吳庚福 黃振瑞 陳迪文 潘曉英 李集勤 馬柱文 敖俊華 周文靈 袁清華
摘 要:為了探究不同類型磷肥對(duì)煙草生長(zhǎng)和土壤磷素形態(tài)的影響,以煙草品種云煙87和牛肝土為試驗(yàn)材料,采用室內(nèi)盆栽方法,設(shè)置6個(gè)處理:過(guò)磷酸鈣(T1)、鈣鎂磷肥(T2)、聚磷酸銨(T3)、磷酸一銨(T4)、磷酸二銨(T5)以及不施磷(CK),調(diào)查分析了煙草農(nóng)藝性狀、土壤的Hedley分級(jí)磷及其相關(guān)性。結(jié)果表明,與不施磷相比,所有施磷土壤的Resin-P、NaHCO3-Pi、NaOH-Pi、HCl-Pi和Residue-P均顯著增加,而有機(jī)態(tài)磷NaOH-Po和NaHCO3-Po顯著減少。其中,施用鈣鎂磷肥和磷酸二銨的土壤有效磷含量顯著高于其他處理,鈣鎂磷肥處理的磷活化系數(shù)最大。各處理煙草葉片總鮮質(zhì)量大小表現(xiàn)為:T5>T2>T3>T1>T4>CK,所有施磷處理均顯著高于對(duì)照。各農(nóng)藝性狀和生物量與Resin-P、NaHCO3-Pi、全磷、有效磷均呈顯著正相關(guān),而多數(shù)農(nóng)藝性狀和生物量與NaHCO3-Po和NaOH-Po呈顯著負(fù)相關(guān)。綜上所述,鈣鎂磷肥和磷酸二銨處理的磷活化能力較強(qiáng),并且有利于煙草生長(zhǎng)和提高煙葉產(chǎn)量。
關(guān)鍵詞:煙草;磷肥;Hedley分級(jí)磷;磷形態(tài);磷活化系數(shù)
Abstract: The effects of different phosphate fertilizers on tobacco growth and soil phosphorus (P) forms were explored. Yunyan 87 and Niugantu soil were used as experimental materials in pot experiments. Six treatments of calcium superphosphate (T1), fused calcium-magnesium phosphate (T2), Ammonium polyphosphate (T3), Monoammonium phosphate (T4), Diammonium phosphate (T5) and no phosphorus (CK) were set for investigating and analysing the agronomic characteristics of tobacco, the Hedley grade phosphorus, and the correlation between them. The results showed that Resin-P, NaHCO3-Pi, NaOH-Pi, HCl-Pi and residual-P were significantly increased, while organic phosphorus NaOH-Po and NaHCO3-Po were significantly decreased in all P fertilizer treatments compared with no P application. The available phosphorus content of soil treated with fused calcium-magnesium phosphate and diammonium phosphate was significantly higher than that of other treatments, and the phosphorus activation coefficient of fused calcium-magnesium phosphate was the highest. Total fresh weight of tobacco leaves in each treatment was in the following order: T5>T2>T3>T1>T4>CK. Among them, all phosphorus treatments were significantly higher than the control. Each agronomic trait was positively correlated with Resin-P, NaHCO3-Pi, total phosphorus, and available phosphorus, while most agronomic traits were negatively correlated with NaHCO3-Po and NaOH-Po. In summary, fused calcium-magnesium phosphate and diammonium phosphate were highly effective in Niugantu soil, which was conducive to tobacco growth, leading to higher yield.
Keywords: tobacco; phosphate fertilizer; hedley grade phosphorus; phosphorus forms; phosphorus activation coefficient
磷元素是植物生長(zhǎng)發(fā)育所必需的大量營(yíng)養(yǎng)元素之一,參與各種代謝過(guò)程。研究發(fā)現(xiàn),磷素在很大程度上影響煙草的生長(zhǎng)發(fā)育和煙葉品質(zhì)[1-2]。同時(shí),磷可提高作物能量代謝,加速細(xì)胞分裂,促進(jìn)碳水化合物及蛋白質(zhì)的合成[3]。從苗期開始,磷對(duì)煙草的生理和生長(zhǎng)產(chǎn)生影響,并持續(xù)影響后期的生長(zhǎng)[4-5]。農(nóng)業(yè)生產(chǎn)上,土壤中含有大量不能直接被植物吸收利用的磷。尤其在我國(guó)南方,由于土壤淋溶作用強(qiáng)烈,脫硅富鐵鋁化現(xiàn)象嚴(yán)重,對(duì)磷素具有固定作用[6],導(dǎo)致施入土壤的大量磷肥形成難溶形態(tài)而難以被作物利用,土壤中磷的有效性偏低。土壤磷形態(tài)受磷肥施用、土壤有機(jī)質(zhì)礦化、植物吸收等因素影響,與土壤磷的有效性顯著相關(guān)[7]。Hedley等[8]提出兼顧有機(jī)磷和無(wú)機(jī)磷的土壤磷素分級(jí)方法,是目前相對(duì)合理的土壤磷素分級(jí)方法,已被眾多的學(xué)者采用并進(jìn)一步發(fā)展。Apthorp方法一般用于估算磷酸鹽在土壤中的溶解量,以便于了解磷肥施用后土壤各形態(tài)磷素的變化情況[9-10]。磷活化系數(shù)(PAC)是土壤磷素有效性的重要指標(biāo),值越大,作物的產(chǎn)量和磷素吸收量越高[11]。目前煙草上關(guān)于磷肥的研究報(bào)道主要集中在不同類型磷肥對(duì)煙草生理和品質(zhì)的影響[12-13],而對(duì)于不同磷肥在植煙土壤中磷形態(tài)轉(zhuǎn)化的研究關(guān)注較少。明確不同磷肥在土壤中的轉(zhuǎn)化及有效性,對(duì)于有效供給煙草生長(zhǎng)發(fā)育所需的磷素具有重要意義。牛肝土是廣東韶關(guān)煙區(qū)典型的土壤類型之一[14],在該類型土壤上施用不同類型磷肥的相關(guān)研究尚未見報(bào)道。本研究利用廣東韶關(guān)煙區(qū)的牛肝土,通過(guò)盆栽試驗(yàn)研究不同類型磷源對(duì)煙草生長(zhǎng)以及土壤磷素形態(tài)和養(yǎng)分含量的影響,以期為煙草合理施用磷肥提供理論參考。
1 材料與方法
1.1 供試材料
供試土壤為石灰性紫色土(牛肝土),取自廣東省韶關(guān)市始興縣,其理化性質(zhì)為:pH 6.47,速效鉀含量82.2 mg/kg,有效磷14.7 mg/kg,堿解氮134.42 mg/kg,有機(jī)質(zhì)17.4 g/kg。供試煙草品種為云煙87。
1.2 研究地點(diǎn)與方法
1.2.1 試驗(yàn)地點(diǎn) 廣東省科學(xué)院南繁種業(yè)研究所日光溫室。
1.2.2 培養(yǎng)方法 采用室內(nèi)盆栽試驗(yàn)。供試土壤風(fēng)干研碎,每盆裝干土5 kg,移栽煙苗1株。設(shè)置6個(gè)處理:CK,不施磷;T1,過(guò)磷酸鈣(含P2O5 12.0%);T2,鈣鎂磷肥(含P2O5 12.0%);T3,聚磷酸銨(含N 18.0%,P2O5 58.0%);T4,磷酸一銨(含N 12.0%,P2O5 61.0%);T5,磷酸二銨(含N 21.0%,P2O5 53.0%)。各施磷處理有效磷施用量一致,為每千克土加入P2O5 0.2 g,氮肥和鉀肥采用尿素、硝酸鉀和硫酸鉀,施用量為每千克土加入N 0.4 g,K2O 0.6 g。磷肥和鉀肥作為基肥與土壤充分混合后裝盆,重復(fù)3次。氮肥溶于水淋施,分5次平均施用。試驗(yàn)于2020年2月1日育苗,4月1日移栽,初花打頂,6月28日開始根據(jù)煙葉成熟度從下往上分3批收獲煙葉并稱重烘干,所有煙葉收獲完成后收集莖稈稱重烘干,取土風(fēng)干后研磨待測(cè)。
1.3 指標(biāo)測(cè)定和方法
打頂后統(tǒng)計(jì)葉片數(shù),上部煙葉收獲時(shí)測(cè)定煙株株高和莖圍。土壤pH采用水浸提電位法測(cè)定,水土質(zhì)量比為1∶5;土壤有效磷和全磷含量,分別先用HN4F-HCl浸提和H2SO4-HClO4消煮,用鉬銻抗比色法測(cè)定[15];土壤速效鉀用乙酸銨浸提-火焰光度法測(cè)定[15];土壤全鉀含量測(cè)定,按NY/T 87—1988方案用HF-HNO3-HClO4消煮,火焰光度法測(cè)定;土壤全氮用凱式定氮儀測(cè)定,堿解氮用堿解擴(kuò)散法測(cè)定[15];有機(jī)質(zhì)用重鉻酸鉀容量法-外加熱法[15];土壤磷分級(jí)采用Guppy等改進(jìn)的Hedley磷分級(jí)方法連續(xù)浸提[16],將土壤磷分為Resin-P、NaHCO3-P、NaOH-P、HCl-Pi和Residue-P共5級(jí),其中NaHCO3-P包含無(wú)機(jī)態(tài)NaHCO3-Pi和有機(jī)態(tài)NaHCO3-Po,NaOH-P包含無(wú)機(jī)態(tài)NaOH-Pi和有機(jī)態(tài)NaOH-Po,用鉬銻抗比色法測(cè)磷含量。磷肥施用后對(duì)土壤中不同形態(tài)磷素的增加效應(yīng)采用Apthorp方法計(jì)算, 即各施磷處理的5個(gè)磷素形態(tài)(Resin-P、NaHCO3-P、NaOH-P、HCl-Pi和Residue-P)分別減去對(duì)照處理值,再計(jì)算不同磷肥施用后土壤磷素各形態(tài)增加量占總施磷量的百分比[9]。磷活化系數(shù)(phosphorus activation coefficient,PAC)=土壤有效磷含量/全磷含量×100%[11]。
1.4 數(shù)據(jù)分析方法
所有數(shù)據(jù)通過(guò)Excel軟件整理和作圖,采用SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)分析,采用鄧肯氏新復(fù)極差法進(jìn)行多重比較(SSR),各指標(biāo)間采用皮爾遜(Pearson)相關(guān)分析。
2 結(jié) 果
2.1 不同磷肥處理土壤磷素有效性和磷形態(tài)
2.1.1 不同磷肥處理對(duì)煙草土壤全磷、有效磷和磷活化系數(shù)的影響 如圖1a所示,各施磷肥處理土壤全磷含量均顯著高于CK,其中T1增幅最大,達(dá)36.75%,T3增幅最低為20.52%。各施磷處理有效磷含量(圖1b)均顯著高于CK,其中T2最高,比CK提高263.19%,其次為T5,比CK提高219.37%,T2和T5均顯著高于其他施磷處理。各處理磷活化系數(shù)(PAC)的大小順序依次為(圖1c):T2>T5>T4>T3>T1>CK,其中T2較CK增幅最大且顯著高于其他處理,其次為T5處理,且均顯著高于T1、T3和T4。
2.1.2 不同磷肥處理的土壤各形態(tài)磷含量 如表1所示,與CK處理相比,不同施磷肥處理的Resin-P、NaHCO3-Pi、NaOH-Pi、HCl-Pi和Residual-P均顯著增加,而有機(jī)態(tài)磷NaOH-Po和NaHCO3-Po顯著減少。具體來(lái)看,T1和T5處理的Resin-P含量顯著高于其他磷肥處理。T1和T5處理的NaHCO3-Pi含量顯著高于T2和T3處理,而T2和T3的NaHCO3-Po含量顯著高于T1、T4和T5處理。T1的NaOH-Pi含量最高,顯著高于其他施磷肥處理,而T2處理顯著低于T3、T4、T5處理。T2和T3處理的NaOH-Po含量顯著高于T4、T5處理。T2處理的HCl-Pi含量顯著高于其他磷肥處理,而T3顯著低于T1和T5處理。T1處理的Residual-P含量最高,顯著高于其他處理。
如圖2所示,不同磷肥施用后土壤磷素各形態(tài)增加量占總施磷量的比例在38.25%~66.59%之間。除T2處理外,各磷肥處理的NaOH-P增加值占總施磷量的比例高于其他形態(tài)磷,占比在12.74%~19.86%之間,其中T1占比最高;比例最低的是NaHCO3-P,占比為5.47%~2.22%;Resin-P占比為10.52%~14.13%,其中T1處理最高;HCl-Pi占比為5.2%~19.73%,其中T2處理最高。Residual-P含量占比為5.49%~18.61%,T1處理最高。
2.1.3 全磷、有效磷和磷活化系數(shù)與各形態(tài)磷含量相關(guān)關(guān)系 如表2所示,全磷與Resin-P、NaHCO3- Pi、NaOH-Pi、HCl-Pi、Residual-P、有效磷和PAC顯著正相關(guān),而與NaHCO3-Po和NaOH-Po顯著負(fù)相關(guān);有效磷與Resin-P、NaHCO3-Pi、HCl-Pi、全磷和PAC顯著正相關(guān),而與NaHCO3-Po和NaOH-Po顯著負(fù)相關(guān);PAC與Resin-P、NaHCO3-Pi、HCl-Pi、全磷和有效磷顯著正相關(guān),而與NaHCO3-Po和NaOH-Po顯著負(fù)相關(guān)。
2.2 不同磷肥處理煙草農(nóng)藝性狀和生物量
2.2.1 不同磷肥處理對(duì)煙草生長(zhǎng)的影響 如表3所示,各磷肥處理的農(nóng)藝性狀均顯著高于CK。不同磷肥處理的葉鮮質(zhì)量大小順序依次為:T5>T2>T3> T1>T4>CK;莖鮮質(zhì)量大小順序依次為:T3>T5>T2> T4>T1>CK;總鮮質(zhì)量大小順序依次為:T5>T3> T2>T1>T4>CK;除CK外,各施磷處理的葉片數(shù)和莖圍差異不顯著。T2和T3處理的株高顯著高于T1、T4和T5處理。
2.2.2 煙草農(nóng)藝性狀和生物量與各形態(tài)磷相關(guān)關(guān)系 如表4所示,葉鮮質(zhì)量、莖鮮質(zhì)量、總鮮質(zhì)量、葉片數(shù)、莖圍以及株高與Resin-P、NaHCO3-Pi、全磷和有效磷顯著正相關(guān),而與NaHCO3-Po顯著負(fù)相關(guān)。除莖圍之外,其他指標(biāo)與HCl-Pi顯著正相關(guān);除株高之外,其他指標(biāo)與NaOH-Po顯著負(fù)相關(guān)。
2.3 不同磷肥處理對(duì)土壤氮、鉀、有機(jī)質(zhì)含量和pH的影響
如表5所示,T1處理的全氮含量顯著低于CK、T2、T3處理;T5處理堿解氮含量顯著低于CK,各處理大小順序依次為:CK>T3>T4>T1>T2>T5;各處理全鉀和速效鉀含量差異不顯著;T2處理的pH顯著高于其他處理,而T3處理顯著低于其他處理;T2和T4處理的有機(jī)質(zhì)含量顯著高于T1和T3處理。
3 討 論
3.1 不同磷肥處理對(duì)土壤磷形態(tài)的影響
在石灰性土壤中,磷酸一銨和不同聚合的聚磷酸銨的NaOH-P占總磷比例最高[17];在石灰性紫色土上施用過(guò)磷酸鈣后,土壤中NaOH-Pi和NaOH-Po含量有較大提高[18]。本研究采用的牛肝土屬于石灰性紫色土,過(guò)磷酸鈣處理更容易轉(zhuǎn)化為Residual-P和NaOH-P,磷酸一銨、磷酸二銨和聚磷酸銨處理則更容易轉(zhuǎn)化為NaOH-P。這與前人研究結(jié)果相似,其原因可能是由于NaOH-Pi多為與土壤Fe、Al化合物結(jié)合的無(wú)機(jī)態(tài)磷,施加過(guò)磷酸鈣、磷酸一銨、磷酸二銨和聚磷酸銨后,土壤中Fe-P有所增加,過(guò)磷酸鈣處理增加量最大,因而NaOH-P占比較大[19]。另外,較穩(wěn)定的Residual-P有效性較低,一般難以被作物利用[20];在所有處理中,過(guò)磷酸鈣處理的Residual-P含量和占比最高,并且PAC較低,其原因可能是過(guò)磷酸鈣施入牛肝土后容易轉(zhuǎn)化為Residual-P而被固定。
Resin-P是對(duì)植物有效性最高的可溶性無(wú)機(jī)磷,而NaHCO3-Pi為晶體鐵鋁氧化物表面的磷,具有較高的有效性,也是有效磷源,且在較長(zhǎng)時(shí)間內(nèi)較穩(wěn)定[21-23]。本研究結(jié)果表明,Resin-P和NaHCO3-Pi與有效磷、PAC、各農(nóng)藝性狀、生物量顯著正相關(guān),對(duì)作物磷吸收起主要的作用,說(shuō)明本研究中Resin-P、NaHCO3-Pi是磷肥轉(zhuǎn)化為有效磷的重要形態(tài),促進(jìn)了煙草生長(zhǎng)[24]。
據(jù)研究報(bào)道,鈣含量高的堿性和中性土壤,添加鈣鎂磷肥后磷素優(yōu)先向HCl-Pi轉(zhuǎn)變[25];本研究表明,鈣鎂磷肥處理更容易轉(zhuǎn)化為HCl-Pi,與上述研究結(jié)果相似。有研究認(rèn)為,HCl-Pi大部分為難溶性鈣磷,有效性較低[21]。但本研究表明,HCl-Pi與有效磷和PAC顯著正相關(guān),且與多數(shù)煙草農(nóng)藝性狀顯著正相關(guān),可能是HCl-Pi中的Ca-P活性提高,能部分轉(zhuǎn)化有效磷[26]。研究表明,當(dāng)土壤pH<8時(shí),隨著pH值的提高,F(xiàn)e和Al結(jié)合磷酸鹽的溶解度增加,但Ca結(jié)合磷酸鹽的溶解度降低[27]。本研究中鈣鎂磷肥處理土壤pH較高,HCl-Pi含量也高,聚磷酸銨處理pH最低,HCl-Pi含量最低,也驗(yàn)證了上述觀點(diǎn)。
NaHCO3-Po主要是可溶性的有機(jī)磷化合物和部分微生物磷,而NaOH-Po主要是腐殖酸和鐵鋁化合物吸附的有機(jī)磷。研究表明,有機(jī)磷礦化后形成的磷酸根離子,與土壤中Fe3+、Al3+、Ca2+等離子能形成溶解度較低的穩(wěn)定磷酸鹽,因此在石灰性土壤上施化學(xué)磷肥降低NaHCO3-Po和NaOH-Po含量[28-29]。同時(shí),在石灰性土壤中有機(jī)磷呈微溶態(tài),礦化分解后減少了有機(jī)磷的積累[30]。本研究中,各施肥處理NaHCO3-Po和NaOH-Po含量均顯著低于CK,說(shuō)明在牛肝土中,施磷肥促進(jìn)了NaHCO3-Po和NaOH-Po的礦化分解,使之轉(zhuǎn)化為無(wú)機(jī)磷酸鹽,NaHCO3-Po和NaOH-Po含量減少。
3.2 不同磷肥處理對(duì)土壤pH的影響
有研究表明,調(diào)節(jié)土壤酸堿度能夠釋放出有效磷:當(dāng)土壤pH為6~7時(shí),土壤中的Fe、Al、Ca等元素對(duì)磷素的固定作用最小[31]。鈣鎂磷肥是一種弱酸或微堿性的枸溶性肥料,本研究中鈣鎂磷肥處理的土壤pH最高,同時(shí)有效磷含量和PAC也最高,說(shuō)明鈣鎂磷肥提高了土壤pH及磷素有效性。研究還表明,聚磷酸鹽對(duì)金屬離子有一定的鰲合能力,在堿性土壤中具有更好的穩(wěn)定性[32]。因此,本研究聚磷酸銨施用下土壤pH值較低,但有效磷含量不低,土壤中可能含有大量能被植物直接吸收利用的正磷酸根,有利于煙株的生長(zhǎng)。
3.3 不同磷肥處理對(duì)煙草農(nóng)藝性狀和生物量的影響
本研究結(jié)果中,磷酸二銨處理煙葉鮮質(zhì)量和總鮮質(zhì)量表現(xiàn)最好,而聚磷酸銨處理莖稈鮮質(zhì)量和株高表現(xiàn)最好,說(shuō)明磷酸二銨和鈣鎂磷肥更能促進(jìn)煙葉的生長(zhǎng)發(fā)育,而聚磷酸銨更能促進(jìn)煙株莖稈的生長(zhǎng)發(fā)育。據(jù)報(bào)道,湘煙5號(hào)施用鈣鎂磷肥對(duì)生長(zhǎng)發(fā)育及煙葉主要化學(xué)成分的效果最好[13],施用鈣鎂磷肥的光合能力最強(qiáng),施用過(guò)磷酸鈣的煙株田間抗逆性優(yōu),發(fā)病率較低[12,33];也有報(bào)道認(rèn)為,烤煙施用過(guò)磷酸鈣的農(nóng)藝性狀和煙葉質(zhì)量、產(chǎn)量和磷肥利用率高,鈣鎂磷肥次之[34]。這些結(jié)果與本研究結(jié)果有一定差異,其原因可能與土壤類型、肥力水平、煙草品種和氣候等因素有關(guān)。
4 結(jié) 論
本試驗(yàn)條件下,施用5種不同類型磷肥后,土壤Resin-P、NaHCO3-Pi、NaOH-Pi、HCl-Pi和Residual-P均顯著增加,而NaOH-Po和NaHCO3-Po顯著減少。各處理的土壤有效磷含量大小順序依次為:鈣鎂磷肥>聚磷酸銨>磷酸一銨>磷酸二銨>過(guò)磷酸鈣。鈣鎂磷肥在牛肝土中轉(zhuǎn)化成有效磷的能力較強(qiáng),以HCl-Pi形態(tài)為主;過(guò)磷酸鈣轉(zhuǎn)化成有效磷能力相對(duì)較弱,更多地轉(zhuǎn)化為Residual-P而被土壤固定;磷酸一銨、磷酸二銨和聚磷酸銨在土壤中更容易轉(zhuǎn)化為NaOH-Pi。各施磷處理的煙草葉片生物量較不施磷處理均顯著增加,其中施用磷酸二銨和鈣鎂磷肥的煙草農(nóng)藝性狀綜合表現(xiàn)較好,并獲得更大生物量。
參考文獻(xiàn)
[1]王艷麗,劉國(guó)順,丁松爽,等. 磷用量對(duì)烤煙根系及其與地上部關(guān)系的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(5):1440-1446.
WANG Y L, LIU G H, DING S S, et al. Effects of phosphorus fertilizer on the root system and its relationship with the aboveground part of flue-cured tobacco[J]. Chinese Journal of Applied Ecology, 2015, 26(5): 1440-1446.
[2]王艷麗,王京,劉國(guó)順,等. 磷施用量對(duì)烤煙根系生理及葉片光合特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(2):410-417.
WANG Y L, WANG J, LIU G H, et al. Effects of different phosphorus levels on root physiological and leaf photosynthetic characteristics of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 410-417.
[3]SCHACHTMAN D P, REID R J, AYLING S M. Phosphorus uptake by plants: from soil to cell[J]. Plant Physiology, 1998, 116(2): 447-453.
[4]楊懷千,周冀衡,鄧小剛,等. 烤煙漂浮育苗中不同水位煉苗對(duì)煙株生長(zhǎng)發(fā)育及生理特性的影響[J]. 煙草科技,2009(9):55-58.
YANG H Q, ZHOU J H, DENG X G, et al. Effects of seedling hardening at different water levels in float system on growth, development and physiological characteristics of flue-cured tobacco plant[J]. Tobacco Science & Technology, 2009(9): 55-58.
[5]徐明崗. 中國(guó)土壤肥力演變[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2006.
XU M G. Evolution of soil fertility in China[M]. Beijing: China Agricultural Science and Technology Press, 2006.
[6]SHEN J, YUAN L, ZHANG J, et al. Phosphorus Dynamics: From Soil to Plant[J]. Plant Physiology, 2011, 156(3): 997-1005.
[7]郭海超,周杰,羅雪華,等. 海南膠園不同母質(zhì)發(fā)育磚紅壤磷素形態(tài)特征研究[J]. 熱帶作物學(xué)報(bào),2012,33(10):1724-1730.
GUO H C, ZHOU J, LUO X H, et al. Phosphorus fractions of latosols developed from different parent materials in rubber plantation of hainan province[J]. Chinese Journal of Tropical Crops, 2012, 33(10): 1724-1730.
[8]HEDLEY M J, STEWART J B W, CHAUHAN B S C. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal. 1978, 46(5): 970-976.
[9]APTHORP J N, HEDLEY M J, TILLMAN R W. The effects of nitrogen fertilizer form on the plant availability of phosphate from soil, phosphate rock and mono-calcium phosphate[J]. Fertilizer research, 1987, 12(3): 269-283.
[10]SAVINI I, SMITHSON P C, KARANJA N K, et al. Influence of tithonia diversifolia and triple superphosphate on dissolution and effectiveness of phosphate rock in acidic soil[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(5): 593–604.
[11]陳波浪,盛建東,蔣平安,等. 磷肥種類和用量對(duì)土壤磷素有效性和棉花產(chǎn)量的影響[J]. 棉花學(xué)報(bào),2010,22(1):49-56.
CHEN B L, CHENG J D, JIANG P A, et al. Effect of applying different f0rnls and rates of phosphodc fertilizer on phosphorus efficiency and cotton yield[J]. Cotton Science, 2010, 22(1): 49-56.
[12]門思潤(rùn),朱列書,彭妙. 磷肥類型及施用量對(duì)烤煙光合特性的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2018,46(9):76-79.
MEN S R, ZHU L S, PENG M. Effects of phosphorus fertilizer types and application rates on photosynthetic characteristics of flue cured tobacco[J]. Jiangsu Agricultural Sciences, 2018, 46(9): 76-79.
[13]陳一凡,楊超才,朱列書,等. 不同磷源及其施用量對(duì)煙草湘煙5號(hào)生長(zhǎng)發(fā)育及產(chǎn)量、質(zhì)量的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(8):96-100.
CHEN Y F, YANG C C, ZHU L S, et al. Effects of different phosphorus sources and their application rates on growth, yield and quality of tobacco Xiangyan 5[J]. Jiangsu Agricultural Sciences, 2019, 47(8): 96-100.
[14]王軍,劉蘭,田俊嶺,等. 廣東煙區(qū)土壤有效磷區(qū)域分布及演變特征[J]. 中國(guó)煙草科學(xué),2019,40(3):16-23.
WANG J, LIU L, TIAN J L, et al. Regional distribution and evolution characteristics of soil available phosphorus in Guangdong tobacco-growing areas[J]. Chinese Tobacco Science, 2019, 40(3): 16-23.
[15]鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.
BAO S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agricultural Press, 2011.
[16]GUPPY C N, MENZIES N W, MOODY P W, et al. Analytical methods and quality assurance[J]. Communications in Soil Science and Plant Analysis, 2000, 31(11-14): 1981-1991.
[17]陳小娟,陳煜林,林凈凈,等. 不同聚合度的聚磷酸銨對(duì)土壤磷動(dòng)態(tài)轉(zhuǎn)化及有效性的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2019,31(10):1681-1688.
CHEN X J, CHEN Y L, LIN J J, et al. Conversion dynamics and effectiveness of ammonium polyphosphate with different polymerization degrees to soil phosphorus[J]. Acta Agriculturae Zhejiangensis, 2019, 31(10): 1681-1688.
[18]QASWAR M, AHMED W, HUANG J, et al. Soil carbon (C), nitrogen (N) and phosphorus (P) stoichiometry drives phosphorus lability in paddy soil under long-term fertilization: a fractionation and path analysis study[J]. PLoS One, 14?(6): 0218195.
[19]吉冰潔,李文海,徐夢(mèng)洋,等. 不同磷肥品種在石灰性土壤中的磷形態(tài)差異[J]. 中國(guó)農(nóng)業(yè)科學(xué),2021,54(12):2581-2594.
JI B J, LI W H, XU M Y, et al. Varying synthetic phosphorus varieties lead to different fractions in calcareous soil[J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[20]CREWS T E, BROOKES P C. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems[J]. Agriculture Ecosystems & Environment, 2014,184(2): 168-181.
[21]VERMA S, SUBEHIA S K, SHARMA S P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers[J]. Biology and Fertility of Soils, 2005, 41(4): 295-300.
[22]楊芳,何園球,李成亮,等. 不同施肥條件下紅壤旱地磷素形態(tài)及有效性分析[J]. 土壤學(xué)報(bào),2006,43(5):793-799.
YANG F, HE Y Q, LI C L, et al. Effects of fertilization on phosphorus forms and its availability in upland red soil[J]. Acta?Pedologica?Sinica, 2006, 43(5): 793-799.
[23]詹書俠,陳伏生,胡小飛,等. 中亞熱帶丘陵紅壤區(qū)森林演替典型階段土壤氮磷有效性[J]. 生態(tài)學(xué)報(bào),2009,29(9):4673-4680.
ZHAN S X, CHEN F H, HU X F, et al. Soil nitrogen and phosphorus availability in forest ecosystems at different stages of succession in the central subtropical region[J]. Acta Ecologica Sinica. 2009, 29(9): 4673-4680.
[24]金欣,姚珊,JAVKHLAN BATBAYAR,等. 冬小麥–夏休閑體系作物產(chǎn)量和土壤磷形態(tài)對(duì)長(zhǎng)期施肥的響應(yīng)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(6):1660-1671.
JIN X, YAO S, BATBAYAR J, et al. Response of wheat yield and soil phosphorus fractions to long-term fertilization under rainfed winter wheat–summer fallow cropping system[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1660-1671.
[25]周楊. 不同菜地土壤中磷積累形態(tài)變化特征研究[J]. 農(nóng)學(xué)學(xué)報(bào),2016,6(7):34-40.
ZHOU Y. Change characteristics of phosphorus accumulated form in different types of vegetable soil[J]. Journal of Agricultur, 2016, 6(7): 793-799.
[26]劉秀珍,梁小宏. 玉米生長(zhǎng)期間石灰性土壤Ca-P轉(zhuǎn)化特征與土壤速效磷、磷酸酶活性及相關(guān)性研究[J]. 水土保持學(xué)報(bào),2003(3):45-47.
LIU X Z, LIANG X H. Transformation characteristics of Ca-P in calcareous soil and correlativity with soil[J]. Journal of Soil and Water Conservation, 2003(3): 45-47.
[27]HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and Soil, 2001, 237(2): 173-195.
[28]VU D T, TANG C, ARMSTRONG R D. Changes and availability of P fractions following 65?years of P application to a calcareous soil in a Mediterranean climate[J]. Plant and Soil, 2008, 304(1-2): 21-33.
[29]王慶仁,李繼云,李振聲. 高效利用土壤磷素的植物營(yíng)養(yǎng)學(xué)研究[J]. 生態(tài)學(xué)報(bào),1999,19(3):417-421.
WANG Q R, LI J Y, LI Z S. Studies on plant nutrition of efficient utility for soil phosphorus[J]. Acta Ecologica Sinica, 1999, 19(3): 417-421.
[30]MEYER G, FROSSARD E, M?DER P, et al. Water soluble phosphate fertilizers for crops grown in calcareous soils-an outdated paradigm for recycled phosphorus fertilizers?[J]. Plant and Soil, 2018, 424(1-2): 367-388.
[31]MEYER G, BELL M J, DOOLETTE C L, et al. Plant-available phosphorus in highly concentrated fertilizer bands: effects of soil type, phosphorus form, and coapplied potassium[J]. Journal of Agricultural and Food Chemistry, 2020, 68(29): 7571-7580.
[32]楊旭,張承林,胡義熬,等. 農(nóng)用聚磷酸銨在土壤中的有效性研究進(jìn)展及在農(nóng)業(yè)上的應(yīng)用[J]. 中國(guó)土壤與肥料,2018(3):1-6.
YANG X, ZHANG C L, HU Y A, et al. Research progress on the availability of ammonium polyphosphate in soil and its application in agriculture[J]. Soils and Fertilizers Sciences in China, 2018(3): 1-6.
[33]彭妙. 磷肥類型及用量對(duì)烤煙生長(zhǎng)發(fā)育及煙葉品質(zhì)的影響[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2017.
PENG M. Effect of phosphorus fertilizer type and rate on growth, development and quality of flue-cured tobacco[D]. Changsha: Hunan Agricultural University, 2017.
[34]廖曉萍. 南平煙區(qū)磷素營(yíng)養(yǎng)狀況及磷肥施用技術(shù)研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2009.
XIAO P X. Study on the state of phosphorus nutrition of flue-cured tobacco and the techniques of fertilization in tobacco farming regions of Nanpping[D]. Changsha: Hunan Agricultural University, 2009.