陳虹旭 于川岳 李曉坤 劉清源 孫怡然 董濰赫
摘? 要: 智慧環(huán)境,作為互聯(lián)網(wǎng)技術(shù)與環(huán)境信息化技術(shù)的結(jié)合體,顯然需要多種多樣的信息與數(shù)據(jù)傳輸手段,將智慧環(huán)境與Light Fidelity技術(shù)相結(jié)合,更利于環(huán)境信息化管理。針對Light Fidelity在智慧環(huán)境運(yùn)用過程中存在的“陰影效應(yīng)”問題進(jìn)行探討與研究,提出基于Haar小波的DWT-OFDM的調(diào)制解決方案。同時,分析Polar Code在基于OOK技術(shù)的Light Fight通信運(yùn)用中存在的優(yōu)勢,建立Light Fidelity在智慧環(huán)境中的通信系統(tǒng)模型,分析在總衰減系數(shù)不同的情況下,Light Fidelity的接收光功率與通信距離的變化關(guān)系,并采用加權(quán)系數(shù)法,優(yōu)化Light Fidelity路徑損耗的計算以及Light Fidelity在智慧環(huán)境中的通信性能。
關(guān)鍵詞: Light Fidelity;智慧環(huán)境;Haar DWT-OFDM;Polar Code
中圖分類號: TN929.12? ? 文獻(xiàn)標(biāo)識碼: A? ? DOI:10.3969/j.issn.1003-6970.2020.09.037
本文著錄格式:陳虹旭, 于川岳, 李曉坤, 等. 基于Light Fidelity在智慧環(huán)境的運(yùn)用[J]. 軟件,2020,41(09):137140+144
【Abstract】: Smart environment, as a combination of Internet technology and environmental information technology, obviously needs various means of information and data transmission. The combination of smart environment and Light Fidelity technology is more conducive to environmental information management. Having discussed and studied the “Shadow Effect” of Light Fidelity in the smart environments applications, and the modulation solution of DWT-OFDM based on Haar wavelet is proposed. Meanwhile, the advantages of Polar Code in Light Fidelity communication application based on OOK technology are analyzed, and having built the model of Light Fidelity in the smart environment of the communication system and analysis in total attenuation coefficient of different cases, the Light Fidelity receiving optical power and the change of the communication distance, and weighted coefficient method is adopted to optimize Light Fidelity path loss calculation and the performance in which Light Fidelity in the smart environment of communication.
【Key words】: Light Fidelity; Smart environment; Haar DWT-OFDM; Polar Code
0? 引言
隨著IEEE協(xié)會在2014年發(fā)布802.11ax標(biāo)準(zhǔn)將Wireless Fidelity(無線保真技術(shù),Wi-Fi)推向新的發(fā)展浪潮[1-2],但因Wi-Fi以電磁波為信息載體,從而存在一些痛點——易發(fā)生電磁波干擾、頻帶資源有限等等[3]。光保真技術(shù)(Light Fidelity,Li-Fi)利用LED燈作為通信發(fā)射源,在LED燈中安裝微型芯片,采用開關(guān)鍵控(On Off Keying,OOK)技術(shù)控制LED燈明滅閃爍,實現(xiàn)信息傳輸目的[4-6],這意味著Li-Fi不僅建設(shè)成本低,而且在無線 通信領(lǐng)域?qū)浹a(bǔ)Wi-Fi等技術(shù)的不足。將Li-Fi與智慧環(huán)境相結(jié)合打造環(huán)境信息化,更利于踐行“綠水青山就是金山銀山”的發(fā)展理念[7]。本文針對Li-Fi在智慧環(huán)境的運(yùn)用過程中遇到的難點進(jìn)行研究與探討,并給出相關(guān)可行性方案。
1? Haar DWT-OFDM
Li-Fi通信的可見光波長范圍一般為380 nm~? 780 nm[8]。通常情況下,物體的尺寸遠(yuǎn)大于此范圍,衍射效果不明顯,光只能沿直線傳播[9]。當(dāng)物體進(jìn)入可見光的通信信道時,光線被阻擋,形成所謂的“陰影效應(yīng)”[10-12],即光線被阻擋導(dǎo)致接收器無法接收到光信號。針對上述問題,可以采用多發(fā)射源的方式來解決,如圖1所示。
采用多發(fā)射源就會存在一個問題:將單一信道變成多個子信道(多載波信號),會導(dǎo)致多信號傳輸時各個子信號之間相互重疊,發(fā)生串?dāng)_[13-15]。
正交頻分復(fù)用(OFDM)可提高LED的窄帶調(diào)制帶寬、Li-Fi頻譜效率以及通信速率[16]。然而,由于時域信號的疊加效應(yīng),系統(tǒng)的峰均比過高,雙極性復(fù)數(shù)
OFDM時域信號不能應(yīng)用于可見光通信系統(tǒng)強(qiáng)度調(diào)制的直接檢測中。這時,可以利用基于離散小波變換的OFDM(DWT-OFDM)進(jìn)行多載波調(diào)制,來抑制系統(tǒng)的峰均比。DWT-OFDM可見光通信系統(tǒng)如圖2所示。
由于OFDM系統(tǒng)對正交性要求很高,因此選擇了正交性、緊支撐性均良好的小波基Haar小波,其定義式如式(1):
其中,C為常數(shù)。圖3為OFDM信號的幅度分布,圖4為時域的DWT-OFDM信號。
2? Polar Code
Li-Fi通信系統(tǒng)鏈路易受到噪聲的影響,通常采用前向糾錯(FEC)來提高系統(tǒng)的可靠性,傳統(tǒng)的FEC碼[17],如RS(Reed-Solomon)碼、LDPC(low-density parity check)碼和極化碼(Polar Code),前兩種FEC碼會導(dǎo)致Li-Fi通信系統(tǒng)結(jié)構(gòu)變復(fù)雜,傳輸效率低[18],而Polar Code能夠驗證香農(nóng)容量,可以避免這些問題,其簡單的編碼結(jié)構(gòu)和更好的糾錯性能[19],可應(yīng)用于OOK技術(shù)中,由于極化碼是基于信道而構(gòu)造的,限制其不能應(yīng)用于頻率衰減的信道中,為了減少由于頻率衰減而引起的損耗,提出了一種結(jié)合極化碼的編碼器與副載波映射的方法[20-22],如圖5所示。
在發(fā)送端,假定對于一個碼字x,其長度為N(N=2n,n為正整數(shù)),某信息的二進(jìn)制序列長度為K,因此,編碼率為:
2×2極化核的n倍Kronecker積。圖6為Polar Code與二進(jìn)制相移鍵控(BPSK)的對比圖。
3? 系統(tǒng)模型
在智慧環(huán)境中,可以建立數(shù)據(jù)采集系統(tǒng)[23],如圖7為Li-Fi通信系統(tǒng)模型。
此外,可見光在某些智慧環(huán)境中傳輸信號會有路徑損耗(Path Loss),其包括衰減損耗(Attenuation Loss)和幾何損耗(Geometrical Loss)[24-26]。
衰減損耗(PAL)一般用Beer-Lambert定律來定義:
其中,c(λ)為總衰減系數(shù),x為通信距離。衰減損耗的前提——首先,光源發(fā)射器和信號接收器是完全對準(zhǔn)的;其次,即便在實際情況中一些散射光子在多次散射之后仍可以到達(dá)接收器,但是所接收到的散射光子仍會消失[27-29]。為了解決該問題,提出了兩個指數(shù)的加權(quán)函數(shù)(PML):
其中,u1、u2、v1、v2均為加權(quán)參數(shù)(the weighting parameters,TWP),都通過最小均方算法(LMS)對統(tǒng)計模擬方法(Monte Carlo Method)得到的仿真數(shù)據(jù)進(jìn)行計算而得出。
而幾何損耗,是由于光在環(huán)境中發(fā)生折射和散射所造成的,這會導(dǎo)致光信號大量損耗,幾何損耗可表示為:
其中S為光電探測器面積,φ是輻射角度,m為朗伯(Lambertian)輻射階數(shù),其表達(dá)式為:
其中φ1/2為光源發(fā)射半角。
而光斑的擴(kuò)展也會限制無線光信號的傳輸[30]。光斑擴(kuò)展特性受光源發(fā)散角、光源設(shè)備的發(fā)射半徑、光學(xué)天線設(shè)備的接收半徑以及通信距離的影響。光信號的傳輸不僅受光斑擴(kuò)展的影響,還受固有光學(xué)特性的影響。圖8為Li-Fi通信光斑幾何模型。
4? 實驗與分析
根據(jù)第3節(jié)式(12)-(15),用Matlab對路徑損耗(P)進(jìn)行繪圖,實驗參數(shù)如表1。
圖9為有無加權(quán)參數(shù)(TWP)情況下的路徑損耗(P)與通信距離的關(guān)系。
由此可見,在有加權(quán)參數(shù)的情況下,路徑損耗的絕對值比沒有加權(quán)參數(shù)的要小,而且路徑損耗也隨著通信距離的增加而增大。
根據(jù)第3節(jié)式(16)—(19),用Matlab對接收光功率進(jìn)行繪圖,實驗參數(shù)如表2所示。
圖10為總衰減系數(shù)不同的情況下,接收光功率與通信距離的關(guān)系。
由此可見,接收光功率受通信距離與總衰減系數(shù)影響,總衰減系數(shù)越大,接收光功率衰減越快,通信距離越遠(yuǎn),接收光功率越小,這也從側(cè)面證明了Li-Fi適用于短距離傳輸信息。
5? 結(jié)語
本文介紹了在基于Li-Fi技術(shù)于智慧環(huán)境的運(yùn)用過程中,主要存在的痛點及解決方案。為克服“陰影效應(yīng)”問題,提出了一種基于Haar小波的DWT-OFDM調(diào)制技術(shù)的可行性方案,并探討了Polar Code在Li-Fi通信的OOK技術(shù)中的應(yīng)用。同時,建立了Li-Fi在智慧環(huán)境中的通信系統(tǒng)模型,分析了在基于該模型的Li-Fi通信運(yùn)用中產(chǎn)生的問題,并提出相關(guān)解決方案。通過實驗可以看出,路徑損耗主要受通信距離的影響,用指數(shù)加權(quán)函數(shù)優(yōu)化路徑損耗計算方法從而得到的數(shù)據(jù)比傳統(tǒng)模式下的計算方法要小,并且隨著通信距離的增加,這樣的優(yōu)勢越發(fā)明顯,而接收光功率不僅受通信距離的影響,還受總衰減系數(shù)的影響,這表明Li-Fi受環(huán)境因素制約的同時也受通信距離的限制,因此,Li-Fi更適用于短距離通信,這樣的性質(zhì)使得Li-Fi在智慧環(huán)境中一些要求高速通信、安全性高、通信距離短的領(lǐng)域中得到更好地運(yùn)用,并在智慧環(huán)境中,可以有效彌補(bǔ)其他無線通信的不足。
參考文獻(xiàn)
[1]Der-Jiunn Deng, Kwang-Cheng Chen, et al. IEEE 802. 11ax: Next generation wireless local area networks[J]. QSHINE, 2014 10th International Conference on, 2014: 77-79.
[2]Li Qishan, Hu Zhiqun, et al. On-line learning algorithm for dynamic sensitivity control in IEEE 802. 11ax network[J]. The Journal of China Universities of Posts and Telecommunications, 2018: 67-68.
[3]Ali Tufail, Mike Fraser, et al. An empirical study to analyze the feasibility of WIFI for VANETs[J]. IEEE Conference on Computer Communications, 2008: 553-554.
[4]Vasu Dev Mukkua, Sebastian Langa, et al. Integration of LiFi Technology in an Industry 4. 0 Learning Factory[J]. Procedia Manufacturing, 2019: 224.
[5]Rashed Islam, M. Rubaiyat Hossain Mondal, et al. Hybrid DCO-OFDM, ACO-OFDM and PAM-DMT for dimmable LiFi[J]. Optik, 2019: 939-940.
[6]Mithun Mukherjee, Jaime Lloret, et al. Leveraging light-fidelity for internet of light: State-of-the-art and research challenges[J]. Internet Technology Letters, 2018: 1-2.
[7]Xue-xuan Xu, Tong-jun Ju, et al. Sediment sources of Yan'gou watershed in the Loess Hilly region China under a certain rainstorm event[J]. SpringerOpen, 2013: 2-3.
[8]Gonzalez-Camejo, Viruela, et al. Dataset to assess the shadow effect of an outdoor microalgae culture[J]. Data in brief, 2019: 1-25.
[9]Januszkiewicz, Lukasz. Analysis of human body shadowing effect on wireless sensor networks operating in the 2. 4 GHz band[J]. Sensors, 2018: 1-2.
[10]Ali, Hatam H., Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-2.
[11]Hatam H. Ali, Mohd Shahrizal Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-3.
[12]Park, Cheol Young, et al. Effects of surface treatment of ITO anode layer patterned with shadow mask technology on characteristics of organic light-emitting diodes[J]. Organic Electronics, 2013: 1-2.
[13]Nihat Daldal, et al. Classification of multi-carrier digital modulation signals using NCM clustering based feature- weighting method[J]. Computers in Industry, 2019: 45-46.
[14]Zhang Xing, et al. Blind interference detection and recognition for the multi-carrier signal[J]. The Journal of China Universities of Posts and Telecommunications, 2017: 48-50.
[15]Sasan Mahmoodi. Discontinuity preserving method for noise removal of multi-carrier signals[J]. Signal Processing, 2017: 8-9.
[16]Jia Kejun, et al. Modeling of Multipath Channel and Performance Analysis of MIMO-DCO-OFDM System in Visible Light Communications[J]. Chinese Journal of Electronics, 2019: 630-631.
[17]Haochuan Song, et al. Polar-coded forward error correction for MLC NAND flash memory[J]. Science China Information Sciences, 2018: 1-16.
[18]I. Tal, et al. How to construct polar codes[J]. IEEE Trans. Inf. Theory, 2013: 6562-6582.
[19]T. Koike-Akino, et al. Bit-interleaved polar-coded OFDM for low-latency M2M wireless communications[J]. Proc. IEEE Int. Conf. Commun., 2017: 1-7.
[20]HE Jing, et al. An Efficient Encoder-Subcarrier Mapping Method Combined With Polar Code for Visible Light Communication[J]. IEEE Access, 2019: 69120-69121.
[21]I. Tal, A. Vardy. List decoding of polar codes[J]. Proc. IEEE Int. Symp. Inf. Theory, 2011: 1-5.
[22]L. Liu, et al. High performance and cost effective CO-OFDM system aided by polar code[J]. Opt. Express, 2017: 2763-2770.
[23]Irina Stefan, Hany Elgala, Harald Haas. Study of dimming and LED nonlinearity for ACO-OFDM based VLC systems[J]. IEEE Wireless Communications and Networking Conference, 2012: 990-991.
[24]Farshad Miramirkhani, Murat Uysal. Visible Light Communication Channel Modelingfor Underwater Environments WithBlocking and Shadowing[J]. IEEE Access, 2017: 1084- 1085.
[25]N. Lourenc, et al. Visible light communication system for outdoor applications[J]. Proc. 8th Int. Symp Commun Syst, Netw Digit Signal Process, 2012: 1-6.
[26]T. Komine, M. Nakagawa. “Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Trans Consum Electron, 2004: 100-107.
[27]L. Liu, et al. Performance evaluation of high-speed polar coded CO-OFDM system with nonlinear and linear impairments[J]. IEEE Photon, 2017, Art. no. 7202909.
[28]J. He, et al. An ISFA-combined pilotaided channel estimation scheme in multiband orthogonal frequency division multiplexing ultra-wideband over fiber system[J]. Proc. IEEE Symp. Comput. Commun. (ISCC), 2015: 913-917.
[29]K. Niu, et al. Polar codes: Primary concepts and practical decoding algorithms[J]. IEEE Commun. Mag., 2014: 192-203.
[30]Yan Zhou, et al. Beam spreading, kurtosis parameter and Strehl ratio of partially coherent cosh-Airy beams in atmospheric turbulence[J]. Optik, 2019: 656-657.