• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      半監(jiān)督學(xué)習(xí)算法拉普拉斯支持向量機(jī)應(yīng)用于蛋白質(zhì)結(jié)構(gòu)類預(yù)測(cè)

      2020-09-02 07:14:46吳疆董婷蔣平
      微型電腦應(yīng)用 2020年8期
      關(guān)鍵詞:拉普拉斯協(xié)方差分類器

      吳疆 董婷 蔣平

      摘要:

      應(yīng)用半監(jiān)督學(xué)習(xí)方法拉普拉斯支持向量機(jī)(Laplace Support Vector Machine, LapSVM)對(duì)蛋白質(zhì)結(jié)構(gòu)類進(jìn)行預(yù)測(cè)。首先7個(gè)氨基酸理化性質(zhì)參數(shù)作為替代模型將蛋白質(zhì)序列轉(zhuǎn)換為數(shù)字序列,自協(xié)方差變換(AutocrossCovariance, AC)用來描述具有一定間隔氨基酸殘基之間的相互關(guān)系并將數(shù)字序列變換為統(tǒng)一長(zhǎng)度的向量,構(gòu)建樣本的特征空間。然后在數(shù)據(jù)集中分別隨機(jī)挑選20、50、80、110、140、170個(gè)樣本作為無標(biāo)簽樣本構(gòu)建訓(xùn)練集,一對(duì)多分解策略和留一法用來評(píng)價(jià)LapSVM模型的預(yù)報(bào)能力。分類器對(duì)蛋白質(zhì)樣本類預(yù)測(cè)正確率為94.12%,與標(biāo)準(zhǔn)支持向量機(jī)算法(Support Vector Machine, SVM)方法90.69%的預(yù)測(cè)精度相比有明顯的競(jìng)爭(zhēng)力。實(shí)驗(yàn)結(jié)果有效驗(yàn)證了無標(biāo)簽樣本的分布信息作為弱規(guī)則能有效提升分類器的預(yù)報(bào)性能。同時(shí)提供了一種新穎的思路,應(yīng)用半監(jiān)督方法解決全監(jiān)督學(xué)習(xí)問題,更小的優(yōu)化規(guī)模,更好的預(yù)報(bào)能力。

      關(guān)鍵詞:

      半監(jiān)督學(xué)習(xí); 蛋白質(zhì)結(jié)構(gòu)類; 拉普拉斯支持向量機(jī); 自協(xié)方差變換

      中圖分類號(hào): TP 391

      文獻(xiàn)標(biāo)志碼: A

      Protein Structural Classes Prediction by Using Laplace Support

      Vector Machine and Based on Semisupervised Method

      WU Jiang1, DONG Ting1, JIANG Ping1,2

      (1. Department of Information Engineering ,Yulin University, Yulin, Shanxi ?719000, China;

      2. School of Computer Science and Technology, Xidian University, Xian, Shanxi 710071, China)

      Abstract:

      The purpose of the study is to predict protein structural classes by using Laplace support vector machine (LapSVM) which is a novel semisupervised learning method. Firstly, seven amino acid physicochemical properties cited from literature was applied to transform the protein sequences into numeric vectors, and auto covariance (AC) was used in transforming the physicochemical properties of the amino acids of given proteins into features space with the same size, which is suitable for training models. AC focuses on the neighboring effects and the interactions between residues with a certain distance apart in protein sequences. Secondly, 20, 50, 80, 110, 140 and 170 samples were randomly selected as unlabelled samples to construct training datasets, “oneagainstall” strategy and leaveoneout method were employed to estimate the performance. The prediction accuracy 94.12% was obtained, and it is very promising compared with the accuracy 90.69% predicted by Support Vector Machine (SVM). The experimental results proofed that the unlabelled samples input as weak rules can lightly improve the prediction performances, simultaneously, a novel idea is using semisupervised method to solve a supervised learning problem intends to less optimal scale and higher prediction accuracy.

      Key words:

      semisupervised learning; protein structural class; Laplace support vector machine; auto correlation

      猜你喜歡
      拉普拉斯協(xié)方差分類器
      BP-GA光照分類器在車道線識(shí)別中的應(yīng)用
      加權(quán)空-譜與最近鄰分類器相結(jié)合的高光譜圖像分類
      結(jié)合模糊(C+P)均值聚類和SP-V-支持向量機(jī)的TSK分類器
      不確定系統(tǒng)改進(jìn)的魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman預(yù)報(bào)器
      基于超拉普拉斯分布的磁化率重建算法
      一種基于廣義協(xié)方差矩陣的欠定盲辨識(shí)方法
      位移性在拉普拉斯變換中的應(yīng)用
      基于LLE降維和BP_Adaboost分類器的GIS局部放電模式識(shí)別
      含有一個(gè)參數(shù)的p-拉普拉斯方程正解的存在性
      縱向數(shù)據(jù)分析中使用滑動(dòng)平均Cholesky分解對(duì)回歸均值和協(xié)方差矩陣進(jìn)行同時(shí)半?yún)?shù)建模
      敦煌市| 湖州市| 博罗县| 崇州市| 平阳县| 会理县| 鄂尔多斯市| 望江县| 独山县| 刚察县| 同心县| 阳曲县| 全南县| 都江堰市| 巧家县| 开远市| 迭部县| 文山县| 广丰县| 邵阳县| 兴业县| 榆中县| 亚东县| 忻城县| 渝北区| 乐陵市| 新密市| 会同县| 濉溪县| 洪泽县| 朝阳县| 唐海县| 娱乐| 子长县| 博爱县| 德清县| 佛冈县| 武穴市| 盘山县| 三穗县| 长丰县|