馬艷茹,孟海波,沈玉君,丁京濤,張朋月,劉森泓
糞水酸化儲(chǔ)存還田應(yīng)用效果
馬艷茹1,2,3,孟海波1,2,沈玉君1,2,丁京濤1,2※,張朋月1,2,劉森泓1,2
(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院農(nóng)村能源與環(huán)保研究所,北京 100125;2. 農(nóng)業(yè)農(nóng)村部資源循環(huán)利用技術(shù)與模式重點(diǎn)實(shí)驗(yàn)室,北京 100125;3. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070)
為探索酸化儲(chǔ)存糞水對(duì)農(nóng)田的施用效果,采用濃硫酸(H2SO4)酸化前后的糞水和長(zhǎng)期儲(chǔ)存前后糞水,開展盆栽試驗(yàn)研究酸化儲(chǔ)存糞水對(duì)土壤養(yǎng)分和作物產(chǎn)量的影響。試驗(yàn)分別設(shè)置2個(gè)對(duì)照組:儲(chǔ)存前和儲(chǔ)存后的糞水,H2SO4酸化前和酸化后的糞水,每個(gè)處理分別設(shè)置4組施加量水平(5%、25%、50%和100%稀釋比例的糞水)。試驗(yàn)結(jié)果表明:對(duì)于養(yǎng)殖糞水還田,應(yīng)嚴(yán)格控制糞水還田比例,不宜施加濃度過高的糞水,宜控制在25%~50%施加量。糞水儲(chǔ)存有利于土壤總氮(Total Nitrogen, TN)和總磷(Total Phosphate,TP)的固持,儲(chǔ)存后土壤總養(yǎng)分(總氮、總磷和總鉀(Total Potassium,TK))增加了11.32%~73.16%,SMS(儲(chǔ)存60 d的糞水)(100%)處理產(chǎn)量提高了21.22%;糞水經(jīng)過H2SO4酸化處理后,對(duì)土壤總養(yǎng)分影響變化較大,TN、TP和TK部分處理呈增加的趨勢(shì),HMS(25%)處理產(chǎn)量顯著提高了27.94%;在H2SO4酸化的基礎(chǔ)上儲(chǔ)存糞水,土壤TN含量增加十分顯著(<0.05),酸化與儲(chǔ)存聯(lián)合處理減少了糞水TN的損失,對(duì)于土壤速效養(yǎng)分的增加有促進(jìn)作用,尤其對(duì)速效N的影響較顯著(<0.05),SHMS(糞水+H2SO4儲(chǔ)存60 d)(25%)處理產(chǎn)量提高了13.63%。該研究通過對(duì)比分析新鮮糞水、儲(chǔ)存糞水、酸化糞水和酸化儲(chǔ)存糞水的特性,探討了畜禽養(yǎng)殖場(chǎng)糞水經(jīng)酸化儲(chǔ)存后的還田應(yīng)用效果,為糞水還田提供技術(shù)支撐。
酸化;儲(chǔ)存;糞水;還田
近些年來,中國(guó)畜禽養(yǎng)殖業(yè)逐漸向規(guī)模化、集約化方向發(fā)展,隨著養(yǎng)殖規(guī)模的不斷擴(kuò)大,畜禽糞水排放量急劇增長(zhǎng)的問題日益突出。據(jù)統(tǒng)計(jì),中國(guó)畜禽糞污年產(chǎn)生量約38億t,其中糞便約18億t,糞水量約20億t。糞水還田施用成本低、簡(jiǎn)單易行,合理施用既能解決污染問題,又能提高土壤蛋白質(zhì)和氨基酸含量[1],直接或間接影響土壤肥力和持續(xù)供氮能力[2],已成為糞水資源化的重要方式,是種養(yǎng)結(jié)合循環(huán)農(nóng)業(yè)的重要紐帶。而糞水不合理的還田施用方式不僅會(huì)影響糞水肥效和水體污染,還會(huì)影響土壤質(zhì)量,導(dǎo)致作物減產(chǎn)[3-4]。
目前國(guó)內(nèi)外針對(duì)糞水資源化處理采取了不同技術(shù)[5],從生態(tài)和經(jīng)濟(jì)效益上綜合來看,還田應(yīng)用是最佳的選擇。糞水直接農(nóng)田施用應(yīng)考慮以下3個(gè)因素,一是糞水中含有大量的鹽分,過量施用糞水會(huì)使土壤溶液中離子濃度過高,導(dǎo)致植物根細(xì)胞脫水,出現(xiàn)“燒苗”現(xiàn)象;二是糞水中含有大量銨氮,不合理施用會(huì)導(dǎo)致進(jìn)入土壤中的糞污揮發(fā)出大量氨氣,灼傷作物葉片[6];三是糞水中含有糞大腸菌等有害微生物,直接施用到農(nóng)田可能會(huì)導(dǎo)致農(nóng)產(chǎn)品污染。因此,一般情況下養(yǎng)殖糞水需經(jīng)儲(chǔ)存一段時(shí)間后達(dá)到無害化要求后再進(jìn)行還田[7],但糞水在儲(chǔ)存中會(huì)揮發(fā)氨氣(NH3),儲(chǔ)存期間若處理不當(dāng),會(huì)導(dǎo)致肥料養(yǎng)分流失和氮肥價(jià)值下降[8]。國(guó)外糞水還田時(shí)特別注重養(yǎng)分合理利用和最大限度氮素?fù)p失[9]。丹麥開發(fā)了糞水酸化技術(shù),通過控制pH值添加濃硫酸對(duì)糞水進(jìn)行酸化,不但會(huì)降低NH3的排放[10],還能有效抑制殺死病原微生物[3]。糞水儲(chǔ)存期間可減少甲烷(CH4)的排放并在土壤施用后降低硝化作用,提高儲(chǔ)存后糞水的肥效。Sigurnjak研究證明酸化處理的肥料有利于N的固定,能改善作物的微量元素組成,通過增加微量營(yíng)養(yǎng)素的吸收來提高作物的營(yíng)養(yǎng)價(jià)值[11]。Pedersen研究發(fā)現(xiàn)經(jīng)過酸強(qiáng)化的牛糞水施用于玉米,提高了其對(duì)磷的吸收,玉米品質(zhì)顯著提高[12]。
國(guó)外有關(guān)處理畜禽養(yǎng)殖糞水還田效果研究相對(duì)較多[13],糞水酸化已被證明能有效抑制田間施用過程中氨排放[14-16]和CH4排放[17],但是此技術(shù)會(huì)導(dǎo)致糞水中無機(jī)鹽分升高,直接使用酸化糞水可能存在“燒苗”的風(fēng)險(xiǎn)。目前,酸化并儲(chǔ)存的糞水對(duì)土壤養(yǎng)分的作用效果在國(guó)內(nèi)還鮮有報(bào)道,為了探討中國(guó)畜禽養(yǎng)殖場(chǎng)糞水經(jīng)酸化儲(chǔ)存后的還田施用效果,本研究對(duì)比分析了新鮮糞水、儲(chǔ)存糞水、酸化糞水、酸化儲(chǔ)存糞水的特性和還田應(yīng)用效果,為糞水還田提供技術(shù)支撐。
盆栽試驗(yàn)土壤采自北京通州地區(qū)農(nóng)田,土壤基礎(chǔ)理化性質(zhì)見表1,新鮮糞水采自北京順義區(qū)某養(yǎng)豬場(chǎng)。盆栽試驗(yàn)對(duì)象選用小白菜種子。試驗(yàn)中所有用水全部采用去離子水。
表1 田間試驗(yàn)土壤理化特性
本研究共設(shè)置1個(gè)對(duì)照組和3個(gè)處理組,對(duì)照組為新鮮糞水MS處理,處理組分別為儲(chǔ)存60 d后的糞水(SMS)處理、H2SO4酸化后的新鮮糞水(HMS)處理以及H2SO4酸化并儲(chǔ)存60 d以后的糞水(SHMS)處理,每個(gè)處理按糞水的施用量分別設(shè)置4組不同水平,分別為5%,25%,50%和100%,如表2。將各處理糞水分別用去離子水按體積比進(jìn)行稀釋,即稀釋后的糞水濃度百分比分別為5%、25%、50%和100%,共計(jì)16個(gè)試驗(yàn)組(見表2),每組試驗(yàn)3組平行,共48個(gè)試驗(yàn)盆栽。選用23.5 cm×25 cm塑料盆缽,盆栽用土全部過2 mm篩,加入蒸餾水至60%土壤田間持水量,每盆裝風(fēng)干土3 kg,將糞水作為基肥一次性灌施于土壤中,穩(wěn)定一周后播種,每盆播入10粒種子,出苗一周后間苗,定苗4株,45 d后收獲。所有盆栽置于人工溫室中,溫室白天和晚上溫度分別控制在20~25 ℃和8~15 ℃。每隔2~3 d通過差重法補(bǔ)充水分,保證盆栽土壤持水量。各處理在溫室內(nèi)隨機(jī)擺放,并間歇地調(diào)換位置,以確保生長(zhǎng)條件一致。
表2 試驗(yàn)處理
播種后45 d采集小白菜樣品,將小白菜根部剪掉,用去離子水清洗莖葉,稱取取小白菜莖葉鮮質(zhì)量,后置于105 ℃烘箱中殺青1 h后,再將樣品放在60~70 ℃烘箱中烘干至恒質(zhì)量,冷卻后稱質(zhì)量。作物樣品采用不銹鋼植物樣品粉碎機(jī)磨碎、過100目(0.150 mm)篩,用于測(cè)定氮、磷和鉀等養(yǎng)分含量;同時(shí)采集土壤樣品,風(fēng)干后過1 mm篩,用于土壤pH值和EC測(cè)定,取部分土壤過100目篩,用于測(cè)定土壤氮、磷和鉀等養(yǎng)分含量測(cè)定。
土壤各指標(biāo)均采用常規(guī)方法測(cè)定,土壤pH值測(cè)定采用風(fēng)干土用pH計(jì)(雷磁pHS-3C)測(cè)定,水土比5:1浸提法。速效氮采用堿解擴(kuò)散法,速效鉀采用NH4OAc浸提-火焰光度法,速效磷采用0.5 mol/L碳酸氫鈉浸提鉬銻抗比色法測(cè)定,土壤有機(jī)質(zhì)的測(cè)定采用重鉻酸鉀容量法-外加熱法,總氮采用元素分析儀測(cè)定,有機(jī)質(zhì)采用重鉻酸鉀-硫酸外氧化法測(cè)定。
所有數(shù)據(jù)輸入Excel 2016(Microsoft, USA)作預(yù)處理,然后利用SPSS 20.0軟件(Statistical Product and Sercice Solution, USA)進(jìn)行數(shù)據(jù)統(tǒng)計(jì)和分析,利用Origin 9.0做圖像處理。
糞水的理化性質(zhì)是影響還田效果的重要參考依據(jù)。試驗(yàn)中原糞水儲(chǔ)存前后、H2SO酸化前后的各項(xiàng)指標(biāo)變化見表3。原糞水和酸化后的糞水在儲(chǔ)存60 d后pH值均顯著升高(<0.05),這是由于糞水中有機(jī)物的降解產(chǎn)生的NH4+致使pH值升高。由表3可知,酸化會(huì)導(dǎo)致糞水的電導(dǎo)率升高,該趨勢(shì)與其他文獻(xiàn)研究類似[18],但儲(chǔ)存后的糞水EC值均顯著降低(<0.05)。氮素是糞肥還田應(yīng)用的重要影響因素,儲(chǔ)存之后的糞水NH4+-N質(zhì)量分?jǐn)?shù)均顯著降低(<0.05),氮素以不同的無機(jī)氮形式損失出去,而原糞水經(jīng)過H2SO4酸化后,NH4+-N含量增加了7.43%,說明酸化有利于減少氮以NH3的形式損失,起到了顯著的氨素固持作用[19]。氮磷鉀是糞水還田利用的主要養(yǎng)分指標(biāo),由表4可知,由于NH4+-N儲(chǔ)存過程以NH3的形式揮發(fā)出去,因此也導(dǎo)致了糞水儲(chǔ)存之后TN含量顯著降低(<0.05),但經(jīng)過酸化的糞水總氮含量相比未酸化處理顯著升高,說明H2SO4酸化后有利于氮的固存。與TN相反,儲(chǔ)存60 d之后的原糞水TP和TK含量均顯著升高(<0.05)。
表3 儲(chǔ)存前后處理對(duì)糞水理化性質(zhì)的影響
注:同一行中不同小寫字母表示有顯著性差異(<0.05),各指標(biāo)是3次重復(fù)試驗(yàn)的平均值.
Note: Different lowercase letters in the same line indicated significantly differences (<0.05), and each index is the average value of three repeated experiments.
圖1顯示了不同處理糞水對(duì)土壤pH值的影響,隨著糞水添加比例的增大,土壤pH值與糞水施加量呈顯著負(fù)相關(guān)(MS2=0.859,SMS2=0.799,HMS2=0.947,SHMS2=0.914)。總體上看,除施加100%糞水的處理,其他施用量下MS、SMS、HMS和SHMS處理的土壤pH值均在8.0以上,當(dāng)施加25%和50%的糞水時(shí),土壤pH值變化差異較小。通過組內(nèi)分析發(fā)現(xiàn),當(dāng)糞水施加量是5%和100%時(shí),儲(chǔ)存或酸化的糞水對(duì)土壤pH值的影響不顯著;但當(dāng)施加25%和50%的糞水后,儲(chǔ)存的糞水(SMS)對(duì)土壤pH值有一定影響(<0.05),如添加50%的糞水,儲(chǔ)存糞水(SMS)的pH值由8.1上升至8.4。酸化的糞水(HMS)對(duì)土壤pH值的影響不顯著。整體來看,土壤的pH值受糞水施加量的影響較大,土壤pH值會(huì)隨著糞水添加量的增大而逐漸降低,而儲(chǔ)存的糞水有利于提高土壤的pH值,能促進(jìn)土壤有機(jī)質(zhì)的分解[20-21],酸化的糞水能調(diào)節(jié)土壤pH環(huán)境,有助于作物對(duì)養(yǎng)分的吸收[22]。
施用糞水對(duì)土壤的總養(yǎng)分有不同程度的影響,見表4。總體上看,TN含量變化較大,糞水施加量是5%時(shí),各處理對(duì)土壤TN的影響均顯著(<0.05)。施加25%的糞水時(shí),各處理糞水對(duì)土壤TN含量影響較小。施加100%的新鮮糞水(MS)和儲(chǔ)存糞水(SMS),土壤TN含量均最低。酸化的糞水HMS 當(dāng)施加量超過25%時(shí),土壤TN含量變小,說明酸化糞水施加量較大時(shí),土壤TN含量損失較多。而酸化儲(chǔ)存后的糞水SHMS,隨著糞水施加量的增大土壤TN含量呈上升趨勢(shì),原因是酸化可以有效控制氨揮發(fā),減少氮素?fù)p失[23-24]。土壤TP含量的變化與糞水施加量之間無明顯的變化規(guī)律,在糞水施加量為25%時(shí),土壤TP含量相比其他水平有所增加。施用儲(chǔ)存或酸化后的糞水相比新鮮糞水(MS),土壤TP的含量增加。施加儲(chǔ)存糞水(SMS)的土壤TP含量增加較多。造成該現(xiàn)象的原因可能是糞水中的磷元素不穩(wěn)定,磷在水體中形態(tài)會(huì)發(fā)生轉(zhuǎn)化,有機(jī)磷會(huì)逐漸向無機(jī)磷轉(zhuǎn)化,同時(shí),溶解態(tài)磷會(huì)一定程度向顆粒態(tài)轉(zhuǎn)化[25],而肥料中不穩(wěn)定磷的含量高于土壤中不穩(wěn)定磷的含量[4],對(duì)土壤TP的影響也較大[26]。土壤TK含量在糞水施加量為50%時(shí),MS和HMS處理的TK增加較多,在施加100%的糞水后,MS、SMS和HMS處理的土壤TK顯著減少(<0.05)。
注:圖1中不同英文小寫字母表示施用相同量的不同處理糞水對(duì)土壤pH影響顯著(P<0.05),不同希臘字母表示施用不同量的相同處理糞水對(duì)土壤pH值影響顯著(P<0.05)。
表4 土壤養(yǎng)分含量變化
注:同一列不同小寫字母表示各個(gè)比例糞水處理的土壤養(yǎng)分值差異顯著(<0.05)。
Note: Different lowercase letters in the same list indicated significantly differences on nutrient values of soil in each proportion of animal slurry treatments(<0.05).
表4中列出了各處理糞水對(duì)土壤速效養(yǎng)分的影響。不同施加比例之間的土壤速效養(yǎng)分差異顯著(<0.05)。新鮮糞水處理下的土壤速效N含量隨著糞水施加量的增大呈下降趨勢(shì),MS處理的土壤速效N含量,100%水平比5%水平降低了33.69%。施用酸化和儲(chǔ)存的糞水SMS、HMS和SHMS,糞水施加量由5%增加到25%時(shí),土壤速效N含量顯著增大,分別增加了41.63%、53.01%和16.71%;50%水平相比5%水平,SMS和HMS處理的土壤速效N含量分別增加了8.72%和50.55%;100%水平相比5%水平,SMS、HMS和SHMS處理的土壤速效N含量分別增加了42.40%、47.61%和17.29%,說明糞水經(jīng)過酸化或儲(chǔ)存后有利于速效N的增加。由表可看出,不同比例的糞水對(duì)土壤速效磷影響顯著(<0.05),隨著糞水施加量的增大,土壤速效P含量顯著上升。MS、SMS、HMS和SHMS處理施加100%濃度的糞水相比5%濃度的糞水,速效P含量分別增加了130.21%、14.71%、8.0%和19.19%,說明土壤速效P與糞水施加量呈顯著正相關(guān)。MS、SMS、HMS和SHMS處理的相關(guān)系數(shù)2分別為0.966、0.864、0.423和0.296。不同比例的糞水對(duì)土壤速效K影響顯著(<0.05),隨著糞水施加量的增大,土壤速效K含量顯著上升。MS、SMS、HMS和SHMS處理施加100%濃度的糞水相比5%濃度的糞水,速效K含量分別增加了85.35%、11.79%、108.42%和61.80%。MS、SMS、HMS和SHMS處理的正相關(guān)系數(shù)2分別為0.904、0.815、0.732和0.661。
圖2表示各處理糞水不同施加量對(duì)作物產(chǎn)量的影響。由圖可知,糞水的施加量對(duì)作物的產(chǎn)量有顯著的影響,隨著糞水施加量的增大,作物產(chǎn)量呈下降趨勢(shì)。施加5%比例和25%比例的糞水,作物產(chǎn)量差異不顯著。施加50%比例和100%比例的糞水,作物產(chǎn)量差異顯著(<0.05),隨著糞水施加量的增大,產(chǎn)量呈下降的趨勢(shì),當(dāng)糞水施加量大于25%時(shí),產(chǎn)量顯著降低(<0.05),當(dāng)施加量為100%時(shí),產(chǎn)量最低,由此說明糞水不宜直接施加于葉菜類的作物,施加量較高(>25%)會(huì)抑制作物的生長(zhǎng)。
注:圖2中不同英文小寫字母表示施用相同量的不同處理糞水對(duì)作物產(chǎn)量影響顯著(P<0.05),不同希臘字母表示施用不同量的相同處理糞水對(duì)作物產(chǎn)量影響顯著(P<0.05)。
分析施用儲(chǔ)存前后糞水對(duì)土壤養(yǎng)分含量的影響,總體上看,儲(chǔ)存后土壤總養(yǎng)分TN、TP和TK增加了11.32%~73.16%。對(duì)比儲(chǔ)存前后的MS處理和SMS處理發(fā)現(xiàn),土壤TN含量顯著降低,TP和TK含量顯著增加,5%、25%、50%和100%水平下,儲(chǔ)存后土壤TN分別下降了11.43%、15.46%、20.19%和3.42%,土壤TP分別上升了35.94%、18.39%、6.41%和33.33%,土壤TK分別上升了17.03%、9.81%、8.33%和15.99%。對(duì)比新鮮糞水(MS)處理和經(jīng)過H2SO4酸化儲(chǔ)存(SHMS)處理,TN含量顯著上升(<0.05),TP和TK含量變化不顯著,土壤TN含量分別上升了6.86%、5.8%、17.31%和76.71%。對(duì)比經(jīng)過H2SO4酸化的儲(chǔ)存前處理(HMS)和儲(chǔ)存后處理(SHMS),TN含量顯著上升,5%、25%、50%和100%水平下,TN分別上升了44.96%、20.99%、37.08%和47.43%,TP和TK含量其他水平下變化不顯著。由此可以看出,糞水經(jīng)過儲(chǔ)存有利于TK、TP養(yǎng)分的固持,并不利于固氮。但在H2SO4酸化的基礎(chǔ)上儲(chǔ)存糞水,TN含量增加十分顯著,說明酸化與儲(chǔ)存聯(lián)合有利于減少糞水總氮含量的損失。
對(duì)比新鮮糞水(MS)和儲(chǔ)存后糞水(SMS),速效N和速效P含量顯著上升,除5%水平下降了13.85%之外,25%、50%和100%水平下,儲(chǔ)存后土壤速效N分別升高了22.23%、21.94%和84.99%,速效P分別上升了58.93%、18.20%、18.45%和29.54%,速效K的50%和100%水平呈顯著降低的趨勢(shì),降低了20.23%和36.85%。對(duì)比新鮮糞水(MS)和H2SO4酸化儲(chǔ)存的糞水(SHMS),速效N和速效P含量總體呈上升趨勢(shì),除5%水平速效N減少了12.18%之外,其他水平分別上升了2.67%、2.17%和55.32%,速效P分別上升了93.15%、37.07%、34.87%和8.23%,速效K含量顯著降低(<0.05),各水平速效K含量分別降低了11.13%、11.51%、30.61%和22.42%。對(duì)比經(jīng)過H2SO4酸化的糞水(HMS)和酸化儲(chǔ)存的糞水(SHMS),速效P顯著上升,速效K顯著降低,各水平速效P分別上升了17.35%、36.40%、31.38%和29.54%,速效K分別降低了17.84%、16.59%、19.31%和36.22%。可以看出,無論是否經(jīng)過酸化,施用儲(chǔ)存之后糞水的土壤速效P含量均會(huì)顯著增加,土壤速效K含量呈減少的趨勢(shì),而土壤速效N含量變化趨勢(shì)并不十分穩(wěn)定,儲(chǔ)存后總體呈上升趨勢(shì)。
儲(chǔ)存糞水(SMS)較新鮮糞水(MS),作物產(chǎn)量總體呈上升的趨勢(shì),除5%水平之外,25%、50%和100%水平的產(chǎn)量分別增加了10.63%、20.86%和21.22%。但經(jīng)過H2SO4酸化儲(chǔ)存的糞水(SHMS)較酸化糞水(HMS),作物產(chǎn)量呈下降的趨勢(shì),5%、25%、50%水平處理產(chǎn)量分別減少了11.64%、11.19%和19.10%??梢钥闯?,施用儲(chǔ)存糞水對(duì)作物均有增產(chǎn)的效果。
分析H2SO4酸化糞水對(duì)土壤總養(yǎng)分的影響,酸化糞水(HMS)較新鮮糞水(MS),土壤TN含量顯著降低,TP含量顯著增加,除100%水平之外,5%、25%和50%水平下,HMS處理的土壤TN含量分別降低了26.29%、12.56%和14.42%。各水平土壤TP含量分別增加了20.21%、3.45%、14.10%和12.82%。H2SO4酸化儲(chǔ)存糞水(SHMS)較儲(chǔ)存糞水(SMS),土壤TN含量顯著上升(<0.05),各水平TN含量分別增加了20.65%、25.14%、46.99%和82.98%,TP和TK總體呈降低的趨勢(shì),各水平TP含量分別降低了9.20%、13.59%、13.25%和13.41%;除100%水平之外,5%、25%和50% 水平的土壤TK含量分別降低了14.35%、11.70%和10.47% 。由此看出,H2SO4酸化糞水有利于磷元素的累積,會(huì)造成部分氮元素的損失,其原因可能是酸化作用影響糞水儲(chǔ)存過程中有機(jī)質(zhì)的周轉(zhuǎn),從而影響施用后土壤無機(jī)氮的釋放[27]。但是酸化糞水經(jīng)過儲(chǔ)存后,促進(jìn)了土壤TN含量的上升,主要原因可能是酸化儲(chǔ)存的過程降低了糞水的氨氣、N2O排放,減少了氮的損失[28]。
H2SO4酸化糞水(HMS)較新鮮糞水(MS),土壤速效N、速效P和速效K含量呈上升的趨勢(shì),25%、50%和100%水平下,酸化后土壤速效N含量分別增加了4.18%、33.22%和51.29%,土壤速效P含量分別增加了64.59%、0.48%、2.66%和19.69%;5%、25%和100%水平下,土壤速效K含量分別增加了8.16%、6.09%和21.62%。H2SO4酸化儲(chǔ)存的糞水(SHMS)較儲(chǔ)存糞水(SMS),土壤速效N和速效K含量呈下降的趨勢(shì),除了5%水平之外,各水平土壤速效N含量分別降低了16.00%、16.21%和16.04%。5%、25%和50%水平下,速效K含量分別降低了11.79%、7.76%和13.01,速效P含量顯著增加(<0.05),各水平分別增加了21.53%、15.96%、13.86和0.68%??傮w上看,H2SO4酸化的糞水,有利于土壤速效養(yǎng)分的增加,尤其利于土壤速效N的顯著增加[29],其他研究也表明了硫酸酸化的糞水可以增加土壤速效養(yǎng)分的吸收[30]。不同處理糞水下作物生長(zhǎng)效果如圖3所示。
注:每行從右至左,依次為未施用糞水(CK),施用5%、25%、50%和100%糞水比例的盆栽;每列從上至下,依次為施用MS、SMS、HMS和SHMS處理糞水的盆栽。
糞水酸化后的處理較未酸化的處理,作物產(chǎn)量總體呈上升的趨勢(shì),各施用比例中,施用25%比例的糞水,作物產(chǎn)量變化趨勢(shì)穩(wěn)定、增加顯著。HMS處理較MS處理,當(dāng)糞水施用水平是25%時(shí),產(chǎn)量增加了27.94%。SHMS處理較SMS,25%水平下,產(chǎn)量增加了0.79%,總體上看,施用25%比例的H2SO4酸化糞水(HMS)的作物產(chǎn)量增加最顯著,相對(duì)于新鮮糞水(MS),酸化儲(chǔ)存后的糞水不僅達(dá)到無害化,作物產(chǎn)量也提高了13.63%。
1)對(duì)于養(yǎng)殖糞水還田,應(yīng)嚴(yán)格控制糞水還田的濃度,一方面,土壤的pH值與糞水的施加濃度呈顯著負(fù)相關(guān),且施用儲(chǔ)存糞水有利于提高土壤的pH值;另一方面,不宜施加過多的糞水,糞水施加量較高會(huì)抑制作物的產(chǎn)量,宜將施用量控制在25%~50%的稀釋比例范圍,總之,合理施用儲(chǔ)存糞水和H2SO4酸化的低濃度糞水有利于作物產(chǎn)量的提高。
2)糞水儲(chǔ)存有利于土壤總氮和總磷養(yǎng)分的固持,總體上看,施用儲(chǔ)存糞水對(duì)土壤總養(yǎng)分含量有促進(jìn)作用,有利于磷元素的累積,對(duì)作物有增產(chǎn)的效果。糞水經(jīng)過H2SO4酸化后,土壤養(yǎng)分趨勢(shì)變化也較大,產(chǎn)量增加顯著。而在H2SO4酸化的基礎(chǔ)上儲(chǔ)存糞水,土壤總氮含量和速效N含量均顯著提高(<0.05),減少了土壤氮素的損失。
[1] Christel W, Bruun S, Magid J, et al. Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes[J]. Plant and Soil, 2015, 401: 93-107.
[2] Yan L, Liu Q, Liu C, et al. Effect of swine biogas slurry application on soil dissolved organic matter (DOM) content and fluorescence characteristics[J]. Ecotoxicol Environ Saf, 2019, 184: 109616.
[3] Nicholson F A, Groves S J, Chambers B J. Pathogen survival during livestock manure storage and following land application[J]. Bioresource Technology, 2005, 96(2): 135-143.
[4] He Z, Honeycutt C W, Griffin T S. Comparative investigation of sequentially extracted phosphorus fractions in a Sandy Loam Soil and a Swine Manure[J]. Communications in Soil Science and Plant Analysis, 2011, 34: 1729-1742.
[5] 薛同宣,張開心,李成浩,等. 規(guī)模化養(yǎng)豬場(chǎng)糞水處理和資源化利用關(guān)鍵技術(shù)[J]. 農(nóng)業(yè)工程,2019,9(9):63-66.
Xue Tongxuan, Zhang Kaixin, Li Chenghao, et al. Key technologies for treatment and resource utilization of large-scale pig farms[J]. Agricultural Engineering, 2019, 9(9): 63-66. (in Chinese with English abstract)
[6] Evans L, VanderZaag A C, Sokolov V, et al. Ammonia emissions from the field application of liquid dairy manure after anaerobic digestion or mechanical separation in Ontario, Canada [J]. Agricultural and Forest Meteorology, 2018, 258: 89-95.
[7] Owusu-Twum M Y, Polastre A, Subedi R, et al. Gaseous emissions and modification of slurry composition during storage and after field application: Effect of slurry additives and mechanical separation[J]. Journal of Environmental Management, 2017, 200: 416-422.
[8] Ali B, Shah G A, Traore B, et al. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity [J]. Journal of Environmental Management, 2019, 241: 468-478.
[9] Regueiro I, Coutinho J, Balsari P, et al. Acidification of pig slurry before separation to improve slurry management on farms[J]. Environmental Technology, 2016, 37(15): 1906-1913.
[10] Regueiro I, Coutinho J, Gioelli F, et al. Acidification of raw and co-digested pig slurries with alum before mechanical separation reduces gaseous emission during storage of solid and liquid fractions[J]. Agriculture, Ecosystems & Environment, 2016, 227: 42-51.
[11] Sigurnjak I, Michels E, Crappe S, et al. Does acidification increase the nitrogen fertilizer replacement value of bio-based fertilizers? [J]. Journal of Plant Nutrition and Soil Science, 2017, 180(6): 800-810.
[12] Pedersen I F, Rubaek G H, Sorensen P. Cattle slurry acidification and application method can improve initial phosphorus availability for maize [J]. Plant and Soil, 2017, 414(1/2): 143-158.
[13] Cameira M d R, Valente F, Li R, et al. Band application of acidified slurry as an alternative to slurry injection in Mediterranean winter conditions: Impact on nitrate leaching[J]. Soil and Tillage Research, 2019, 187: 172-181.
[14] Prado J, Chieppe J, Raymundo A, et al. Bio-acidification and enhanced crusting as an alternative to sulphuric acid addition to slurry to mitigate ammonia and greenhouse gases emissions during short term storage[J]. Journal of Cleaner Production, 2020, 263: 121443.
[15] Fangueiro D, Hjorth M, Gioelli F. Acidification of animal slurry. A review [J]. Journal of Environmental Management, 2015, 149: 46-56.
[16] Bastami M S, Jones D L, Chadwick D R. Microbial diversity dynamics during the self-acidification of dairy slurry [J]. Environmental Technology, 2020, 1.
[17] Fangueiro D, Pereira J L S, Macedo S, et al. Surface application of acidified cattle slurry compared to slurry injection: Impact on NH3, N2O, CO2and CH4emissions and crop uptake[J]. Geoderma, 2017, 306: 160-166.
[18] Hjorth M, Cocolo G, Jonassen K, et al. Continuous in-house acidification affecting animal slurry composition[J]. Biosystems Engineering, 2015, 132: 56-60.
[19] Ali B, Shah G A, Traore B, et al. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity[J]. J Environ Manage, 2019, 241: 468-478.
[20] Scheid D L, da Silva R F, da Silva V R, et al. Changes in soil chemical and physical properties in pasture fertilised with liquid swine manure [J]. Sci Agric, 2020, 77(5): 10.
[21] Mergen C A, Loss A, dos Santos E, et al. Chemical attributes in biogenic and physicogenic aggregates of soil submitted to swine manure application[J]. Rev Bras Cienc Agrar, 2019, 14(1): 8.
[22] Park S H, Lee B R, Jung K H, et al. Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by (15)N-urea flux [J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(3): 457-466.
[23] Fangueiro D, Hjorth M, Gioelli F. Acidification of animal slurry: A review[J]. J Environ Manage, 2015, 149: 46-56.
[24] Zhang Z, Xu Z, Song X, et al. Membrane processes for resource recovery from anaerobically digested livestock manure effluent: Opportunities and challenges[J]. Current Pollution Reports, 2020, 6(2): 123-136.
[25] 付廣青,靳紅梅,葉小梅,等. 豬和奶牛糞污厭氧發(fā)酵中固相磷形態(tài)變化分析[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2014,30(2):239-245.
Fu Guangqing, Jin Hongmei, Ye Xiaomei, et al. Variation in forms of solid phase phosphorus in pig and dairy cow manures under anaerobic digestion[J]. Journal of Ecology and Rural Environment, 2014, 30(2): 239-245. (in Chinese with English abstract)
[26] 徐秋桐,張莉,章明奎. 不同有機(jī)廢棄物對(duì)土壤磷吸附能力及有效性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(22):236-244.
Xu Qiutong, Zhang Li, Zhang Mingkui. Effects of different organic wastes on phosphorus sorption capacity and availability in soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 236-244. (in Chinese with English abstract)
[27] S?rensen P, Eriksen J. Effects of slurry acidification with sulphuric acid combined with aeration on the turnover and plant availability of nitrogen [J]. Agriculture, Ecosystems & Environment, 2009, 131(3/4): 240-246.
[28] 李路路,董紅敏,朱志平,等. 酸化處理對(duì)豬場(chǎng)原水和沼液存儲(chǔ)過程中氣體排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(4):774-784.
Li Lulu, Dong Hongmin, Zhu Zhiping, et al. Effects of acidification on gas emissions from raw pig slurry and biogas liquid during storage[J]. Journal of Agro-Environment Science, 2016, 35(4): 774-784. (in Chinese with English abstract)
[29] Gomez-Munoz B, Case S D, Jensen L S. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions [J]. J Environ Manage, 2016, 168: 236-244.
[30] Soares A S, Miranda C, Teixeira C A, et al. Impact of different treatments on Escherichia coli during storage of cattle slurry[J]. J Environ Manage, 2019, 236: 323-327.
Application effect of the acidification storage of animal slurry returning to field
Ma Yanru1,2,3, Meng Haibo1,2, Shen Yujun1,2, Ding Jingtao1,2※, Zhang Pengyue1,2, Liu Senhong1,2
(1.100125; 2.and Rural Affairs100125; 3.,430070)
In recently years, China's livestock and poultry breeding industry has gradually developed in the direction of large-scale and centralization. With the continuous expansion of the scale of breeding, the problem of rapid increase of animal slurry emissions is becoming more and more seriously. Animal slurry were applicated reasonably can not only solve the problem of pollution, but also improving soil nutrients. There is a large amount of ammonium nitrogen in animal slurry. Unreasonable application will lead to the emission of a large amount of ammonia gas from animal slurry into the soil. In generally, the animal slurry should be stored for a period of time and then returned to the field. During the storage period, methane (CH4) emission was reduced, and the fertilizer efficiency of stored manure may improve. Acidification is a way to improve storage quality. At present, there are more studies abroad on the effect of treating animal slurry return to the field. However, the effect of the acidification storage of animal slurry on soil nutrients has been rarely reported in China. In order to explore the application effect about fresh (MS), acidification (HMS), storage (SMS), and acidification storage (SHSM) of animal slurry to field. The pot experiments were conducted to study the effect of animal slurry on soil nutrients and crop yield by using concentrated sulfuric acid and long-term storage of animal slurry. Two control groups were set up for the experiment: Animal slurry before and after storage, and animal slurry before and after acidification of H2SO4. Four different levels (5%, 25%, 50% and 100%) were set for each treatment. The results indicated that the concentration of animal slurry to the field should be strictly controlled (the level at 25%-50%). Animal slurry stored was benefit to the total nitrogen (TN) and total phosphorus (TP) of soil nutrients. After storage, the total nutrients (TN, TP, and total potassium (TK)) increased by 11.32%-73.16%, and the crop yield of SMS(100%) increased by 21.22%. However, after the acidification with H2SO4, the effect of animal slurry on the total soil nutrients changed significantly. Compared with MS, the TP content of HMS increased by 20.21%, 3.45%, 14.10% and 12.82%, and the content of available phosphorus increased by 64.59%, 0.48%, 2.66% and 19.69% at the level of 5%-100%, respectively. The crop yield of HMS(25%) increased by 27.94%. On the basis of the H2SO4acidized and stored, the TN content of soil increased very significantly (<0.05), the TN content increased by 20.65%, 25.14%, 46.99% and 82.98% at four different level. Acidification and storage processing to reduce the loss of TN have promoting effect to the increase of soil available nutrients, especially for the effect of available nitrogen significantly (<0.05), and the crop yield of SHMS(25%) increased by 13.63%. Reasonable application of stored manure slurry and low concentration of animal slurry acidified by H2SO4can increase crop yield. In generally, the application of stored animal slurry can promote the total nutrients content of soil, promoting the accumulation of phosphorus, and increasing the crop production. However, it is not suitable to apply too high concentration of animal slurry, which will inhibit the yield of crops. The application amount should be controlled within the range of 25% as far as possible.
acidification; storage; animal slurry; returning to field
馬艷茹,孟海波,沈玉君,等. 糞水酸化儲(chǔ)存還田應(yīng)用效果 [J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):245-251.doi:10.11975/j.issn.1002-6819.2020.15.030 http://www.tcsae.org
Ma Yanru, Meng Haibo, Shen Yujun, et al. Application effect of the acidification storage of animal slurry returning to field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 245-251. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.030 http://www.tcsae.org
2020-03-24
2020-06-28
農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院自主研發(fā)項(xiàng)目“畜禽養(yǎng)殖糞水酸化貯存及施用技術(shù)研究(2018ZZYF0101)”
馬艷茹,博士生,主要從事農(nóng)業(yè)廢棄物資源化利用技術(shù)研發(fā)。Email:mayanru168@163.com
丁京濤,博士,高級(jí)工程師,主要從事農(nóng)業(yè)廢棄物資源化利用技術(shù)研發(fā)。Email:dingjingtao@163.com
10.11975/j.issn.1002-6819.2020.15.030
X71
A
1002-6819(2020)-15-0245-07