• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      帶有臨界增長的Kirchhoff方程極小能量變號解的存在性

      2020-09-10 12:29:38梁文國黃永艷
      河北科技大學(xué)學(xué)報 2020年4期

      梁文國 黃永艷

      摘 要:為了深入研究Kirchhoff方程的性質(zhì),討論了帶有Hartree項和臨界增長非線性項的Kirchhoff方程極小能量變號解的存在性。利用能量泛函在變號Nehari流形上的下確界Cλ收斂于0,得到空間E緊嵌入L6(R3)這一技術(shù)性結(jié)果。結(jié)果表明,利用限制變分方法和定量形變引理獲得極小化序列對應(yīng)的極小值點是該問題的非平凡解。研究方法在理論證明方面得到了良好的結(jié)果,對研究其他Kirchhoff方程解的存在性有一定的指導(dǎo)意義。

      關(guān)鍵詞:非線性泛函分析;Kirchhoff方程;Hartree非線性項;臨界增長;變分方法;變號解

      中圖分類號:O175?文獻(xiàn)標(biāo)識碼:A

      文章編號:1008-1542(2020)04-0327-07

      doi:10.7535/hbkd.2020yx04005

      3?結(jié)?語

      本文研究了帶有Hartree項和臨界增長非線性項的Kirchhoff方程極小能量變號解的存在性。利用變分方法和精細(xì)的分析技巧獲得了緊嵌入的結(jié)果。然而,文中的理論證明是在特定的勢函數(shù)、非線性項和一個參數(shù)下進(jìn)行的,并未考慮其他勢函數(shù)和多參數(shù)的情形。未來研究中,將嘗試解決這類問題解的存在性以及解的漸進(jìn)行為。

      參考文獻(xiàn)/References:

      [1]?BENCI V, FORTUNATO D. An eigenvalue problem for the Schrdinger-Maxwell equations[J]. Topological Methods in Nonlinear Analysis,1998,11(2):283-293.

      [2]?SHI Qihong, PENG Congming.Wellposedness for semirelativistic Schrdinger equation with power-type non-linearity[J]. Nonlinear Analysis: Theory, Methods & Applications, 2019, 178:133-144.

      [3]?SHI Qihong, WANG Shu. Klein-Gordon-Zakharov system in energy space: Blow-up profile and subsonic limit[J]. Mathematical Methods in the Applied Sciences, 2019, 42(9):3211-3221.

      [4]?巴振, 賀小明.一類Kirchhoff-Poisson方程變號解的存在性[J].中央民族大學(xué)學(xué)報(自然科學(xué)版), 2015, 24(2):82-87.

      BA Zhen, HE Xiaoming. Existence of sign-changing solutions for a class of Kirchhoff-Poisson equation in bounded domains[J]. Journal of MUC (Natural Science Edition),2015, 24(2):82-87.

      [5]?郝亞文, 李宇華.漸近周期的Kirchhoff-Schrdinger-Poisson系統(tǒng)非平凡解的存在性[J].河南科技大學(xué)學(xué)報(自然科學(xué)版), 2017, 38(3):95-99.

      HAO Yawen, LI Yuhua. Nontrivial solution existence for asymptotically periodic Kirchhoff-Schrdinger-Poisson system[J]. Journal of Henan University of Science and Technology(Natural Science), 2017, 38(3):95-99.

      [6]?郝劍偉, 黃永艷.帶有Hartree和對數(shù)非線性項的Schrdinger方程非平凡解的存在性[J].河北科技大學(xué)學(xué)報, 2019, 40(6):482-487.

      HAO Jianwei, HUANG Yongyan. Existence of nontrivial solution of Schrdinger equations with Hartree and logarithmic nonlinearities[J]. Journal of Hebei University of Science and Technology, 2019, 40(6):482-487.

      [7]?LI Gongbao, PENG Shuangjie, YAN Shusen. Infinitely many positive solutions for the nonlinear Schrdinger-Poisson system[J]. Communications in Contemporary Mathematics, 2010, 12(6):1069-1092.

      [8]?馬鋒, 趙雷嘎.一類非線性Schrdinger-Poisson方程解的存在性[J].北京化工大學(xué)學(xué)報(自然科學(xué)版), 2015,42(2):119-124.

      MA Feng, ZHAO Leiga. Existence of solutions for a class of Schrdinger-Poisson equations[J]. Journal of Beijing University of Chemical Technology(Natural Science), 2015, 42(2):119-124.

      [9]?余勝龍, 唐春雷.帶有負(fù)的非局部項的Schrdinger-Poisson方程的正基態(tài)解[J].西南大學(xué)學(xué)報(自然科學(xué)版), 2013, 35(6):68-71.

      YU Shenglong, TANG Chunlei. On positive ground state solution to the Schrdinger-Poisson system with the negative non-local term[J]. Journal of Southwest University (Natural Science Edition), 2019, 40(6):68-71.

      [10]趙桂蘭.一類Kirchhoff-Schrdinger-Poisson系統(tǒng)正解的存在性[J].紡織高?;A(chǔ)科學(xué)學(xué)報, 2015, 28(2):198-203.

      ZHAO Guilan. Existence of a positive solution to a class of Kirchhoff-Schrdinger-Poisson system[J]. Basic Sciences Journal of Textile Universities, 2015,28(2):198-203.

      [11]SUN Jijiang, MA Shiwang. Ground state solutions for some Schrdinger-Poisson systems with periodic potentials[J].Journal of Differen-tial Equations, 2016,260(3):2119-2149.

      [12]IANNI I. Sign-changing radial solutions for the Schrdinger-Poisson-Slater problem[J]. Topological Methods in Nonlinear Analysis, 2013, 41(2):365-385.

      [13]LIANG Zhanping, XU Jing, ZHU Xiaoli. Revisit to sign-changing solutions for the nonlinear Schrdinger-Poissonsystem in?R3[J]. Journal of Mathematical Analysis and Applications, 2016, 435(1):783-799.

      [14]ALVES C O, SOUTO M A S. Existence of least energy nodal solution for a Schrdinger-Poisson system in bounded domains[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2014, 65(6):1153-1166.

      [15]ALVES C O, SOUTO M A O, SOARES S H M. A sign-changing solution for the Schrdinger-Poisson equation in R3[J].The Rocky Mountain Journal of Mathematics, 2017, 47(1):1-25.

      [16]WANG Zhengping, ZHOU Huansong. Sign-changing solutions for the nonlinear Schrdinger-Poisson system in R3[J]. Calculus of Variations and Partial Differential Equations, 2015,52(3/4):927-943.

      [17]SHUAI Wei, WANG Qingfang. Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrdinger-Poisson system in R3 [J].Zeitschrift Für Angewandte Mathematik Und Physik, 2015, 66(6):3267-3282.

      [18]WANG Dabing, ZHANG Huabo, GUAN Wen. Existence of least-energy sign-changing solutions for Schrdinger-Poisson system with critical growth[J].Journal of Mathematical Analysis and Applications,2019, 479:2284-2301.

      [19]WANG Dabing. Least energy sign-changing solutions of Kirchhoff-type equation with critical growth[J].Journal of Mathematical Physics, 2020, 61(1):1-7.

      [20]BARTSCH T, WANG Zhiqiang. Existence and multiplicity results for some superlinear elliptic problems on RN [J]. Communications in Partial Differential Equations, 1995, 20(9/10):1725-1741.

      [21]LIEB E, LOSS M. Analysis, Graduate Studies in Mathematics[M]. [S.l.]:[s.n.], 2001.

      [22]周民強(qiáng).實變函數(shù)論[M]. 北京:北京大學(xué)出版社, 2008.

      [23]LI Fuyi, GAO Chunjuan, ZHU Xiaoli. Existence and concentration of sign-changing solutions to Kirchhoff-typesystem with Hartree-type nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2017, 448(1):60-80.

      吴堡县| 响水县| 竹山县| 方城县| 佛学| 古丈县| 额敏县| 拉孜县| 五大连池市| 长武县| 扎鲁特旗| 泸溪县| 延安市| 武强县| 太湖县| 博罗县| 疏附县| 东宁县| 安义县| 翁源县| 沙河市| 乌兰察布市| 衢州市| 明溪县| 顺昌县| 瑞昌市| 潍坊市| 原阳县| 邵阳县| 东乡县| 武乡县| 成安县| 中山市| 仲巴县| 白沙| 青神县| 秭归县| 盱眙县| 枞阳县| 郎溪县| 民乐县|