童文杰 藺忠龍 鄭元仙 何元勝 蔡永占 鄧小鵬
摘要:【目的】克隆并分析煙草NBS-LRR類抗病基因的同源序列(RGAs),為采用同源克隆技術(shù)挖掘煙草抗病基因提供理論參考?!痉椒ā繌幕贜BS-LRR類抗病基因保守序列設(shè)計的簡并引物中篩選擴增效果較好的引物用于擴增煙草RGAs,采用DNAMAN 6.0翻譯成氨基酸序列,并與已知的其他植物抗病基因進行聚類分析?!窘Y(jié)果】克隆獲得6條與參比抗病基因具有高度同源性的煙草RGAs,大小在500 bp左右,但僅有4條RGAs具有連續(xù)的開放閱讀框(ORF)及編碼NBS功能結(jié)構(gòu)域的核苷酸序列,命名為TRGA-87-1~TRGA-87-4。這4個煙草RGAs編碼的氨基酸序列均含有NBS類抗病蛋白的多個典型保守基序,與已知的多種植物抗病基因編碼的氨基酸序列均具有較高的相似性,其中,與煙草相關(guān)抗病基因編碼的氨基酸序列相似性最高,為97.00%~100.00%,與其他植物的抗病基因編碼氨基酸序列相似性為29.00%~53.00%,這些序列可分為3個亞類,其中TRGA-87-2與煙草N和亞麻L6聚為一類(TRGAⅠ),屬于TIR-NBS-LRR類;TRGA-87-3和TRGA-87-4與水稻Xa-1和番茄Mi聚為一類(TRGAⅡ),屬于non-TIR-NBS-LRR類,TRGA-87-1與擬南芥RPM1聚成一類(TRGAⅢ),屬于non-TIR-NBS-LRR類。【結(jié)論】同源擴增技術(shù)可用于煙草中抗病基因的克隆、功能分析及定位等研究。
關(guān)鍵詞: 煙草;NBS-LRR;抗病基因;同源序列;克隆
中圖分類號: S572? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標(biāo)志碼: A 文章編號:2095-1191(2020)09-2138-07
Cloning and analysis of NBS-LRR resistance gene
analogs in tobacco(Yunyan 87)
TONG Wen-jie1, LIN Zhong-long2, ZHENG Yuan-xian3, HE Yuan-sheng3,
CAI Yong-zhan4, DENG Xiao-peng1*
(1Yunnan Academy of Tobacco Science, Kunming? 650201, China; 2Yunnan Branch of China National Tobacco Corporation, Kunming? 650011; 3Lincang Branch of Yunnan Tobacco Company, Lincang, Yunnan? 677000,
China; 4Qujing Branch of Yunnan Tobacco Company, Qujing, Yunnan? 655000, China)
Abstract:【Objective】To clone and analyze the resistance gene analogs(RGAs) of NBS-LRR resistance genes in tobacco,provide theoretical reference for using homologous cloning technology to mine tobacco resistance genes. 【Method】The degenerate primers designed based on the conserved sequences of NBS-LRR resistance genes were selected to amplify RGAs of tobacco. The vector sequences in the sequenced fragments were removed by DNAMAN 6.0,and then transla-ted into amino acid sequences. Homology analysis was performed in NCBI database,and cluster analysis was performed with other known disease resistance genes. 【Result】Six tobacco RGAs with high homology with the reference disease resistance genes were cloned and their sizes were about 500 bp. Only four RGAs had continuous open reading frames (ORFs) and nucleotide sequences encoding NBS functional domain,named from TRGA-87-1 to TRGA-87-4. The amino acid sequences encoded by these four RGAs all contained several typical conserved motifs of NBS like resistance proteins,and shared high similarity with? known amino acid sequences encoded by many plant disease resistance genes.Among them,the amino acid sequences of tobacco related disease resistance genes had the highest similarity(97.00%-100.00%) and 29.00%-53.00% with other plant disease resistance genes. These sequences could be divided into three subgroups. TRGA-87-2,tobacco N and flax L6 were clustered into one group(TRGA I), belonging to TIR-NBS-LRR resistance genes. TRGA -87-3, TRGA -87-4, rice Xa-1 and tomato Mi clustered into a subgroup(TRGAⅡ), belonging to non-TIR-NBS-LRR resistance genes. TRGA-87-1 and arabidopsis RPM1 clustered into a subgroup(TRGA III),belonging to non-TIR-NBS-LRR resistance genes. 【Conclusion】Homologous amplification can be used for cloning,functional analysis and localization of disease resistance genes in tobacco.
Key words: tobacco; NBS-LRR; resistance gene; homologous sequence; cloning
Foundation item: National Natural Science Foundation of China(31660426); Project of Yunnan Branch of China National Tobacco Corporation(2018530000241016,2018530000241020,2019530000241011)
0 引言
【研究意義】攜帶核苷酸結(jié)合位點(NBS)和亮氨酸富集重復(fù)(LRR)結(jié)構(gòu)的NBS-LRR類抗病基因是植物基因組中所含抗病基因數(shù)目最多的基因家族。近年來許多植物基因組測序工作已相繼完成,為從全基因組水平上研究和分析NBS-LRR類抗病基因打下基礎(chǔ)(Meyers et al.,1999,2003;The Tomato Genome Consortium,2012;李任建等,2020)。煙草(Nicotiana tabacum L.)作為重要的經(jīng)濟作物之一,其基因組測序也已完成。目前病蟲害的發(fā)生嚴重制約煙葉田間生產(chǎn)。雖然煙草品種自身在一定程度上對病蟲害具有抵抗力(張艷云,2011),但不同煙草品種對不同病毒類型和蟲害的抗性差異很大(張雪峰,2014;王家川等,2016)。因此,挖掘煙草中更多NBS-LRR類抗病基因,對各種煙草病害的防治極其重要,對煙草安全高效生產(chǎn)具有重要意義?!厩叭搜芯窟M展】目前,采用圖位克隆、轉(zhuǎn)座子標(biāo)簽和同源克隆等技術(shù)已從擬南芥、小麥、甘薯、馬鈴薯和甘蔗等植物中獲得多種抗病基因,這些基因可激活植株抗病機制(Shirano et al.,2002;Sekhwal et al.,2015;Zhou et al.,2016;畢楚韻等,2020)。據(jù)前人研究報道,NBS-LRR類抗病基因廣泛存于真核生物中,其編碼蛋白主要包括Tir/CC、NBS和LRR三大結(jié)構(gòu)域(圖1)(劉云飛等,2014;李任建等,2020),其中,NBS保守結(jié)構(gòu)域又可分為8個保守基序(Zhou et al.,2004;劉云飛等,2014)。近年來,利用NBS-LRR類抗病基因的保守序列對不同植物抗病基因進行廣泛挖掘,已從不同植物中克隆得到較多該類抗病基因的同源序列(RGAs)。張立榮等(2011)根據(jù)NBS-LRR類抗病基因保守序列設(shè)計簡并引物,從小麥中擴增得到13條具有開放閱讀框(ORF)的RGAs;陳玲等(2012)從懸鉤子薔薇中克隆獲得4條RGAs。此外,NBS-LRR類抗病基因也可用于分子標(biāo)記及基因定位的開發(fā)等。Liu等(2013)從花生RGAs中挖掘出28個SSR分子標(biāo)記,并將其中的RGA121標(biāo)記定位連鎖群AhIV上;丁玉梅(2019)根據(jù)NBS-LRR類抗病基因保守序列設(shè)計簡并引物,從黑籽南瓜中克隆獲得8條RGAs,并將其作為參考序列與轉(zhuǎn)錄組和蛋白組相結(jié)合篩選抗病基因;Kim等(2004)、Qi等(2014)研究擬南芥NBS-LRR類抗病蛋白RPS5識別方式,對多種植物的病原菌具有抗病作用。【本研究切入點】盡管在煙草上有很多關(guān)于抗病基因的研究(張立榮等,2011;袁清華等,2014;曾建敏等,2016),但其抗病基因功能及分類尚不清楚。有關(guān)煙草NBS-LRR類抗病基因的研究鮮見報道?!緮M解決的關(guān)鍵問題】根據(jù)已報道的NBS-LRR類抗病基因保守序列設(shè)計并合成簡并引物,從煙草中擴增獲得RGAs,并對其序列進行分析,為利用同源克隆技術(shù)挖掘煙草抗病基因提供理論參考。
1 材料與方法
1. 1 試驗材料
供試煙草品種為云煙87,具有抗黑脛病、南方根結(jié)線蟲病、普通花葉病及葉斑病等抗性。煙草種子由云南省煙草農(nóng)業(yè)科學(xué)研究院農(nóng)藝中心提供。主要試劑:pMD18-T Vector試劑盒和大腸桿菌DH5α感受態(tài)細胞均購自寶生物工程(大連)有限公司;膠回收試劑盒購自北京全式金生物科技有限公司。主要儀器設(shè)備:PCR儀(Eppendorf Mastercycler Nexus,德國)、凝膠成像系統(tǒng)(VILBER Quantum CX5,法國)和紫外可見分光光度計(Implen,德國)。
1. 2 試驗方法
1. 2. 1 煙草DNA提取 采集田間種植的煙草葉片,參考Allen等(2006)的CTAB法提取其總DNA,方法略有改動。
1. 2. 2 簡并引物設(shè)計及篩選 前人已根據(jù)擬南芥、亞麻、甘蔗、煙草和甘薯等NBS-LRR類抗病蛋白NBS保守結(jié)構(gòu)域的編碼核苷酸序列設(shè)計簡并引物,從中篩選出擴增效果較好的引物用于煙草RGAs克隆,其序列信息如表1所示。
1. 2. 3 煙草RGAs克隆及測序 利用提取的DNA和篩選獲得的簡并引物進行PCR擴增。反應(yīng)體系25.0 μL:10×PCR Buffer(plus Mg2+)2.5 μL,2.5 mmol/L dNTPs 0.5 μL,10 μmol/L上游引物(1F、2F和3F)2.5 μL,10 μmol/L下游引物(1R、2R和3R)2.5 μL,Taq DNA聚合酶(5 U/μL)0.2 μL,1 μL DNA模板,ddH2O補足至25.0 μL。擴增程序、回收純化及測序參照魏環(huán)宇等(2019)的方法。
1. 2. 4 序列分析及系統(tǒng)發(fā)育進化樹構(gòu)建 使用DNAMAN 6.0將測序獲得的核苷酸序列翻譯成氨基酸序列,將其提交至NCBI數(shù)據(jù)庫進行BLASTx比對。用DNAMAN 6.0對已知功能的抗病基因進行多序列比對,并構(gòu)建系統(tǒng)發(fā)育進化樹。
2 結(jié)果與分析
2. 1 煙草RGAs克隆及測序結(jié)果
由圖2可知,克隆獲得6條與參比抗病基因具有高度同源性的煙草RGAs,長度約500 bp,與預(yù)期結(jié)果相符。序列分析結(jié)果顯示,6條煙草RGAs中,有2個RGAs為不可表達的假基因,其余4個RGAs含有連續(xù)且完整的ORF及編碼NBS功能結(jié)構(gòu)域的核苷酸序列(GenBank登錄號分別為MK634312、MK634313、MK634314和MK634315),命名為TRGA-87-1~TRGA- 87-4??梢?,采用同源擴增技術(shù)可有效挖掘煙草RGAs。
2. 2 煙草RGAs同源性分析結(jié)果
通過同源性比對分析發(fā)現(xiàn),4條RGAs編碼的氨基酸序列與已知的多種植物抗病基因編碼的氨基酸序列均具有較高的相似性,其中,與煙草相關(guān)抗病基因編碼的氨基酸序列相似性較高,為97.00%~100.00%(表2)。
2. 3 煙草RGAs編碼的保守結(jié)構(gòu)域分析結(jié)果
利用DNAMAN 6.0對4條煙草RGAs編碼的氨基酸序列與4條其他植物抗病基因編碼的氨基酸序列進行多重比對分析,結(jié)果(圖3)顯示,4條煙草RGAs編碼的氨基酸序列均含有NBS類抗病蛋白的多個典型保守基序,即Kinase-2(LIVLDDVW)模體、P-loop(GMGGVGGKTT)和GLPLAL疏水性區(qū)段,在Kinase-2區(qū)的最后一個氨基酸為天冬氨酸或色氨酸,推測這8條RGAs可分為non-TIR-NBS-LRR(CC-NBS-LRR)類和TIR-NBS-LRR類。這4條煙草RGAs與5條已報道的抗病相關(guān)植物的RGAs編碼的氨基酸序列在P-loop(GMGGVGG KTT)、Kinase-2(LIVLDDVW)和GLPLAL保守結(jié)構(gòu)域中具有高度相似性。
2. 4 煙草RGAs聚類分析結(jié)果
應(yīng)用DNAMAN 6.0將4條煙草RGAs編碼的氨基酸序列與擬南芥、煙草、亞麻、番茄和水稻等植物抗病基因編碼的氨基酸序列進行相似性分析,并構(gòu)建系統(tǒng)發(fā)育進化樹,結(jié)果(圖4)顯示,其氨基酸序列相似性為29.00%~53.00%,可分為3個亞類,其中,TRGA-87-2與煙草N(AAA50763)和亞麻L6(AAA91022)聚為一類(TRGAⅠ),尤其與煙草N的相似性最高,為53.00%,與亞麻L6相似性為39.00%,結(jié)合上述同源性分析結(jié)果,推測TRGA-87-2是與煙草花葉病毒有關(guān)的抗病基因,屬于TIR-NBS-LRR類;TRGA-87-3和TRGA-87-4與水稻Xa-1(BAA25068)和番茄Mi(AAC9x7933)聚為一類(TRGAⅡ),其中,TRGA-87-3與TRGA-87-4相似性為67.00%,二者與番茄Mi相似性均為49.00%,與水稻Xa-1相似性均為32.00%,推測二者具有相似的基因功能,結(jié)合上述同源性分析結(jié)果,二者均為與煙草晚疫病有關(guān)的抗病基因,屬于non-TIR-NBS-LRR類;而TRGA-87-1與擬南芥RPM1(X87851)聚成一類(TRGAⅢ),二者相似性為29.00%,也屬于non-TIR-NBS-LRR類??梢?,煙草RGAs屬于NBS類抗病基因,分為non-TIR-NBS-LRR和TIR-NBS-LRR兩大類,與上述保守結(jié)構(gòu)域分析結(jié)果一致。
3 討論
同源克隆技術(shù)具有操作簡單、擴增模板用量少、統(tǒng)計效率高等優(yōu)點,可應(yīng)用于基因組復(fù)雜的植物中,是一種便捷、經(jīng)濟的分離和克隆未知基因的有效方法。本研究運用該技術(shù)獲得6條煙草RGAs,其中有2條可能存在內(nèi)含子,無法通讀,為不表達的假基因。因此,在后續(xù)研究中可以cDNA為擴增模板,其原因是cDNA中均為表達序列,不含任何內(nèi)含子,能獲得準確度更高的RGAs,更有利于篩選出抗病基因(路妍等,2020)。NBS-LRR類抗病基因約占所有抗病基因的72%,通常以基因家族的形式廣泛存在于植物基因組中(闕友雄等,2009;薛瑩瑩等,2014)。當(dāng)植物受到病原菌侵染時,通過超表達NBS類抗病基因從而啟動侵染部位的程序性死亡,以提高植物抗病害能力(丁玉梅,2019)。本研究利用簡并引物PCR擴增獲得4條煙草RGAs,通過BLAST比對發(fā)現(xiàn),其編碼蛋白與已報道的抗病基因編碼蛋白具有較高的氨基酸序列相似性,含有蛋白激酶中的保守基序,有可能參與植物抗病反應(yīng)過程中的信號識別和傳導(dǎo)等途徑,因此,這4條煙草RGAs可作為抗病相關(guān)的候選基因,進一步分析其與已知抗病基因的關(guān)系,從而挖掘出新的抗病基因。
目前,國內(nèi)外在NBS-LRR類抗病基因研究方面取得較大進展,已從黃瓜(丁國華等,2005;王昶童等,2014)、芒果(劉洋等,2013)、甘薯(王連軍等,2013;黃小芳等,2020)、葡萄(張穎等,2013)、核桃(安海山和楊克強,2014)、桑樹(劉潮等,2019)等基因組未知的作物中,克隆得到大量NBS-LRR類RGAs,為抗病基因的研究打下基礎(chǔ)。但NBS-LRR類抗病基因的相關(guān)研究仍不夠深入。目前已從水稻、擬南芥等基因組測序完成的植物中克隆獲得具有許多共同特點的NBS-LRR類抗病基因,但其抗病基因數(shù)目結(jié)構(gòu)和類型存在明顯差異,為了有效利用抗病基因,還需對更多植物的RGAs進行深入分析,解析其特點。由于NBS-LRR類基因家族成員眾多,同時不同煙草品種對不同病蟲害的抗性不同,有關(guān)煙草抗病基因的分類,乃至NBS-LRR類煙草抗病基因至今尚未系統(tǒng)研究分析。
4 結(jié)論
利用簡并引物進行同源擴增是挖掘煙草RGAs的有效方法,可用于煙草中抗病基因的克隆、功能分析及定位等研究。
參考文獻:
安海山,楊克強. 2014. 核桃NBS類抗病基因類似物的序列特征及其與炭疽病的抗性[J]. 中國農(nóng)業(yè)科學(xué),47(2):344-356. [An H S,Yang K Q. 2014. Sequence analysis of NBS-type RGAs and their relationship with anthracnose resistance in walnut[J]. Scientia Agriculture Scinica,47(2):344-356.]
畢楚韻,黃小芳,周麗香,石媛媛,胡韻卓,梁才曉,黃碧芳,許明,林世強,陳選陽. 2020. 三淺裂野牽牛NBS-LRR類抗病基因的鑒定和分析[J/OL]. 分子植物育種,https://kns.cnki.net/kcms/detail/46.1068.S.20200612.1815.012.html. [Bi C Y,Huang X F,Zhou L X,Shi Y Y,Hu Y Z,Liang C X,Huang B F,Xu M,Lin S Q,Chen X Y. 2020. Identification and analysis of NBS-LRR gene family in Ipomoea trifida genome[J]. Molecular Plant Breeding,https://kns.cnki.net/kcms/detail/46.1068.S.20200612.1815.012. html.]
陳玲,張顥,邱顯欽,晏慧君,王其剛,蹇洪英,唐開學(xué). 2012. 云南懸鉤子薔薇NBS-LRR類抗病基因同源克隆與分析[J]. 植物分類與資源學(xué)報,34(1):56-62. [Chen L,Zhang H,Qiu X Q,Yan H J,Wang Q G,Jian H Y,Tang K X. 2012. Cloning and analysis of NBS-LRR type di-sease resistance gene analogs from Rosa rubus in Yunnan[J]. Plant Diversity and Resources,34(1):56-62.]
丁國華,秦智偉,劉宏宇,周秀艷,遲春玉,王志坤. 2005. 黃瓜NBS類型抗病基因同源序列的克隆與分析[J]. 園藝學(xué)報,32(4):638-642. [Ding G H,Qin Z W,Liu H Y,Zhou X Y,Chi C Y,Wang Z K. 2005. Analysis and clo-ning of NBS class disease resistant gene analog in cucumber[J]. Acta Horticulturae Sinica,32(4):638-642.]
丁玉梅. 2019. 黑籽南瓜對枯萎病菌侵染的應(yīng)答機制及NBS類抗病基因篩選[D]. 重慶:西南大學(xué). [Ding Y M. 2019. The response mechanism of Cucurbita ficifolia infected by Fusarium oxysporum f. sp. Cucumerinum and selecting of NBS type disease-resistance genes[D]. Chong-qing:Southwest University.]
黃小芳,畢楚韻,石媛媛,胡韻卓,周麗香,梁才曉,黃碧芳,許明,林世強,陳選陽. 2020. 甘薯基因組NBS-LRR類抗病家族基因挖掘與分析[J]. 作物學(xué)報,46(8):1195-1207. [Huang X F,Bi C Y,Shi Y Y,Hu Y Z,Zhou L X,Liang C X,Huang B F,Xu M,Lin S Q,Chen X Y. 2020. Discovery and analysis of NBS-LRR gene family in sweet potato genome[J]. Acta Agronomica Sinica,46(8):1195-1207.]
李任建,申哲源,李旭凱,韓淵懷,張寶俊. 2020. 谷子NBS-LRR類基因家族全基因組鑒定及表達分析[J]. 河南農(nóng)業(yè)科學(xué),49(2):34-43. [Li R J,Shen Z Y,Li X K,Han Y H,Zhang B J. 2020. Genome-wide identification and expression analysis of NBS-LRR gene family in Setaria italica[J]. Journal of Henan Agricultural Sciences,49(2):34-43.]
劉潮,褚洪龍,韓利紅,楊云錦,高永,唐利洲. 2019. 桑樹NBS-LRR類基因家族的全基因組鑒定及其調(diào)控microRNAs分析[J]. 江蘇農(nóng)業(yè)學(xué)報,35(3):544-553. [Liu C,Chu H L,Han L H,Yang Y J,Gao Y,Tang L Z. 2019. Genome-wide identification of NBS-LRR genes and regulation analysis by microRNAs in mulberry[J]. Jiangsu Journal of Agricultural Sciences,35(3):544-553.]
劉洋,姚全勝,蘇俊波,洪亞楠,雷新濤. 2013. 芒果NBS類抗病基因同源序列克隆與分析[J]. 植物遺傳資源學(xué)報,14(3):571-576. [Liu Y,Yao Q S,Su J B,Hong Y N,Lei X T. 2013. Isolation and characterization of NBS type resistance gene analogs from mango(Mangifera indica Linn.)[J]. Journal? of Plant Genetic Resources,14(3):571-576.]
劉云飛,萬紅建,李志邈,葉青靜,王榮青,阮美穎,姚祝平,周國治,韋艷萍,楊悅儉. 2014. 植物NBS-LRR抗病基因的結(jié)構(gòu)、功能、進化起源及其應(yīng)用[J]. 分子植物育種,12(2):377-389. [Liu Y F,Wan H J,Li Z M,Ye Q J,Wang R Q,Ruan M Y,Yao Z P,Zhou G Z,Wei Y P,Yang Y J. 2014. Analysis of plant NBS-LRR resistance gene:Structure,function,origin,evolution and their application[J]. Molecular Plant Breeding,12(2):377-389.]
路妍,劉洋,宋陽,景嵐. 2020. 向日葵NBS-LRR抗病基因家族全基因組分析[J]. 中國油料作物學(xué)報,42(3):441-452. [Lu Y,Liu Y,Song Y,Jing L. 2020. Genome-wide analysis of NBS-LRR-encoding gene in Helianthus an-nuus[J]. Chinese Journal of Oil Crop Sciences,42(3):441-452.]
闕友雄,許莉萍,林劍偉,陳如凱. 2009. 甘蔗NBS-LRR類抗病基因同源序列的分離與鑒定[J]. 作物學(xué)報,35(4):631-639. [Que Y X,Xu L P,Lin J W,Chen R K. 2009. Isolation and characterization of NBS-LRR resistance gene analogs from sugarcane[J]. Acta Agronomica Sinica,35(4):631-639.]
王昶童,曹剛強,梁從敏,謝冰心,閆飛翔. 2014. 黃瓜NBS類抗病基因類似物的生物信息學(xué)分析[J]. 北方園藝,(14):101-104. [Wang C T,Cao G Q,Liang C M,Xie B X,Yan F X. 2014. Bioinformatics analysis of the NBS resistance gene analogs in cucumber[J]. Northern Horticulture,(14):101-104.]
王家川,吳國賀,馮月,李久道,樸世領(lǐng). 2016. 33份煙草品種(系)TMV病鑒定與評價分析[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報,38(6):656-662. [Wang J C,Wu G H,F(xiàn)eng Y,Li J D,Piao S L. 2016. Identification and evaluation of resistance of 33 tobacco varieties(lines) to TMV disease[J]. Journal of Jilin Agricultural University,38(6):656-662.]
王連軍,賈禮聰,蘇文瑾,雷劍,楊新筍. 2013. 甘薯近緣野生種抗病基因同源序列的分離和鑒定[J]. 湖北農(nóng)業(yè)科學(xué),52(11):2680-2683. [Wang L J,Jia L C,Su W J,Lei J,Yang X S. 2013. Isolation and characterization of resistance gene analogs from wild relative of sweet potato[J]. Hubei Agricutural Sceinces,52(11):2680-2683.]
魏環(huán)宇,童文杰,藺忠龍,莫笑晗,張麗芳,何元勝,鄭元仙,王繼明,許銀蓮,陳小龍,鐘宇,余磊,鄧小鵬. 2019. 煙草(紅花大金元)NBS-LRR類抗病基因同源序列的克隆與分析[J]. 西南農(nóng)業(yè)學(xué)報,32(12):2747-2751. [Wei H Y,Tong W J,Lin Z L,Mo X H,Zhang L F,He Y S,Zheng Y X,Wang J M,Xu Y L,Chen X L,Zhong Y,Yu L,Deng X P. 2019. Isolation and analysis of NBS-LRR resistance gene analogs from tobacco(Hongda)[J]. Southwest China Journal of Agricultural Sciences,32(12):2747-2751.]
薛瑩瑩,孫守如,孫德璽,鄧云,朱迎春,劉君璞. 2014. RGA法克隆NBS-LRR類抗病基因同源序列及其在葫蘆科作物上應(yīng)用的研究進展[J]. 中國瓜菜,27(3):1-4. [Xue Y Y,Sun S R,Sun D X,Deng Y,Zhu Y C,Liu J P. 2014. Cloning of NBS-LRR-encoding resistance gene analogues using RGA approach and the advance in cucurbit crops[J]. China Cucurbits and Vegetable,27(3):1-4.]
袁清華,謝銳鴻,張振臣,馬柱文,李集勤,李淑玲,陳俊標(biāo). 2014. 煙草表達抗病基因同源物(RGA)的鑒定及RGA-SSR標(biāo)記的開發(fā)[J]. 作物學(xué)報,40(2):240-252. [Yuan Q H,Xie R H,Zhang Z C,Ma Z W,Li J Q,Li S L,Chen J B. 2014. Identification of expressed resistance gene analogues(RGAs) and development of RGA-SSR markers in nicotiana[J]. Acta Agronomica Sinica,40(2):240-252.]
曾建敏,吳興富,李梅云,張誼寒,焦芳嬋,李永平. 2016. 烤煙品種NC196抗性分子檢測及特征特性分析[J]. 分子植物育種,14(10):2829-2836. [Zeng J M,Wu X F,Li M Y,Zhang Y H,Jiao F C,Li Y P. 2016. Molecular identification of disease resistance and characteristics of a fluecured tobacco variety NC196[J]. Molecular Plant Bree-ding,14(10):2829-2836.]
張立榮,楊文香,劉大群. 2011. 小麥NBS類抗病基因類似序列的多樣性和進化關(guān)系研究[J]. 華北農(nóng)學(xué)報,26(4):23-26. [Zhang L R,Yang W X,Liu D Q. 2011. Diversity and evolutionary relationship of NBS-type resistance gene analogues in wheat[J]. Acta Agriculturae Boreali-Sinica,26(4):23-26.]
張雪峰. 2014. 煙草抗TMV突變體抗性遺傳分析與相關(guān)基因鑒定[D]. 北京:中國農(nóng)業(yè)科學(xué)院. [Zhang X F. 2014. Genetic analysis of resistance and identification of relative genes in TMV-resistant tobacco mutants[D]. Beijing:Chinese Academy of Agricultural Sciences Dissertation.]
張艷云. 2011. 抗花葉病煙草種質(zhì)資源的篩選[D]. 福州:福建農(nóng)林大學(xué). [Zhang Y Y. 2006. Screening of tobacco germplasm resourses resisted Tobacoo Mosaic Virus[D]. Fuzhou:Fujian Ageiculture and Forestry University.]
張穎,李峰,劉崇懷,樊秀彩,孫海生,姜建福,張國海. 2013. 中國野生刺葡萄抗白腐病NBS-LRR類抗病基因同源序列的分離與鑒定[J]. 中國農(nóng)業(yè)科學(xué),46(4):780-789. [Zhang Y,Li F,Liu C H,F(xiàn)an X C,Sun H S,Jiang J F,Zhang G H. 2013. Isolation and identification of NBS-LRR resistance gene analogs sequences from Vitis davidii[J]. Scientia Agricultura Sinica,46(4):780-789.]
Allen G C,F(xiàn)lores-Vergara M A,Krasynanski S. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide[J]. Nature Protocols,1(5):2320-2325.
Deng Z,Huang S,Ling P,Chen C,Yu C,Weber C A,Moore G A,Gmitter G A. 2000. Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus[J]. Theoretical and Applied Genetics,101(5):814-822.
Kanazin V,Laura F M,Randy C S. 1996. Resistance gene ana-logs are conserved and clustered in soybean[J]. Trends in Genetics,13(2):54.
Kim S T,Kim S G,Hwang D H. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus[J]. Proteomics,4(11):3569-3578.
Leister D,Ballvora A,F(xiàn)rancesco S,Gebhardt C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants [J]. Nature Publishing Group,14(4):421-429.
Liu Z J,F(xiàn)eng S,Pandey M K,Chen X,Culbreath A K,Varshney R K,Guo B Z. 2013. Identification of expidentification of expressed resistance gene analogs from peanut(Arachis hypogaea L.) expressed sequence tagss[J]. Journal Integrative Plant Biology,55(5):453-461.
Meyers B C,Dickerman A W,Michemore R W,Sivaramakrishnan S,Sobral B W,Young N D. 1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily[J]. The Plant Journal,20(3):317-332.
Meyers B C,Kozik A,Griego A,Kuang H H,Michelmore R W. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis[J]. Plant Cell,15(4):809-834.
Qi D,Dubiella U,Kim S H. 2014. Recognition of the protein kinase avrpphb susceptible 1 by the disease resistance protein resistance to Pseudomonas syringae 5 is dependent on s-acylation and an exposed loop in avrpphb susceptible 1[J]. Plant Physiology,164(1):340-351.
Sekhwal M K,Li P C,Lam I,Wang X,Cloutier S,You F M. 2015. Disease resistance gene analogs(RGAs) in plants[J]. International Journal of Molecular Sciences,16(8):19248-19290.
Shirano Y,Kachroo P,Shah J,Klessig D F. 2002. Gain-of-function mutation in an arabidopsis toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance[J]. Plant Cell,14(12):3149-3162.
The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature,485(7400):635-641.
Zhou F,Guo Y,Qiu L J. 2016. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean[J]. BMC Plant Bio-logy,16:58-71.
Zhou T,Wang Y,Chen J Q,Araki H,Jing Z,Jiang K,Shen J,Tian D. 2004. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes[J]. Molecular Genetics and Genomics,271(4):402-415.
(責(zé)任編輯 陳 燕)