• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      含水率對羊糞堆肥腐熟度及污染氣體排放的影響

      2020-12-25 08:20:50李丹陽馬若男亓傳仁李國學孫少澤
      農(nóng)業(yè)工程學報 2020年20期
      關鍵詞:羊糞堆體含水率

      李丹陽,馬若男,亓傳仁,袁 京,李國學,孫少澤,劉 燕

      含水率對羊糞堆肥腐熟度及污染氣體排放的影響

      李丹陽1,馬若男1,亓傳仁1,袁 京1,李國學1※,孫少澤2,劉 燕1

      (1. 中國農(nóng)業(yè)大學資源與環(huán)境學院,農(nóng)田土壤污染防控與修復北京市重點實驗室,北京 100193;2. 中國科學院化學研究所綜合處,北京 100190)

      為了優(yōu)化羊糞好氧堆肥的工藝條件,研究初始含水率對羊糞堆肥腐熟度及污染氣體排放的影響。該研究以高濕新鮮羊糞為堆肥原料(含水率為75%),添加玉米秸稈調(diào)節(jié)初始物料含水率分別為70%、65%、60%和55%,堆肥在60 L密閉發(fā)酵罐中共持續(xù)35 d。結(jié)果表明:75%含水率羊糞堆體單獨不能順利啟動升溫,且在試驗期間釋放了大量的甲烷和氧化亞氮等溫室氣體,在所有處理中產(chǎn)生的總溫室效應最大(41.4 g/kg)。玉米秸稈與羊糞聯(lián)合均能成功啟動堆肥過程,且堆肥產(chǎn)品均可以達到無害化衛(wèi)生要求和腐熟標準。其中初始含水率為65%時,堆體不僅高溫期持續(xù)時間長,且有機質(zhì)降解程度高,物料干質(zhì)量降解率達45%,同時比其他處理可降低4.81%~16.99%的總氮損失和7.56%~48.62%的總溫室氣體排放量。因此,在羊糞和玉米秸稈聯(lián)合堆肥時,初始含水率65%左右為最佳條件。

      含水率;糞;堆肥;腐熟度;污染氣體

      0 引 言

      隨著中國羊產(chǎn)業(yè)向規(guī)?;?、集約化和專業(yè)化方向發(fā)展,羊糞污排放量也迅速增加。羊糞中有機質(zhì)、總氮及磷含量遠高于牛糞和豬糞,且銅、鋅含量低于其他畜禽糞便[1],同時新鮮羊糞中一般含有大量病原菌、微生物、寄生蟲卵等有毒有害的物質(zhì)。利用好氧堆肥技術可有效減少畜禽糞便污染、轉(zhuǎn)化生成可利用的有機肥,是目前關注度最高、應用最廣泛的資源化處理途徑。

      不同地區(qū)羊養(yǎng)殖環(huán)境及飼養(yǎng)方式的不同,羊糞的含水率差異很大。前期實地調(diào)研發(fā)現(xiàn),以漏縫地板為羊場圈舍地面、用刮糞板收集的羊糞污含水率較高(可達75%)。在堆肥過程中,物料的初始含水率是影響堆肥進程及有機質(zhì)降解率的主要因素[2],它會影響物料堆體的氧氣運輸量,還可以調(diào)節(jié)發(fā)酵溫度、物料孔隙率以及微生物活性等[3]。過高的含水率不僅不利于空氣擴散,造成堆體局部厭(缺)氧環(huán)境,從而產(chǎn)生大量CH4、N2O、H2S等污染氣體[4],且有機質(zhì)降解速率減小,增加堆肥腐熟時間。而當含水率不足時,微生物活性降低,發(fā)酵過程受到抑制,導致堆肥腐熟延后,甚至不能腐熟[5]。腐熟度是后續(xù)有機肥農(nóng)田利用中首要考慮的因素,未腐熟的畜禽糞污施用于土壤中,可能對種子發(fā)芽和作物生長有毒害作用[6]。另外,污染氣體的排放也是一個值得關注的問題,這些氣體排放不但會造成堆肥過程中養(yǎng)分大量損失,從而影響堆肥產(chǎn)品的肥效,且會給周圍環(huán)境帶來嚴重的危害,降低堆肥的環(huán)境效益[7]。研究表明適宜的含水率可以提高堆肥的腐熟度,減少堆肥過程中污染氣體的排放。Tamura和Osada[8]通過對不同含水率的堆肥試驗研究發(fā)現(xiàn),物料含水率越高,溫室氣體排放量越高。Petrica等[9]研究表明,雞糞和麥秸聯(lián)合堆肥時的最佳初始含水率為69%,過高的含水率會造成NH3大量揮發(fā)。蔡海森[10]研究了3種初始含水率(55%、60%和70%)對雞糞與稻殼堆肥腐熟度的影響,結(jié)果表明,只有含水率60%的處理可達到無害化要求和堆肥腐熟標準。

      目前,對好氧堆肥的研究主要集中于以豬糞、雞糞或牛糞為原料[11-13],而對于氮磷含量較高的羊糞好氧堆肥的研究相對較少。因此,本文以羊糞為堆肥原料,系統(tǒng)研究不同初始含水率對堆肥產(chǎn)品腐熟度及污染氣體排放的影響,從而為羊糞堆肥產(chǎn)品的應用及污染氣體減排提供一定的理論依據(jù)。

      1 材料與方法

      1.1 試驗材料

      試驗所用羊糞取自北京市奧鑫牧業(yè)有限公司。玉米秸稈取自中國農(nóng)業(yè)大學上莊試驗站,用粉碎機將其切割為長度為3 cm的段狀秸稈,物料基本理化性狀見表1。

      表1 初始物料的基本理化性質(zhì)

      注:含水率以濕基計算;總碳和總氮均基于干基計算。

      Note: Moisture was calculated based on wet basis; Total carbon and total nitrogen were acquired based on dry basis.

      1.2 試驗設計

      試驗共設5個處理,初始含水率分別設為75%、70%、65%、60%和55%,設計方案如表2所示。為了在室內(nèi)模擬高含水率羊糞堆肥,將從奧鑫公司所取羊糞(含水率約55%)按照1∶1(質(zhì)量比)加水混合調(diào)節(jié)含水率至75%,再分別加入不同質(zhì)量的玉米秸稈調(diào)節(jié)物料初始含水率到相應的設定值,用尿素調(diào)節(jié)各堆料初始C/N為22左右。試驗裝置為60 L密閉發(fā)酵罐(圖1),通風方式為機械強制連續(xù)通風,通風速率為0.2 m3/h,堆肥周期為35 d,每周翻堆一次,翻堆后取樣約300 g左右,樣品分為2份,一份(約200 g)為新鮮樣品冷凍保存,用于測定含水率、pH值、電導率(EC, Electrical Conductivity)、種子發(fā)芽率指數(shù)(GI,seed Germination Rate Index)、銨態(tài)氮(NH4+-N)、硝態(tài)氮(NO3--N);另一份(約100 g)經(jīng)自然風干、粉碎、過100目篩后用于測定總碳(TC)和總氮(TN)。

      表2 試驗設計

      注:a為基于鮮質(zhì)量。

      Note: a is based on wet weight.

      圖1 密閉式堆肥發(fā)酵罐示意圖

      1.3 測定指標及分析方法

      堆肥溫度,通過連接電腦的溫度傳感器直接讀取,每半小時自動記錄一次;堆肥積溫計算方法見參考文獻[14]。含水率的測定在105 ℃的烘箱中烘干至恒定質(zhì)量。有機質(zhì)的測定是將樣品使用馬弗爐灼燒(600 ℃±20 ℃)3h至恒重。利用元素分析儀(Vario Micro Cube,德國)測定樣品中的TC、TN含量。pH值、EC、GI測定:用水浸提鮮樣,固液比為1∶10,振蕩30 min,靜置10 min后過濾取濾液,使用多參數(shù)分析儀(DZS-706-A,中國)測定pH值、EC值。GI的測定方法參考文獻[15]。NH4+-N、NO3--N的測定用2 mol/L的KCl溶液,按照1∶10(質(zhì)量體積比)同樣品混合,震蕩30 min,靜置10 min,過濾后取濾液經(jīng)流動分析儀(Auto Analyzer 3,Seal,德國)測定。溫室氣體(CH4和N2O)用安裝有火焰電離檢測器、電子捕獲檢測器的氣相色譜(SP-3420A,北京北分瑞利分析儀器有限責任公司,中國)測定。NH3通過發(fā)酵罐頂部裝有質(zhì)量分數(shù)為2%的硼酸吸收瓶吸收后,用0.02 mol/L標準濃度的稀硫酸滴定測得。O2和CO2由泵吸式沼氣分析儀(Biogas 5000,Geotech,英國)直接讀數(shù)測定。堆肥氣體一天一測。

      作圖采用origin 8.5軟件完成;統(tǒng)計分析采用Microsoft Excel和SPSS 20.0軟件完成。

      2 結(jié)果與分析

      2.1 溫度的變化

      溫度是表征堆體中微生物對有機物降解狀況的重要指標,也可判斷堆肥的無害化和穩(wěn)定性[16]。各處理的堆體溫度變化如圖2所示。統(tǒng)計分析表明,MC75處理的溫度與其他處理均存在極顯著差異(<0.001),而其他4個處理的溫度之間無顯著差異(=0.480)。處理MC75的堆溫在堆肥周期內(nèi)始終與環(huán)境溫度相近,最高溫度僅為25.1 ℃,表明75%含水率的高濕羊糞無法成功啟動堆肥過程,這主要是由于該處理羊糞結(jié)構(gòu)致密,造成了堆體緊實,透氣性差,不利于微生物的生長繁殖。在堆肥初期(第0~7天),連續(xù)通風使得堆體中氧氣含量充足,微生物代謝活動旺盛,堆肥物料被快速分解并產(chǎn)生大量熱量,使得T2~T5 4個處理的堆溫迅速升高,在第2天均進入了高溫期(>50 ℃),在第4天均達到溫度峰值,最大值分別為71.1、72.5、70.6 ℃和68.3 ℃。在高溫期的維持時間分別為10、10、9和8 d,可以有效殺滅羊糞中的病原菌、微生物及有害蟲卵,均達到中國糞便無害化衛(wèi)生標準(GB 7959—2012)。試驗第8~14天,由于前期有機物降解消耗了大量氧氣,供氣不足,且高溫使水分大量蒸發(fā),所以溫度逐漸下降。在第14天翻堆后各處理溫度又有所回升,這是因為翻堆可提高物料之間的孔隙度,從而增加了物料與氧氣的接觸面積,未降解的有機質(zhì)得到充分降解,產(chǎn)生熱量導致溫度增加,這一現(xiàn)象在Szanto等[17]的研究中也有所發(fā)現(xiàn)。堆肥后期,可被降解的有機物不斷減少,微生物活動減弱,堆體溫度逐漸降低至室溫。

      在5個處理中,MC65處理達到高溫期所需時間短、溫度峰值最高、高溫期持續(xù)時間最長且有效積溫最大(24 472.8oC·h),這是由于物料初始含水率為65%時,堆料具有足夠的自由空域,更有利于微生物的新陳代謝,使得有機質(zhì)降解更加充分。

      圖2 堆肥過程中溫度變化

      2.2 氧氣含量的變化

      O2含量變化可以反映堆體中微生物的活性和有機物的降解情況。O2含量與溫度呈極顯著負相關關系(=-0.844,<0.001),這與陳是吏等[18]的研究結(jié)果一致。由圖3可知,在堆肥前7 d,羊糞中的易降解性有機物質(zhì)被微生物快速分解,消耗大量O2,導致O2含量降低。隨著堆肥反應的進行,微生物分解有機質(zhì)速度變緩,對O2需求量減少,O2含量逐漸上升。從第14天開始,每次翻堆后O2含量均呈先下降后升高的趨勢。在第28天后,隨著堆體溫度逐漸接近室溫,所有處理的O2含量逐漸趨近于環(huán)境本底值,說明堆肥已達到腐熟、穩(wěn)定。研究表明,堆料中微生物生理活動的適宜O2含量為10%~18%[19]。整個堆肥過程中,只有MC65處理在堆肥第19天的O2含量較低,其余各處理在堆肥過程中O2含量均大于10%,較適宜微生物代謝活動。5個處理中,總體以MC65處理O2含量最低,這是因為初始含水率為65%更有利于微生物消耗大量O2降解有機質(zhì)。

      圖3 堆肥過程中氧氣含量變化

      2.3 堆肥物理化學性質(zhì)和物料腐熟指標變化

      各處理初始及結(jié)束時的物理化學和物料腐熟指標如表3所示,堆肥前后各處理的含水率變化幅度較小。T1~T5各處理的物料干質(zhì)量降解率分別為7.07%、44.32%、45.09%、33.90%和36.61%,高含水率組(70%和65%)比低含水率組(60%和55%)的干質(zhì)量降解率高,這表明高含水率會增大有機質(zhì)的降解程度,這可從溫度、CO2和NH3的排放規(guī)律中進一步得到反證[9]。物料的TC和TN隨著堆肥進行而不斷降解損失,當TN的損失速率小于TC的降解速率時,TN含量由于被濃縮而增加,這與楊帆等[20]的研究結(jié)果一致。同時,T1~T5處理的C/N比均隨著有機質(zhì)的降解而呈下降趨勢,在堆肥結(jié)束時比初始值分別降低了4.20%、34.56%、38.86%、26.60%和27.79%。其中,MC65處理下降幅度最大,這是因為其TC含量高,分解較快,而TN損失較少所致。

      堆肥結(jié)束時,T1~T5處理有機質(zhì)的降解率分別為1.39%、8.00%、9.20%、10.22%和12.17%。55%初始含水率的堆料疏松,有利于好氧微生物生長,使有機質(zhì)的降解程度最大,但可能會增加污染氣體排放。GI值是評價堆肥腐熟程度和植物毒性最敏感也是最佳的指標[21],當GI值超過80%時,可以認為堆肥已經(jīng)腐熟或?qū)χ参餂]有毒性[22]。EC的變化能表示堆肥浸提液中可溶性鹽含量,是評判堆肥產(chǎn)品對植物造成鹽害作用的重要參數(shù)。在堆肥結(jié)束時,除了MC75處理的GI值未發(fā)生明顯改變且EC值有所增加外,其他處理最終堆肥產(chǎn)品的GI>80%且EC<4 mS/cm,達到堆肥腐熟標準[23]。另外,所有處理在堆肥結(jié)束時的pH值在8~9范圍內(nèi)[24],滿足堆肥產(chǎn)品呈弱堿性的要求。堆肥結(jié)束時各處理pH值的大小與堆體初始含水率呈正比,這是因為初始含水率越低,即玉米秸稈占比越多,其對羊糞堆肥pH的增大有一定的抑制能力[25]。

      2.4 銨態(tài)氮和硝態(tài)氮含量的變化

      堆肥過程中銨態(tài)氮(NH4+-N)和硝態(tài)氮(NO3--N)含量變化如圖4所示。統(tǒng)計分析表明,各處理間NH4+-N含量差異顯著(<0.001),同樣地,各處理間NO3--N含量差異顯著(=0.001)。初始物料中秸稈添加量越大,NH4+-N含量越低,這是因為添加膨松劑會稀釋物料中NH4+-N的濃度。除MC75處理外,在有機氮的礦化分解和微生物的氨化作用下,各處理NH4+-N都有所增加,在第3天均達到最大值。之后隨著堆肥進入高溫期,部分NH4+-N被微生物固定,部分以NH3形式揮發(fā)損失,堆肥中NH4+-N含量逐漸降低最后趨于穩(wěn)定,堆肥結(jié)束時T2~T5處理NH4+-N含量下降至0.06~0.41 g/kg。

      在堆肥前14 d,各處理的溫度較高且反硝化作用較為劇烈,NO3--N作為底物被大量消耗,另外由于高溫抑制了硝化細菌的活性[26],所以NH4+-N不能通過硝化作用轉(zhuǎn)化為NO3--N,使NO3--N含量總體呈下降趨勢。在第21天后,堆肥逐漸進入降溫期,堆體O2含量增高,硝化細菌活性增強,NH4+-N轉(zhuǎn)化為NO3--N,各處理的NO3--N含量逐漸升高[27]。其中,MC70處理由于在后期溫度明顯下降,硝化細菌活動相對比較劇烈,該處理從第14天到堆肥結(jié)束,NO3--N含量上升幅度可達78%。整個堆肥過程中各處理物料的NO3--N含量始終維持在較低水平,均在7 mg/kg以下,說明堆肥過程中各處理的硝化作用都較弱。

      表3 堆肥物理化學性質(zhì)和物料腐熟指標

      注:同一列不同小寫字母代表同一指標在<0.05水平上具有顯著性差異。

      Note: Different lowercase letters in the same column indicated significant difference in same index at<0.05.

      圖4 堆肥過程中NH4+-N和NO3--N含量的變化

      2.5 氣體排放

      2.5.1 CH4排放

      堆肥期間CH4日排放速率及累積排放量如圖5所示。各處理的CH4排放高峰主要集中在堆肥高溫期(圖5a),與之前學者研究結(jié)果相似[28]。這是因為堆肥中的微生物消耗大量氧氣降解有機質(zhì),使得堆體溫度升高,并造成堆體中出現(xiàn)局部缺氧環(huán)境,導致CH4產(chǎn)生。MC75處理在堆肥第2天達到CH4日排放速率最大值,為0.415 g/(kg·d),T2~T5處理均在第3天達到排放高峰,排放率分別為0.091、0.089、0.081 g/(kg·d)和0.093 g/(kg·d)。在堆肥第2周翻堆后,各處理的CH4排放速率又明顯增加,這是因為堆體溫度回升,且在翻堆后,堆體內(nèi)的CH4得以釋放[29]。在第21天后,T2~T5四個處理CH4的日排放速率趨近于0,而MC75處理在第28~35天的CH4日排放速率又逐漸增加,最大值可達0.114 g/(kg·d),這可能與該處理長期處于高濕環(huán)境且第28天后溫度隨著室溫小幅度增加有關。由圖5b可知,堆肥結(jié)束時,MC75處理的CH4累積排放量最大(1.38 g/kg),以其為對照,T2~T5處理可明顯減排CH4(0.001),減排率分別為36.35%、50.43%、52.01%和35.92%,其中初始含水率為60%~65%的減排效果較好。

      2.5.2 N2O排放

      堆肥過程中銨態(tài)氮硝化與硝態(tài)氮反硝化作用均會導致N2O的產(chǎn)生[30],各處理的N2O排放規(guī)律如圖6所示。從圖6a可知,各處理的N2O排放主要集中在堆肥初期,排放高峰大約持續(xù)8 d,這是由于初始物料中NO3--N含量較高,在反硝化作用下產(chǎn)生N2O[31]。除了MC75處理外,其他處理在堆肥初期有機質(zhì)劇烈降解,O2消耗量大,堆體內(nèi)部易出現(xiàn)厭氧或缺氧情況,從而使得N2O大量排放并達到峰值。T1~T5處理的N2O排放峰值分別為7.93、0.94、1.95、5.07和8.98 mg/(kg·d)。MC65、MC60和MC55處理在第二周翻堆后會出現(xiàn)N2O排放小高峰,對比溫度(圖2)及O2含量變化規(guī)律(圖3),可知這3個處理在翻堆后溫度迅速上升,O2含量均有明顯的下降,部分NO3--N通過反硝化作用產(chǎn)生N2O,這與周談龍等[29]的研究結(jié)果類似。之后隨著物料孔隙度的增大及通氣狀況的改善,N2O排放速率均趨于0,沈玉君等[32]用雞糞、秸稈和干草皮為堆肥原料進行好氧堆肥也得到了類似的N2O排放規(guī)律。統(tǒng)計分析數(shù)據(jù)表明,初始含水率能顯著影響N2O的排放(=0.000)。堆肥結(jié)束時,T1~T5處理的N2O累計排放量分別為10.51、4.32、8.12、17.29 mg/kg和41.96 mg/kg(見圖6b),除了未發(fā)酵的MC75處理外,初始含水率越高,N2O峰值和累積排放量越低。

      圖5 堆肥過程中CH4排放速率及累積排放的變化

      2.5.3 NH3排放

      堆肥期間NH3平均排放速率和累積排放規(guī)律如圖7所示。由圖7a可知,5個處理NH3排放速率變化趨勢基本相同,均呈現(xiàn)先快速上升后迅速下降再趨于穩(wěn)定的過程。NH3排放主要發(fā)生在高溫期,與其他學者的研究結(jié)果一致[33-34],這是因為有機質(zhì)降解產(chǎn)生的NH4+-N在高溫和高pH條件下迅速轉(zhuǎn)化為NH3,使各處理的NH3排放速率在第2天均達到峰值,T1~T5處理NH3排放峰值分別為0.02、0.24、0.42、0.31和0.37 g/(kg·d)。在第7天翻堆后NH3排放率有小幅上升,這是因為一方面處于厭氧區(qū)的物料通過翻堆轉(zhuǎn)移到氧氣充足的區(qū)域,發(fā)生了進一步的降解。另一方面翻堆使堆料更加疏松,內(nèi)部呈游離狀態(tài)的部分NH4+-N和NH3暴露于堆體表層[35],進一步提高了NH3的排放。堆肥前8 d,T2~T5處理的NH3累積排放量占整個堆肥周期的97%以上。之后隨著堆肥溫度的降低,NH4+-N含量減少,NH3釋放率逐漸下降幾乎為0。而MC75處理因為沒有經(jīng)歷高溫期,NH3平均排放速率很低,在第21天后,由于其堆體溫度隨著室溫略有增加,可檢測到少量NH3排放。

      圖6 堆肥過程中N2O排放速率及累積排放的變化

      到堆肥結(jié)束時,T1~T5處理的NH3累積排放量分別為0.23、0.85、0.96、0.64 g/kg和0.66 g/kg(圖7b),高含水率組(70%和65%)的NH3揮發(fā)量顯著高于低含水率組(60%和55%)(<0.0001),這是因為一方面高含水率組在整個試驗期間的pH較大,從而促進NH3揮發(fā)。另一方面提高初始物料的含水率可促進物料中有機質(zhì)的降解,提高堆體的溫度,而溫度是影響NH3釋放的最主要因素[36]。統(tǒng)計分析結(jié)果表明,溫度與NH3累積排放量呈極顯著正相關關系(=0.359,<0.001),與Pagans等[37]的研究結(jié)果一致。

      2.6 碳氮平衡及溫室效應分析

      各處理碳氮平衡及溫室效應分析如表4所示。雖然MC75處理因含水率太大未能成功啟動堆肥過程,有機質(zhì)降解緩慢,但也有7.75%的TC損失。其他4個處理TC損失率為38.21%~48.06%,TC主要以CO2-C形式損失,占初始TC的29.44%~40.65%;CH4排放貢獻率較小,占初始TC的0.10%~0.15%。除了MC75處理的TN損失較低之外(3.69%),其他各處理TN損失率為15.05%~18.13%,MC65處理比其他3個成功啟動堆肥的處理減少4.81%~16.99%的TN損失,保氮效果最好。NH3-N是TN主要的損失形式,占TN損失的51.35%~87.04%,N2O-N形式損失僅占初始TN的0.01%~0.14%,這與Jiang等[38]的研究結(jié)果相似。以其他形式損失的碳和氮可能是被微生物利用合成細胞組織[35]。

      圖7 堆肥過程中NH3排放速率及累積排放的變化

      堆肥過程中CO2是微生物新陳代謝的產(chǎn)物,故在廢棄物管理過程中不作為溫室效應的貢獻因子[39]。堆肥過程中溫室氣體的排放以CH4和N2O為主,各處理溫室氣體的CO2排放當量如表4所示。由表可知,CH4排放對總溫室效應貢獻率均在65%以上。MC75處理盡管未經(jīng)過高溫期來實現(xiàn)物料無害化,但在試驗期間仍會產(chǎn)生大量溫室氣體,總溫室效應在所有處理中最高(41.40 g/kg)。這表明在羊場實際生產(chǎn)活動中,若對高濕羊糞未能進行及時的收集及不合理堆置,在自然通風條件下,堆體內(nèi)部很容易缺氧,產(chǎn)生的大量溫室氣體不僅會威脅動物及工作人員的健康,同時還會造成嚴重的大氣污染。加入適量秸稈可調(diào)節(jié)物料的水分含量,明顯降低溫室氣體排放當量,其中初始含水率為65%的處理在堆肥過程中產(chǎn)生的總溫室效應最低(21.27 g/kg),比其他處理降低7.56%~48.62%。

      表4 碳氮平衡及溫室效應分析

      注:碳、氮素平衡為碳、氮損失占初始總碳、氮的百分比;溫室氣體排放當量值以物料的干基計算;N2O和CH4對溫室效應的貢獻率分別為CO2的256和28倍[40]。

      Note: The balance of carbon and nitrogen is the percentage of carbon and nitrogen loss in the initial total carbon and nitrogen; The greenhouse gas emissions equivalent was calculated based on dry basis; The global warming potentials of N2O and CH4are 256 and 28 times higher than that of CO2, respectively[40].

      3 結(jié) 論

      1)75%含水率的高濕羊糞無法成功啟動堆肥過程,未能實現(xiàn)物料的無害化,堆肥產(chǎn)品也未能達到腐熟標準,但在試驗期間可排放大量的CH4和N2O溫室氣體,總溫室效應在所有處理中最高。

      2)添加秸稈一方面能降低初始物料的含水率,另一方面能調(diào)節(jié)堆體的通氣狀況。本文中添加秸稈與高濕羊糞聯(lián)合堆肥均能成功啟動堆肥過程,滿足堆肥高溫無害化衛(wèi)生標準,且堆肥產(chǎn)品均可達到腐熟。其中,初始物料含水率為65%時,堆體不僅升溫快、有效積溫最大,有機質(zhì)分解程度高,物料干質(zhì)量降解率達45%,且比其他3 個成功啟動堆肥的處理減少了4.81%~16.99%的總氮損失。

      3)初始含水率對N2O、CH4和NH3排放有顯著影響。在成功升溫的堆肥處理中,初始含水率越大,N2O峰值和累積排放量越低,適宜的含水率可顯著降低CH4排放。由于初始物料含水率為65%的堆肥高溫期持續(xù)時間最長,導致NH3累積排放量最高,但堆肥過程產(chǎn)生的總溫室效應比其他4個處理降低了7.56%~48.62%。綜上,在羊糞和玉米秸稈聯(lián)合好氧堆肥時,初始含水率65%左右為最佳條件,后續(xù)也可使用部分添加劑來控制氨氣排放。

      [1] 李書田,劉榮樂,陜紅. 我國主要畜禽糞便養(yǎng)分含量及變化分析[J]. 農(nóng)業(yè)環(huán)境科學學報,2009,28(1):179-184. Li Shutian, Liu Rongle, Shan Hong. Nutrient contents in main animal manures in China[J]. Journal of Agro-Environment Science, 2009, 28(1): 179-184. (in Chinese with English abstract)

      [2] 李紅霞,蔡祿,季祥,等. 羊糞好氧堆肥最佳工藝參數(shù)的優(yōu)化研究[J]. 中國農(nóng)機化學報,2019,40(6):215-220. Li Hongxia, Cai Lu, Ji Xiang, et al. Optimization of optimum process parameters for aerobic composting of sheep manure[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 215-220. (in Chinese with English abstract)

      [3] Guo Rui, Li Guoxue, Jiang Tao, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology, 2012, 112(58): 171-178.

      [4] 齊魯. 污泥處置過程含氮氣體的排放特征及其協(xié)同控制研究[D]. 北京:首都經(jīng)濟貿(mào)易大學,2015. Qi Lu. Study on the Discharge Characteristics of Nitrogen-Containing Gas and Its Cooperative Control During the Process of Sludge Disposal[D]. Beijing: Capital University of Economics and Business, 2015. (in Chinese with English abstract)

      [5] 樊迎春. 羊糞無害化處理技術[J]. 獸醫(yī)導刊,2020,11(6):67. Fan Yingchun. Harmless treatment technology of sheep manure[J]. Veterinary Orientation, 2020, 11(6): 67. (in Chinese with English abstract)

      [6] Gao Mengchun, Li Bing, Yu An, et al. The effect of aeration rate on forced-aeration composting of chicken manure and sawdust[J]. Bioresource Technology, 2010, 101(6): 1899-1903.

      [7] Onwosi C O, Igbokwe V C, Odimba J N, et al. Composting technology in waste stabilization: On the methods, challenges and future prospects[J]. Journal of Environmental Management, 2017, 190(4): 140-157.

      [8] Tamura T, Osada T. Effect of moisture control in pile-type composting of dairy manure by adding wheat straw on greenhouse gas emission[J]. International Congress, 2006, 1293(7): 311-314.

      [9] Petrica I, ?estan A, ?estan I. Influence of initial moisture content on the composting of poultry manure with wheat straw[J]. Biosystems Engineering, 2009, 104(1): 125-134.

      [10] 蔡海森. 雞糞與稻殼堆肥影響因素的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學,2015. Cai Haisen. Research on Composting of Chichen Manure and Rice Husk[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese with English abstract)

      [11] 尹曉明,王榮江,徐瀟瀟,等. 豬糞堆肥過程中養(yǎng)分和重金屬含量的動態(tài)變化[J]. 植物營養(yǎng)與肥料學報,2019,25(2):92-101. Yin Xiaoming, Wang Rongjiang, Xu Xiaoxiao, et al. Dynamic changes of nutrient and heavy metal concentrations during swine composting[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 92-101. (in Chinese with English abstract)

      [12] 吳曉東,邢澤炳,何遠靈,等. 添加生物炭對雞糞好氧堆肥過程中養(yǎng)分轉(zhuǎn)化的研究[J]. 中國土壤與肥料,2019(5):141-146. Wu Xiaodong, Xing Zebing, He Yuanling, et al. Nutrient transformation during chicken manure composting with biochar under aerobic conditions[J]. Soil and Fertilizer Sciences in China, 2019(5): 141-146. (in Chinese with English abstract)

      [13] 郜斌斌,王選,王玨,等. 化學和黏土礦物鈍化劑對牛糞秸稈堆肥磷形態(tài)轉(zhuǎn)化的影響[J]. 農(nóng)業(yè)工程學報,2019,35(2):250-257. Gao Binbin, Wang Xuan, Wang Jue, et al. Effects of chemical and clay mineral additives on phosphorus transformation during cow manure and corn stover composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 250-257. (in Chinese with English abstract)

      [14] 陳同斌,黃啟飛,高定,等. 城市污泥好氧堆肥過程中積溫規(guī)律的探討[J]. 生態(tài)學報,2002,22(6):911-915. Chen Tongbin, Huang Qifei, Gao Ding, et al. Accumulated temperature as an indicator to predict the stabilizing process in sewage sludge composting[J]. Acta Ecologica Sinica, 2002, 22(6): 911-915. (in Chinese with English abstract)

      [15] Ren Limei, Schuchardt F, Shen Yujun, et al. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk[J]. Waste Management, 2010, 30(5): 885-892.

      [16] 勾長龍,高云航,婁玉杰,等. 微生物菌劑對堆肥發(fā)酵影響的研究進展[J]. 湖北農(nóng)業(yè)科學,2013,52(6):1244-1248. Gou Changlong, Gao Yunhang, Lou Yujie, et al. Investigation and application progress of inoculating microbes on aerobic composting of manure[J]. Hubei Agricultural Sciences, 2013, 52(6): 1244-1248. (in Chinese with English abstract)

      [17] Szanto G L, Hamelers H V, Rulkens W H, et al. NH3, N2O and CH4emissions during passively aerated composting of straw-rich pig manure[J]. Bioresource Technology, 2007, 98(14): 2659-2670.

      [18] 陳是吏,袁京,李國學,等. 過磷酸鈣和雙氰胺聯(lián)用減少污泥堆肥溫室氣體及NH3排放[J]. 農(nóng)業(yè)工程學報,2017,33(6):199-206. Chen Shili, Yuan Jing, Li Guoxue, et al. Combination of superphosphate and dicyandiamide decreasing greenhouse gas and NH3emissions during sludge composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 199-206. (in Chinese with English abstract)

      [19] Magalhaes A, Shea P J, Jawson M D, et al. Practical simulation of composting in the laboratory[J]. Waste Management & Research, 1993, 11(2): 143-154.

      [20] 楊帆,歐陽喜輝,李國學,等. 膨松劑對廚余垃圾堆肥CH4,N2O和NH3排放的影響[J]. 農(nóng)業(yè)工程學報,2013,29(18):226-233. Yang Fan, Ouyang Xihui, Li Guoxue, et al. Effect of bulking agent on CH4, N2O and NH3emissions in kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 226-233. (in Chinese with English abstract)

      [21] 蔡娟,張應虎,張昌勇,等. 牛糞堆肥過程中的物質(zhì)變化及腐熟度評價[J]. 貴州農(nóng)業(yè)科學,2018,46(10):72-75. Cai Juan, Zhang Yinghu, Zhang Changyong, et al. Material change and rotten degree evaluation in cattle dung composting process[J]. Guizhou Agricultural Sciences, 2018, 46(10): 72-75. (in Chinese with English abstract)

      [22] Ko H J, Kim K Y, Kim H T, et al. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure[J]. Waste Management, 2008, 28(5): 813-820.

      [23] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國農(nóng)業(yè)出版社,2000.

      [24] 張倩倩. 抗生素菌渣的堆肥處理研究[D]. 鄭州:鄭州大學,2019. Zhang Qianqian. Research on the Composting Treatment for Antibiotic Fermentation Dregs[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese with English abstract)

      [25] 宋春,徐鋒,趙偉,等. 羊糞-玉米秸稈高溫堆肥優(yōu)化配比研究[J]. 四川農(nóng)業(yè)大學學報,2018,36(2):17-23. Song Chun, Xu Feng, Zhao Wei, et al. Research on the optimum ratio of sheep manure and maize straw for high temperature compost[J]. Journal of Sichuan Agricultural University, 2018, 36(2): 17-23. (in Chinese with English abstract)

      [26] Thompson A G, Wagner-Riddle C, Fleming R. Emissions of N2O and CH4during the composting of liquid swine manure[J]. Environmental Monitoring and Assessment, 2004, 91(1-3): 87-104.

      [27] 高偉,鄭國砥,高定,等. 堆肥處理過程中豬糞有機物的動態(tài)變化特征[J]. 環(huán)境科學,2006,27(5):986-989. Gao Wei, Zheng Guodi, Gao Ding, et al. Transformation of organic matter during thermophilic composting of pig manure[J]. Environmental Science, 2006, 27(5): 986-989. (in Chinese with English abstract)

      [28] Sánchez-Monedero M A, Serramiá N, Civantos C G O, et al. Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products[J]. Chemosphere, 2010, 81(1): 18-25.

      [29] 周談龍,尚斌,董紅敏,等. 低碳氮比條件下豬糞堆肥氨氣和溫室氣體排放[J]. 中國農(nóng)業(yè)氣象,2017,38(11):689-698. Zhou Tanlong, Shang Bin, Dong Hongmin, et al. Emission characteristics of ammonia and greenhouse gas during the low C/N ratio swine manure composting[J]. Chinese Journal of Agrometeorology, 2017, 38(11): 689-698. (in Chinese with English abstract)

      [30] Yang Fan, Li Guoxue, Yang Qingyuan, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7): 1393-1399.

      [31] El Kader N A, Robin P, Paillat J M, et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology, 2007, 98(14): 2619-2628.

      [32] 沈玉君,李國學,任麗梅,等. 不同通風速率對堆肥腐熟度和含氮氣體排放的影響[J]. 農(nóng)業(yè)環(huán)境科學學報,2010,29(9):1814-1819. Shen Yujun, Li Guoxue, Ren Limei, et al. The impact of composting with different aeration rates on maturity variation and emission of gas concluding N[J]. Journal of Agro-Environment Science, 2010, 29(9): 1814-1819. (in Chinese with English abstract)

      [33] Wang Xuan, Selvam A, Chen Manting, et al. Nitrogen conservationand acidity control during food wastes composting throughstruvite formation[J]. Bioresource Technology, 2013, 147(8): 17-22.

      [34] Luo Wenhai, Yuan Jing, Luo Yiming, et al. Effects of mixing and covering with mature compost on gaseous emissions during composting[J]. Chemosphere, 2014, 117(1): 14-19.

      [35] 張地方,袁京,王國英,等. 木本泥炭不同添加比例對豬糞堆肥腐熟度和污染及溫室氣體排放的影響[J]. 農(nóng)業(yè)工程學報,2016,32(增刊2):233-240. Zhang Difang, Yuan Jing, Wang Guoying, et al. Effects of woody peat addition on maturity and gaseous emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp. 2): 233-240. (in Chinese with English abstract)

      [36] Guardia A D, Petiot C, Rogeau D, et al. Influence of aeration rate on nitrogen dynamics during composting[J]. Waste Management, 2008, 28(3): 575-587.

      [37] Pagans E, Barrena R, Font X, et al. Ammonia emissions from the composting of different organic wastes: Dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534-1542.

      [38] Jiang Tao, Ma Xuguang, Yang Juan, et al. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting[J]. Bioresource Technology, 2016, 217(10): 219-226.

      [39] Rabl A, Benoist A, Dron D, et al. How to account for CO2emissions from biomass in an LCA[J]. International Journal of Life Cycle Assessment, 2007, 12(5): 617-619.

      [40] IPCC. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. New York: Cambridge University Press, 2013.

      Effects of moisture content on maturity and pollution gas emissions during sheep manure composting

      Li Danyang1, Ma Ruonan1, Qi Chuanren1, Yuan Jing1, Li Guoxue1※, Sun Shaoze2, Liu Yan1

      (1.,,,100193,; 2.,,,100190,)

      With the development of intensive and large-size livestock farming, a large amount of livestock manure has brought environmental pollution in some areas. Aerobic composting is a widely-used and efficient technology for the treatment and utilization of organic waste, which realizes harmless treatment, quantity reduction, stabilization and reutilization. However, there are several issues such as low maturity degree of compost product and emission of polluting gases during the process of composting, moisture content (MC) is one of the most important factors of composting. In order to study the effects of initial MC on maturity and pollution gas emissions during the sheep manure composting and optimize the process conditions, an experiment was carried out in 60 L sealed fermenters for 35 days. In this research, sheep manure and cornstalk were used as raw composting materials. According to the different initial MC, high-humidity sheep manure without any cornstalk was set as MC75 treatment, cornstalks were thoroughly mixed with sheep manure in certain proportions to adjust the initial MC to be 70%, 65%, 60% and 55%, respectively. C/N ratio of the composting mixture of five treatments was adjusted to 22 approximately by adding urea. The chemical and physical characters and maturity indicators such as temperature, germination index, electric conductivity, and pH value were analyzed, and continuous monitoring of pollution gases (CH4, N2O, and NH3) were conducted. The results demonstrated that the sheep manure composting pile with the MC of 75% could not be activated successfully, the compost product still had the risk in farmland utilization because it did not experience the thermophilic period (>50 ℃). However, lots of greenhouse gases such as CH4and N2O were released and the greenhouse gas emissions equivalent was the largest among all treatments during the experiment (41.4 g/kg). While the co-composting process could be started effectively for all treatments with sheep dung and cornstalks. MC70%, 65%, 60% and 55% treatments all entered into thermophilic stage and reached the peak values of temperature on the 2nd and 4th day, respectively. The thermophilic phase lasted for 8-10 d to reach the compost sanitary requirements. Moreover, the germination index of all treatments under the addition of cornstalks were higher than 80%, the electric conductivities were below 4 mS/cm and the pH values were in the range of 8 to 9 at the end of composting, which could be biologically non-toxic and meet the maturity standard completely. The treatment with the initial MC of 65% had long thermophilic phase (10 d) and high biodegradation degree, whose degradation rate of dry material reached 45%. Meanwhile, compared to the other treatments, the total nitrogen loss and the total greenhouse effects were decreased by 4.81%-16.99% and 7.56%-48.62%, respectively. Consequently, sheep manure with high moisture content should be collected and disposed frequently in sheep farming, and it is not environmentally friendly to pile up without any bulking agent. The optimal initial moisture content is about 65% in this study during the aerobic co-composting of sheep manure and cornstalk. In addition, the control of ammonia emissions by adding additives could be taken into account in future research.

      moisture content; manure; composting; maturity; pollution gas

      李丹陽,馬若男,亓傳仁,等. 含水率對羊糞堆肥腐熟度及污染氣體排放的影響[J]. 農(nóng)業(yè)工程學報,2020,36(20):254-262.doi:10.11975/j.issn.1002-6819.2020.20.030 http://www.tcsae.org

      Li Danyang, Ma Ruonan, Qi Chuanren, et al. Effects of moisture content on maturity and pollution gas emissions during sheep manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 254-262. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.030 http://www.tcsae.org

      2020-07-05

      2020-10-10

      國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設專項(CARS-39-19)

      李丹陽,博士生,從事固體廢棄物資源化利用研究。Email:lidanyang@cau.edu.cn

      李國學,教授,博士生導師,從事固體廢棄物資源化利用研究。Email:ligx@cau.edu.cn

      10.11975/j.issn.1002-6819.2020.20.030

      X713

      A

      1002-6819(2020)-20-0254-09

      猜你喜歡
      羊糞堆體含水率
      不起眼的羊糞粒
      發(fā)酵菌劑與堆體方式對菇渣發(fā)酵效果的影響
      不同碳氮比下豬糞高溫堆肥腐熟進程研究
      昆明森林可燃物燃燒機理研究
      食用菌菌糠堆肥化發(fā)酵特性及腐熟進程
      EM原露堆漚發(fā)酵羊糞對高丹草栽培的影響初探
      基于表面能的濕煤顆粒含水率表征方法
      弱膨脹土增濕變形量試驗及路堤填筑分析
      寧夏果園羊糞腐熟方法初探
      經(jīng)堆肥處理蠶沙可達到資源化利用的要求
      新兴县| 内丘县| 商城县| 嘉荫县| 长顺县| 商城县| 罗田县| 承德市| 灵武市| 项城市| 永丰县| 蒙山县| 开远市| 江阴市| 蒲江县| 桂东县| 尼勒克县| 万载县| 册亨县| 顺平县| 崇明县| 合肥市| 乳山市| 韶山市| 海原县| 阿合奇县| 平塘县| 广平县| 西林县| 荣成市| 万源市| 那坡县| 沅陵县| 洪江市| 金堂县| 闸北区| 泸州市| 台北市| 密山市| 赞皇县| 开封县|