幕| 国产免费视频播放在线视频| av在线老鸭窝| 亚洲av中文av极速乱| 天美传媒精品一区二区| 男女午夜视频在线观看| 男的添女的下面高潮视频| 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 日韩一区二区视频免费看| 亚洲精品,欧美精品| 亚洲 欧美一区二区三区| 乱人伦中国视频| 天堂中文最新版在线下载| 男女边吃奶边做爰视频| 老司机靠b影院| 成人亚洲精品一区在线观看| 精品午夜福利在线看| 亚洲五月色婷婷综合| 亚洲男人天堂网一区| 视频区图区小说| 欧美 亚洲 国产 日韩一| 国产午夜精品一二区理论片| 亚洲天堂av无毛| 女人爽到高潮嗷嗷叫在线视频| 国产色婷婷99| 男人操女人黄网站| 不卡av一区二区三区| 国产精品久久久人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 久久97久久精品| av在线老鸭窝| 中文欧美无线码| 咕卡用的链子| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 久久人人97超碰香蕉20202| 另类亚洲欧美激情| 日韩制服骚丝袜av| 久热爱精品视频在线9| 看免费成人av毛片| 中文字幕色久视频| 亚洲精品在线美女| 国产有黄有色有爽视频| 久久午夜综合久久蜜桃| 国产欧美日韩一区二区三区在线| 在线看a的网站| 久久影院123| 久久久久久人妻| 51午夜福利影视在线观看| 国产亚洲最大av| 亚洲精品国产av蜜桃| 制服丝袜香蕉在线| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 亚洲精品,欧美精品| 国产免费一区二区三区四区乱码| h视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 美国免费a级毛片| 国产午夜精品一二区理论片| 性少妇av在线| 日韩中文字幕欧美一区二区 | 国产欧美日韩综合在线一区二区| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| videosex国产| 欧美精品av麻豆av| 高清在线视频一区二区三区| 又大又爽又粗| 人妻人人澡人人爽人人| 在线精品无人区一区二区三| 午夜激情久久久久久久| 女人被躁到高潮嗷嗷叫费观| 男女下面插进去视频免费观看| 午夜免费鲁丝| 男女无遮挡免费网站观看| 日本午夜av视频| 老鸭窝网址在线观看| av天堂久久9| 十八禁高潮呻吟视频| 1024视频免费在线观看| av电影中文网址| 国产精品国产av在线观看| 99精品久久久久人妻精品| 9热在线视频观看99| 亚洲精品美女久久久久99蜜臀 | 爱豆传媒免费全集在线观看| 亚洲av综合色区一区| 亚洲七黄色美女视频| 精品第一国产精品| 丁香六月天网| 久久99精品国语久久久| 一级毛片我不卡| 亚洲视频免费观看视频| 亚洲伊人久久精品综合| 最近的中文字幕免费完整| 久久国产精品大桥未久av| 在线观看国产h片| 亚洲少妇的诱惑av| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 亚洲精品美女久久av网站| 国产男女内射视频| 亚洲伊人色综图| 欧美日韩成人在线一区二区| 女性被躁到高潮视频| 亚洲中文av在线| 久久久精品94久久精品| 国产精品久久久av美女十八| 99热国产这里只有精品6| 最近的中文字幕免费完整| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 欧美日韩精品网址| 十八禁网站网址无遮挡| 亚洲av成人精品一二三区| 国产精品一区二区精品视频观看| 精品国产一区二区三区久久久樱花| 国产高清国产精品国产三级| 国产又爽黄色视频| 少妇被粗大猛烈的视频| 一级黄片播放器| 色网站视频免费| 久久人人爽av亚洲精品天堂| 久久婷婷青草| bbb黄色大片| 最近的中文字幕免费完整| www.av在线官网国产| 国产精品欧美亚洲77777| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| 一区二区三区激情视频| 天天躁夜夜躁狠狠久久av| 99九九在线精品视频| 欧美人与善性xxx| 国产成人啪精品午夜网站| 99久久人妻综合| 免费人妻精品一区二区三区视频| 水蜜桃什么品种好| 久久精品国产亚洲av高清一级| 美女福利国产在线| 亚洲,欧美,日韩| 国产亚洲午夜精品一区二区久久| 午夜影院在线不卡| 日日撸夜夜添| 男人舔女人的私密视频| 男人操女人黄网站| 激情视频va一区二区三区| 中文天堂在线官网| 一本久久精品| 色94色欧美一区二区| 国产一区二区 视频在线| 国产淫语在线视频| 国产97色在线日韩免费| 999久久久国产精品视频| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区国产| 国产成人精品久久二区二区91 | 精品少妇黑人巨大在线播放| 国产视频首页在线观看| 日韩视频在线欧美| 桃花免费在线播放| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 水蜜桃什么品种好| 亚洲七黄色美女视频| 中文字幕高清在线视频| 国产成人精品福利久久| 观看美女的网站| 欧美变态另类bdsm刘玥| 一级片'在线观看视频| 人人妻,人人澡人人爽秒播 | 啦啦啦在线观看免费高清www| 十八禁高潮呻吟视频| 99热国产这里只有精品6| 亚洲成人一二三区av| 日韩av在线免费看完整版不卡| 高清欧美精品videossex| 免费高清在线观看日韩| 大片免费播放器 马上看| 久久精品国产亚洲av涩爱| 久久久精品94久久精品| 精品人妻在线不人妻| 色综合欧美亚洲国产小说| 日本91视频免费播放| 亚洲欧洲国产日韩| 在线亚洲精品国产二区图片欧美| 国产 一区精品| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 国产男女超爽视频在线观看| 热re99久久国产66热| 九草在线视频观看| 免费观看性生交大片5| 高清视频免费观看一区二区| 青青草视频在线视频观看| 18禁国产床啪视频网站| 青春草亚洲视频在线观看| 精品人妻在线不人妻| 亚洲精品国产一区二区精华液| 亚洲第一av免费看| 成人三级做爰电影| 欧美在线黄色| 成人三级做爰电影| 国产淫语在线视频| 国产精品 欧美亚洲| 精品国产一区二区三区四区第35| 精品久久蜜臀av无| 国产色婷婷99| 美女扒开内裤让男人捅视频| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频| 成年动漫av网址| 成人三级做爰电影| 秋霞伦理黄片| 国产视频首页在线观看| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区久久| 免费观看人在逋| 一级毛片我不卡| 99国产综合亚洲精品| 日韩欧美精品免费久久| 黑丝袜美女国产一区| 亚洲欧美一区二区三区久久| 肉色欧美久久久久久久蜜桃| 99久国产av精品国产电影| 亚洲七黄色美女视频| www日本在线高清视频| 在线看a的网站| 中文乱码字字幕精品一区二区三区| 成年美女黄网站色视频大全免费| 日本欧美国产在线视频| 国产成人精品无人区| 久久精品亚洲熟妇少妇任你| 久久99一区二区三区| 国产精品久久久久久精品电影小说| 天天操日日干夜夜撸| 亚洲一区中文字幕在线| 亚洲一区二区三区欧美精品| 久久久久久免费高清国产稀缺| 国产精品无大码| 久久久久久免费高清国产稀缺| 欧美精品一区二区免费开放| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 嫩草影视91久久| 久久这里只有精品19| 亚洲少妇的诱惑av| 中文精品一卡2卡3卡4更新| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 免费高清在线观看日韩| 一本久久精品| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 亚洲美女黄色视频免费看| 老汉色∧v一级毛片| 免费观看a级毛片全部| 老司机靠b影院| 久久精品久久久久久噜噜老黄| 黄色 视频免费看| 久久精品久久久久久噜噜老黄| 乱人伦中国视频| 色吧在线观看| avwww免费| 一级毛片电影观看| 亚洲久久久国产精品| 黄色怎么调成土黄色| 国产成人精品福利久久| 最近手机中文字幕大全| 亚洲精品aⅴ在线观看| 亚洲欧美精品综合一区二区三区| 久久精品亚洲av国产电影网| 国产爽快片一区二区三区| 精品国产一区二区久久| 一个人免费看片子| 男女高潮啪啪啪动态图| 老汉色av国产亚洲站长工具| 欧美日韩国产mv在线观看视频| 久久人妻熟女aⅴ| 9热在线视频观看99| 又大又爽又粗| 纯流量卡能插随身wifi吗| 精品一区二区三区四区五区乱码 | 国产成人午夜福利电影在线观看| 最近中文字幕高清免费大全6| av有码第一页| 久久精品亚洲熟妇少妇任你| 国产黄色免费在线视频| 女人被躁到高潮嗷嗷叫费观| 色吧在线观看| 亚洲人成网站在线观看播放| 久久精品久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 老司机影院成人| 天天躁夜夜躁狠狠久久av| 建设人人有责人人尽责人人享有的| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 亚洲欧洲日产国产| 不卡视频在线观看欧美| 欧美乱码精品一区二区三区| 老鸭窝网址在线观看| 激情视频va一区二区三区| 操出白浆在线播放| 国产成人系列免费观看| 久久久久人妻精品一区果冻| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 大话2 男鬼变身卡| 一级a爱视频在线免费观看| 中文欧美无线码| 丝瓜视频免费看黄片| 久久久久视频综合| 亚洲欧美成人精品一区二区| 国产免费视频播放在线视频| 大话2 男鬼变身卡| 久久久精品区二区三区| 国产麻豆69| 天天影视国产精品| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 一边摸一边抽搐一进一出视频| 超色免费av| 久久久久久人人人人人| 亚洲精品国产av蜜桃| 精品一区二区免费观看| 久久精品aⅴ一区二区三区四区| 久久ye,这里只有精品| 黄色一级大片看看| 国产精品久久久久成人av| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久久免| 一本色道久久久久久精品综合| 日韩欧美一区视频在线观看| 久久久久久久精品精品| av.在线天堂| 亚洲五月色婷婷综合| 欧美日韩福利视频一区二区| 欧美精品高潮呻吟av久久| 国产人伦9x9x在线观看| 午夜福利免费观看在线| 亚洲一区中文字幕在线| 国产精品一国产av| 国产亚洲精品第一综合不卡| 国产人伦9x9x在线观看| 亚洲av电影在线进入| 下体分泌物呈黄色| 制服诱惑二区| 国产野战对白在线观看| 国产精品一区二区在线不卡| 免费高清在线观看日韩| 少妇人妻精品综合一区二区| 免费在线观看黄色视频的| 一级爰片在线观看| 综合色丁香网| 免费观看av网站的网址| 建设人人有责人人尽责人人享有的| 国产国语露脸激情在线看| 国产又爽黄色视频| 亚洲精品久久午夜乱码| 国产成人精品久久久久久| 国产精品一二三区在线看| 极品人妻少妇av视频| 精品一品国产午夜福利视频| 一区二区三区四区激情视频| 国产福利在线免费观看视频| 亚洲成人一二三区av| 国产精品亚洲av一区麻豆 | 91精品伊人久久大香线蕉| 永久免费av网站大全| 婷婷成人精品国产| 大码成人一级视频| 亚洲精品美女久久久久99蜜臀 | 日韩视频在线欧美| 久久青草综合色| 免费女性裸体啪啪无遮挡网站| 青春草国产在线视频| 国产精品秋霞免费鲁丝片| 久久精品熟女亚洲av麻豆精品| 久久99热这里只频精品6学生| av.在线天堂| 久久精品久久久久久久性| 亚洲国产av新网站| 80岁老熟妇乱子伦牲交| 午夜日韩欧美国产| 又大又爽又粗| av在线app专区| 制服人妻中文乱码| 精品国产乱码久久久久久男人| 日韩中文字幕欧美一区二区 | 国产精品久久久久成人av| 青草久久国产| 日本91视频免费播放| 久久综合国产亚洲精品| 成年美女黄网站色视频大全免费| 999精品在线视频| 亚洲av福利一区| 亚洲精品美女久久av网站| 国产老妇伦熟女老妇高清| 少妇被粗大猛烈的视频| 精品人妻在线不人妻| av卡一久久| 视频在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久热在线av| 欧美激情高清一区二区三区 | 少妇人妻 视频| 久久久精品免费免费高清| 大片免费播放器 马上看| 婷婷色麻豆天堂久久| 国产亚洲精品第一综合不卡| 黄片播放在线免费| 大话2 男鬼变身卡| 999久久久国产精品视频| 夫妻午夜视频| 亚洲成人av在线免费| 国产精品一二三区在线看| 狂野欧美激情性xxxx| 精品人妻熟女毛片av久久网站| 亚洲四区av| 别揉我奶头~嗯~啊~动态视频 | 在线观看人妻少妇| 黄色怎么调成土黄色| 欧美在线一区亚洲| av线在线观看网站| 中文字幕最新亚洲高清| 狠狠婷婷综合久久久久久88av| 美女视频免费永久观看网站| 亚洲国产中文字幕在线视频| 亚洲av电影在线进入| 韩国高清视频一区二区三区| 在线观看三级黄色| 成人免费观看视频高清| 国产黄色视频一区二区在线观看| 亚洲国产av新网站| 国产成人一区二区在线| 亚洲一区中文字幕在线| 日本wwww免费看| 亚洲国产精品999| 在现免费观看毛片| 视频区图区小说| 宅男免费午夜| 国产精品嫩草影院av在线观看| 别揉我奶头~嗯~啊~动态视频 | 免费少妇av软件| 卡戴珊不雅视频在线播放| 国产极品天堂在线| 亚洲欧美色中文字幕在线| 啦啦啦视频在线资源免费观看| 电影成人av| 国产亚洲av片在线观看秒播厂| 天堂8中文在线网| 伊人亚洲综合成人网| 新久久久久国产一级毛片| 黄色怎么调成土黄色| a级毛片在线看网站| 亚洲成人免费av在线播放| av在线播放精品| 亚洲av国产av综合av卡| 免费黄频网站在线观看国产| 国精品久久久久久国模美| 最新的欧美精品一区二区| 日本欧美视频一区| 在线观看免费高清a一片| 又大又爽又粗| 国产免费又黄又爽又色| 好男人视频免费观看在线| 亚洲熟女精品中文字幕| av视频免费观看在线观看| 亚洲自偷自拍图片 自拍|