• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      PARAMETRIC REPRESENTATIONS OF QUASICONFORMAL MAOOINGS*

      2021-01-07 06:45:08ZhenlianLIN林珍連
      關(guān)鍵詞:擎天

      Zhenlian LIN (林珍連)

      School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China E-mail : zhenlian@hqu.edu.cn

      Qingtian SHI (石擎天)

      School of Mathematics and Computer Science, Quanzhou Normal University,Quanzhou 362000, China E-mail : shiqingtian2013@gmail.com

      2 Two Counterexamples of the Parametric Representations

      3 Parametric Representation of

      Given a measurable functionμ(z),letfμbe the normal solution of the Beltrami equation?zf=μ?zf.Ifμhas compact support on?,thenfμcan be represented as follows:

      Theorem 3.1([2])Letμ(z)be a measurable function which has compact support on??C.If‖μ‖∞≤k<1,then there exists a unique solutionf=fμsuch thatf(0)=0 andfz?1∈Lpforp>2.Moreover,fcan be expressed in the following form:

      4 Auxiliary Application of Parametric Representation

      Using the parametric representation ofin Theorem 1.1,Eremenko and Hamilton derive the formula(1.6)to prove the area distortion theorem[6].This method is relatively simple compared to others,and the sharp constants in the area distortion inequality are obtained from it,but we find that the parametric representation theorem is false and the area distortion formula(1.6)can not be derived from the equalities(1.3)–(1.5).In this section,by applying Theorem 3.4,we get that the formula(1.6)still holds true for allf∈;that is,the method used by Eremenko and Hamilton in[6]can still be used to prove the area distortion theorem.

      In fact,because

      we have that

      Astis a real variable,then,by applying the parametric representation in(3.3),

      Therefore,from(4.2),the relation(4.1)can be simplified to

      by the fact that(Pρ)ω=Tρ,which implies that the relation(1.6)holds true for the parametric representation in(3.3).

      猜你喜歡
      擎天
      緣劫
      古柏
      擎天一柱
      寶藏(2020年10期)2020-11-19 01:47:48
      一峰擎天、門當(dāng)戶對(duì)
      寶藏(2020年9期)2020-10-14 01:37:48
      登上擎天峰的猴子
      萬柱擎天
      擎天一柱黨光榮
      中華魂(2017年11期)2017-11-21 19:58:39
      登上擎天峰的猴子
      鸛雀樓
      伴他擎天守長(zhǎng)空
      海峽姐妹(2015年5期)2015-02-27 15:10:45
      玉龙| 内江市| 梁平县| 泰和县| 南木林县| 庆城县| 左贡县| 博爱县| 鹤峰县| 曲麻莱县| 乌恰县| 深圳市| 彰武县| SHOW| 东明县| 衡东县| 博爱县| 剑川县| 庆阳市| 朔州市| 分宜县| 孟州市| 保德县| 七台河市| 辽中县| 印江| 开平市| 太白县| 玉溪市| 临夏市| 光泽县| 大化| 民和| 祁东县| 南乐县| 新和县| 策勒县| 北流市| 开远市| 全南县| 康保县|